1
|
Corrao G, Marvaso G, Mastroleo F, Biffi A, Pellegrini G, Minari S, Vincini MG, Zaffaroni M, Zerini D, Volpe S, Gaito S, Mazzola GC, Bergamaschi L, Cattani F, Petralia G, Musi G, Ceci F, De Cobelli O, Orecchia R, Alterio D, Jereczek-Fossa BA. Photon vs proton hypofractionation in prostate cancer: A systematic review and meta-analysis. Radiother Oncol 2024; 195:110264. [PMID: 38561122 DOI: 10.1016/j.radonc.2024.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND High-level evidence on hypofractionated proton therapy (PT) for localized and locally advanced prostate cancer (PCa) patients is currently missing. The aim of this study is to provide a systematic literature review to compare the toxicity and effectiveness of curative radiotherapy with photon therapy (XRT) or PT in PCa. METHODS PubMed, Embase, and the Cochrane Library databases were systematically searched up to April 2022. Men with a diagnosis of PCa who underwent curative hypofractionated RT treatment (PT or XRT) were included. Risk of grade (G) ≥ 2 acute and late genitourinary (GU) OR gastrointestinal (GI) toxicity were the primary outcomes of interest. Secondary outcomes were five-year biochemical relapse-free survival (b-RFS), clinical relapse-free, distant metastasis-free, and prostate cancer-specific survival. Heterogeneity between study-specific estimates was assessed using Chi-square statistics and measured with the I2 index (heterogeneity measure across studies). RESULTS A total of 230 studies matched inclusion criteria and, due to overlapped populations, 160 were included in the present analysis. Significant lower rates of G ≥ 2 acute GI incidence (2 % vs 7 %) and improved 5-year biochemical relapse-free survival (95 % vs 91 %) were observed in the PT arm compared to XRT. PT benefits in 5-year biochemical relapse-free survival were maintained for the moderate hypofractionated arm (p-value 0.0122) and among patients in intermediate and low-risk classes (p-values < 0.0001 and 0.0368, respectively). No statistically relevant differences were found for the other considered outcomes. CONCLUSION The present study supports that PT is safe and effective for localized PCa treatment, however, more data from RCTs are needed to draw solid evidence in this setting and further effort must be made to identify the patient subgroups that could benefit the most from PT.
Collapse
Affiliation(s)
- Giulia Corrao
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Annalisa Biffi
- National Centre of Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy; Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Giacomo Pellegrini
- National Centre of Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy; Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Samuele Minari
- National Centre of Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| | - Mattia Zaffaroni
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| | - Dario Zerini
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Volpe
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Simona Gaito
- Proton Clinical Outcomes Unit, The Christie NHS Proton Beam Therapy Centre, Manchester, UK; Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester, UK
| | | | - Luca Bergamaschi
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gennaro Musi
- Division of Urology, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Ceci
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Division of Nuclear Medicine and Theranostics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Ottavio De Cobelli
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Division of Urology, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology IRCCS, Milan, Italy
| | - Daniela Alterio
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Ong ALK, Knight K, Panettieri V, Dimmock M, Tuan JKL, Tan HQ, Wright C. Proton versus photon therapy for high-risk prostate cancer with dose escalation of dominant intraprostatic lesions: a preliminary planning study. Front Oncol 2023; 13:1241711. [PMID: 38023170 PMCID: PMC10663272 DOI: 10.3389/fonc.2023.1241711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background and purpose This study aimed to investigate the feasibility of safe-dose escalation to dominant intraprostatic lesions (DILs) and assess the clinical impact using dose-volume (DV) and biological metrics in photon and proton therapy. Biological parameters defined as late grade ≥ 2 gastrointestinal (GI) and genitourinary (GU) derived from planned (D P) and accumulated dose (D A) were utilized. Materials and methods In total, 10 patients with high-risk prostate cancer with multiparametric MRI-defined DILs were investigated. Each patient had two plans with a focal boost to the DILs using intensity-modulated proton therapy (IMPT) and volumetric-modulated arc therapy (VMAT). Plans were optimized to obtain DIL coverage while respecting the mandatory organ-at-risk constraints. For the planning evaluation, DV metrics, tumor control probability (TCP) for the DILs and whole prostate excluding the DILs (prostate-DILs), and normal tissue complication probability (NTCP) for the rectum and bladder were calculated. Wilcoxon signed-rank test was used for analyzing TCP and NTCP data. Results IMPT achieved a higher Dmean for the DILs compared to VMAT (IMPT: 68.1 GyRBE vs. VMAT: 66.6 Gy, p < 0.05). Intermediate-high rectal and bladder doses were lower for IMPT (p < 0.05), while the high-dose region (V60 Gy) remained comparable. IMPT-TCP for prostate-DIL were higher compared to VMAT (IMPT: 86%; α/β = 3, 94.3%; α/β = 1.5 vs. VMAT: 84.7%; α/β = 3, 93.9%; α/β = 1.5, p < 0.05). Likewise, IMPT obtained a moderately higher DIL TCP (IMPT: 97%; α/β = 3, 99.3%; α/β = 1.5 vs. VMAT: 95.9%; α/β = 3, 98.9%; α/β = 1.5, p < 0.05). Rectal D A-NTCP displayed the highest GI toxicity risk at 5.6%, and IMPT has a lower GI toxicity risk compared to VMAT-predicted Quantec-NTCP (p < 0.05). Bladder D P-NTCP projected a higher GU toxicity than D A-NTCP, with VMAT having the highest risk (p < 0.05). Conclusion Dose escalation using IMPT is able to achieve a high TCP for the DILs, with the lowest rectal and bladder DV doses at the intermediate-high-dose range. The reduction in physical dose was translated into a lower NTCP (p < 0.05) for the bladder, although rectal toxicity remained equivalent.
Collapse
Affiliation(s)
- Ashley Li Kuan Ong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
| | - Kellie Knight
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
| | - Vanessa Panettieri
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mathew Dimmock
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
- School of Allied Health Professions, Keele University, Staffordshire, United Kingdom
| | | | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Caroline Wright
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Variability of radiotherapy volume delineation: PSMA PET/MRI and MRI based clinical target volume and lymph node target volume for high-risk prostate cancer. Cancer Imaging 2023; 23:1. [PMID: 36600283 DOI: 10.1186/s40644-022-00518-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
PURPOSE A comparative retrospective study to assess the impact of PSMA Ligand PET/MRI ([68 Ga]-Ga-PSMA-11 and [18F]-F-PSMA-1007 PET/MRI) as a new method of target delineation compared to conventional imaging on whole-pelvis radiotherapy for high-risk prostate cancer (PCa). PATIENTS AND METHODS Forty-nine patients with primary high-risk PCa completed the whole-pelvis radiotherapy plan based on PSMA PET/MRI and MRI. The primary endpoint compared the size and overlap of clinical target volume (CTV) and nodal gross tumour volume (GTVn) based on PSMA PET/MRI and MRI. The diagnostic performance of two methods for pelvic lymph node metastasis (PLNM) was evaluated. RESULTS In the radiotherapy planning for high-risk PCa patients, there was a significant correlation between MRI-CTV and PET/MRI-CTV (P = 0.005), as well as between MRI-GTVn and PET/MRI-GTVn (P < 0.001). There are non-significant differences in the CTV and GTVn based on MRI and PET/MRI images (P = 0.660, P = 0.650, respectively). The conformity index (CI), lesion coverage factor (LCF) and Dice similarity coefficient (DSC) of CTVs were 0.999, 0.953 and 0.954. The CI, LCF and DSC of GTVns were 0.927, 0.284, and 0.32. Based on pathological lymph node analysis of 463 lymph nodes from 37 patients, the sensitivity, specificity of PET/MRI in the diagnosis of PLNM were 77.78% and 99.76%, respectively, which were higher than those of MRI (P = 0.011). Eight high-risk PCa patients who finished PSMA PET/MRI changed their N or M stage. CONCLUSION The CTV delineated based on PET/MRI and MRI differ little. The GTVn delineated based on PET/MRI encompasses metastatic pelvic lymph nodes more accurately than MRI and avoids covering pelvic lymph nodes without metastasis. We emphasize the utility of PET/MRI fusion images in GTVn delineation in whole pelvic radiotherapy for PCa. The use of PSMA PET/MRI aids in the realization of more individual and precise radiotherapy for PCa.
Collapse
|
5
|
The Journey of Radiotherapy Dose Escalation in High Risk Prostate Cancer; Conventional Dose Escalation to Stereotactic Body Radiotherapy (SBRT) Boost Treatments. Clin Genitourin Cancer 2021; 20:e25-e38. [PMID: 34740548 DOI: 10.1016/j.clgc.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/08/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
High risk prostate cancer (HR-PrCa) is a subset of localized PrCa with significant potential for morbidity and mortality associated with disease recurrence and metastasis. Radiotherapy combined with Androgen Deprivation Therapy has been the standard of care for many years in HR-PrCa. In recent years, dose escalation, hypo-fractionation and high precision delivery with immobilization and image-guidance have substantially changed the face of modern PrCa radiotherapy, improving treatment convenience and outcomes. Ultra-hypo-fractionated radiotherapy delivered with high precision in the form of stereotactic body radiation therapy (SBRT) combines delivery of high biologically equivalent dose radiotherapy with the convenience of a shorter treatment schedule, as well as the promise of similar efficacy and reduced toxicity compared to conventional radiotherapy. However, rigorous investigation of SBRT in HR-PrCa remains limited. Here, we review the changes in HR-PrCa radiotherapy through dose escalation, hypo- and ultra-hypo-fractionated radiotherapy boost treatments, and the radiobiological basis of these treatments. We focus on completed and on-going trials in this disease utilizing SBRT as a sole radiation modality or as boost therapy following pelvic radiation.
Collapse
|
6
|
Yan M, Gouveia AG, Cury FL, Moideen N, Bratti VF, Patrocinio H, Berlin A, Mendez LC, Moraes FY. Practical considerations for prostate hypofractionation in the developing world. Nat Rev Urol 2021; 18:669-685. [PMID: 34389825 PMCID: PMC8361822 DOI: 10.1038/s41585-021-00498-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
External beam radiotherapy is an effective curative treatment option for localized prostate cancer, the most common cancer in men worldwide. However, conventionally fractionated courses of curative external beam radiotherapy are usually 8-9 weeks long, resulting in a substantial burden to patients and the health-care system. This problem is exacerbated in low-income and middle-income countries where health-care resources might be scarce and patient funds limited. Trials have shown a clinical equipoise between hypofractionated schedules of radiotherapy and conventionally fractionated treatments, with the advantage of drastically shortening treatment durations with the use of hypofractionation. The hypofractionated schedules are supported by modern consensus guidelines for implementation in clinical practice. Furthermore, several economic evaluations have shown improved cost effectiveness of hypofractionated therapy compared with conventional schedules. However, these techniques demand complex infrastructure and advanced personnel training. Thus, a number of practical considerations must be borne in mind when implementing hypofractionation in low-income and middle-income countries, but the potential gain in the treatment of this patient population is substantial.
Collapse
Affiliation(s)
- Michael Yan
- grid.410356.50000 0004 1936 8331Division of Radiation Oncology, Cancer Centre of Southeastern Ontario, Queen’s University, Kingston, Canada
| | - Andre G. Gouveia
- Department of Radiation Oncology, Americas Centro de Oncologia Integrado, Rio de Janeiro, Brazil
| | - Fabio L. Cury
- grid.14709.3b0000 0004 1936 8649Department of Radiation Oncology, Cedars Cancer Centre, McGill University, Montreal, Canada
| | - Nikitha Moideen
- grid.410356.50000 0004 1936 8331Division of Radiation Oncology, Cancer Centre of Southeastern Ontario, Queen’s University, Kingston, Canada
| | - Vanessa F. Bratti
- grid.410356.50000 0004 1936 8331Queen’s University School of Medicine, Department of Public Health Sciences, Kingston, Canada
| | - Horacio Patrocinio
- grid.14709.3b0000 0004 1936 8649Department of Medical Physics, Cedars Cancer Centre, McGill University, Montreal, Canada
| | - Alejandro Berlin
- grid.17063.330000 0001 2157 2938Radiation Medicine Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Lucas C. Mendez
- grid.39381.300000 0004 1936 8884Department of Radiation Oncology, London Regional Cancer Program, Western University, London, Canada
| | - Fabio Y. Moraes
- grid.410356.50000 0004 1936 8331Division of Radiation Oncology, Cancer Centre of Southeastern Ontario, Queen’s University, Kingston, Canada
| |
Collapse
|