1
|
Liao Y, Lupiani B, Izumiya Y, Reddy SM. Marek's disease virus Meq oncoprotein interacts with chicken HDAC 1 and 2 and mediates their degradation via proteasome dependent pathway. Sci Rep 2021; 11:637. [PMID: 33437016 PMCID: PMC7803728 DOI: 10.1038/s41598-020-80792-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/28/2020] [Indexed: 12/02/2022] Open
Abstract
Marek's disease virus (MDV) encodes a basic-leucine zipper (BZIP) protein, Meq, which is considered the major MDV oncoprotein. It has been reported that the oncogenicity of Meq is associated with its interaction with C-terminal binding protein 1 (CtBP), which is also an interaction partner of Epstein-Barr virus encoded EBNA3A and EBNA3C oncoproteins. Since both EBNA3C and CtBP interact with histone deacetylase 1 (HDAC1) and HDAC2, we examined whether Meq shares this interaction with chicken HDAC1 (chHDAC1) and chHDAC2. Using confocal microscopy analysis, we show that Meq co-localizes with chHDAC1 and chHDAC2 in the nuclei of MDV lymphoblastoid tumor cells. In addition, immunoprecipitation assays demonstrate that Meq interacts with chHDAC1 and chHDAC2 in transfected cells and MDV lymphoblastoid tumor cells. Using deletion mutants, interaction domains were mapped to the N-terminal dimerization domain of chHDAC1 and chHDAC2, and the BZIP domain of Meq. Our results further demonstrate that this interaction mediates the degradation of chHDAC1 and chHDAC2 via the proteasome dependent pathway. In addition, our results show that Meq also induces the reduction of global ubiquitinated proteins through a proteasome dependent pathway. In conclusion, our results provide evidence that Meq interacts with chHDAC1 and chHDAC2, and induces their proteasome dependent degradation.
Collapse
Affiliation(s)
- Yifei Liao
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, MS4467, TAMU, College Station, TX, 77843, USA
| | - Blanca Lupiani
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, MS4467, TAMU, College Station, TX, 77843, USA
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Sanjay M Reddy
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, MS4467, TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Mirzaei H, Ghorbani S, Khanizadeh S, Namdari H, Faghihloo E, Akbari A. Histone deacetylases in virus-associated cancers. Rev Med Virol 2019; 30:e2085. [PMID: 31743548 DOI: 10.1002/rmv.2085] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Abstract
Oncogenic viruses are one of the most important causes of cancer worldwide. The pathogens contribute to the establishment of human malignancies by affecting various cellular events. Epigenetic mechanisms, such as histone modification methylation/demethylation, are one of the most critical events manipulated by oncogenic viruses to drive tumorigenesis. Histone modifications are mediated by histone acetylation and deacetylation, regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Dysregulation of HDACs activity affects viral tumorigenesis in several ways, such as manipulating tumor suppressor and viral gene expression. The present review aims to describe the vital interactions between both cancer-caused/associated viruses and the HDAC machinery, particularly by focusing on those viruses involved in gastrointestinal tumors, as some of the most common viral-mediated cancers.
Collapse
Affiliation(s)
- Habibollah Mirzaei
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Ghorbani
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Haideh Namdari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Abstract
Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walk modelling of herpes simplex virus 1-sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.
Collapse
|
4
|
Zheng K, Jiang Y, He Z, Kitazato K, Wang Y. Cellular defence or viral assist: the dilemma of HDAC6. J Gen Virol 2017; 98:322-337. [PMID: 27959772 DOI: 10.1099/jgv.0.000679] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique cytoplasmic deacetylase that regulates various important biological processes by preventing protein aggregation and deacetylating different non-histone substrates including tubulin, heat shock protein 90, cortactin, retinoic acid inducible gene I and β-catenin. Growing evidence has indicated a dual role for HDAC6 in viral infection and pathogenesis: HDAC6 may represent a host defence mechanism against viral infection by modulating microtubule acetylation, triggering antiviral immune response and stimulating protective autophagy, or it may be hijacked by the virus to enhance proinflammatory response. In this review, we will highlight current data illustrating the complexity and importance of HDAC6 in viral pathogenesis. We will summarize the structure and functional specificity of HDAC6, and its deacetylase- and ubiquitin-dependent activity in key cellular events in response to virus infection. We will also discuss how HDAC6 exerts its direct or indirect histone modification ability in viral lytic-latency switch.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Pharmacy, School of Medicine, Shenzhen University, Shenzhen 518060, PR China.,College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Yingchun Jiang
- Department of Pharmacy, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Zhendan He
- Department of Pharmacy, School of Medicine, Shenzhen University, Shenzhen 518060, PR China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yifei Wang
- College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
5
|
Promoter-Targeted Histone Acetylation of Chromatinized Parvoviral Genome Is Essential for the Progress of Infection. J Virol 2016; 90:4059-4066. [PMID: 26842481 DOI: 10.1128/jvi.03160-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/31/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The association of host histones with parvoviral DNA is poorly understood. We analyzed the chromatinization and histone acetylation of canine parvovirus DNA during infection by confocal imaging andin situproximity ligation assay combined with chromatin immunoprecipitation and high-throughput sequencing. We found that during late infection, parvovirus replication bodies were rich in histones bearing modifications characteristic of transcriptionally active chromatin, i.e., histone H3 lysine 27 acetylation (H3K27ac). H3K27ac, in particular, was located in close proximity to the viral DNA-binding protein NS1. Importantly, our results show for the first time that in the chromatinized parvoviral genome, the two viral promoters in particular were rich in H3K27ac. Histone acetyltransferase (HAT) inhibitors efficiently interfered with the expression of viral proteins and infection progress. Altogether, our data suggest that the acetylation of histones on parvoviral DNA is essential for viral gene expression and the completion of the viral life cycle. IMPORTANCE Viral DNA introduced into cell nuclei is exposed to cellular responses to foreign DNA, including chromatinization and epigenetic silencing, both of which determine the outcome of infection. How the incoming parvovirus resists cellular epigenetic downregulation of its genes is not understood. Here, the critical role of epigenetic modifications in the regulation of parvovirus infection was demonstrated. We showed for the first time that a successful parvovirus infection is characterized by the deposition of nucleosomes with active histone acetylation on the viral promoter areas. The results provide new insights into the regulation of parvoviral gene expression, which is an important aspect of the development of parvovirus-based virotherapy.
Collapse
|
6
|
Circovirus transport proceeds via direct interaction of the cytoplasmic dynein IC1 subunit with the viral capsid protein. J Virol 2014; 89:2777-91. [PMID: 25540360 DOI: 10.1128/jvi.03117-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Microtubule transport of circovirus from the periphery of the cell to the nucleus is essential for viral replication in early infection. How the microtubule is recruited to the viral cargo remains unclear. In this study, we observed that circovirus trafficking is dependent on microtubule polymerization and that incoming circovirus particles colocalize with cytoplasmic dynein and endosomes. However, circovirus binding to dynein was independent of the presence of microtubular α-tubulin and translocation of cytoplasmic dynein into the nucleus. The circovirus capsid (Cap) subunit enhanced microtubular acetylation and directly interacted with intermediate chain 1 (IC1) of dynein. N-terminal residues 42 to 100 of the Cap viral protein were required for efficient binding to the dynein IC1 subunit and for retrograde transport. Knockdown of IC1 decreased virus transport and replication. These results demonstrate that Cap is a direct ligand of the cytoplasmic dynein IC1 subunit and an inducer of microtubule α-tubulin acetylation. Furthermore, Cap recruits the host dynein/microtubule machinery to facilitate transport toward the nucleus by an endosomal mechanism distinct from that used for physiological dynein cargo. IMPORTANCE Incoming viral particles hijack the intracellular trafficking machinery of the host in order to migrate from the cell surface to the replication sites. Better knowledge of the interaction between viruses and virus proteins and the intracellular trafficking machinery may provide new targets for antiviral therapies. Currently, little is known about the molecular mechanisms of circovirus transport. Here, we report that circovirus particles enter early endosomes and utilize the microtubule-associated molecular motor dynein to travel along microtubules. The circovirus capsid subunit enhances microtubular acetylation, and N-terminal residues 42 to 100 directly interact with the dynein IC1 subunit during retrograde transport. These findings highlight a mechanism whereby circoviruses recruit dynein for transport to the nucleus via the dynein/microtubule machinery.
Collapse
|
7
|
Lanouette S, Mongeon V, Figeys D, Couture JF. The functional diversity of protein lysine methylation. Mol Syst Biol 2014; 10:724. [PMID: 24714364 PMCID: PMC4023394 DOI: 10.1002/msb.134974] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Large‐scale characterization of post‐translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, has highlighted their importance in the regulation of a myriad of signaling events. While high‐throughput technologies have tremendously helped cataloguing the proteins modified by these PTMs, the identification of lysine‐methylated proteins, a PTM involving the transfer of one, two or three methyl groups to the ε‐amine of a lysine side chain, has lagged behind. While the initial findings were focused on the methylation of histone proteins, several studies have recently identified novel non‐histone lysine‐methylated proteins. This review provides a compilation of all lysine methylation sites reported to date. We also present key examples showing the impact of lysine methylation and discuss the circuitries wired by this important PTM.
Collapse
Affiliation(s)
- Sylvain Lanouette
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
8
|
Li S, Kong L, Yu X, Zheng Y. Host-virus interactions: from the perspectives of epigenetics. Rev Med Virol 2014; 24:223-41. [PMID: 24677359 DOI: 10.1002/rmv.1783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/23/2013] [Accepted: 01/16/2014] [Indexed: 12/25/2022]
Abstract
Chromatin structure and histone modifications play key roles in gene regulation. Some virus genomes are organized into chromatin-like structure, which undergoes different histone modifications facilitating complex functions in virus life cycles including replication. Here, we present a comprehensive summary of recent research in this field regarding the interaction between viruses and host epigenetic factors with emphasis on how chromatin modifications affect viral gene expression and virus infection. We also describe the strategies employed by viruses to manipulate the host epigenetic program to facilitate virus replication as well as the underlying mechanisms. Together, knowledge from this field not only generates novel insights into virus life cycles but may also have important therapeutic implications.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA, USA
| | | | | | | |
Collapse
|
9
|
A conserved gammaherpesvirus protein kinase targets histone deacetylases 1 and 2 to facilitate viral replication in primary macrophages. J Virol 2013; 87:7314-25. [PMID: 23616648 DOI: 10.1128/jvi.02713-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gammaherpesviruses are ubiquitious pathogens that establish lifelong infection and are associated with several malignancies. All gammaherpesviruses encode a conserved protein kinase that facilitates viral replication and chronic infection and thus represents an attractive therapeutic target. In this study, we identify a novel function of gammaherpesvirus protein kinase as a regulator of class I histone deacetylases (HDAC). Mouse gammaherpesvirus 68 (MHV68)-encoded protein kinase orf36 interacted with HDAC1 and 2 and prevented association of these HDACs with the viral promoter driving expression of RTA, a critical immediate early transcriptional activator. Furthermore, the ability to interact with HDAC1 and 2 was not limited to the MHV68 orf36, as BGLF4, a related viral protein kinase encoded by Epstein-Barr virus, interacted with HDAC1 in vitro. Importantly, targeting of HDAC1 and 2 by orf36 was independent of the kinase's enzymatic activity. Additionally, orf36 expression, but not its enzymatic activity, induced changes in the global deacetylase activity observed in infected primary macrophages. Combined deficiency of HDAC1 and 2 rescued attenuated replication and viral DNA synthesis of the orf36 null MHV68 mutant, indicating that the regulation of HDAC1 and 2 by orf36 was relevant for viral replication. Understanding the mechanism by which orf36 facilitates viral replication, including through HDAC targeting, will facilitate the development of improved therapeutics against gammaherpesvirus kinases.
Collapse
|