1
|
Wang F, Zhao F, Deng Y, Tan A, Lai Y, Gong H, Huang Z, Liu Y, Liang Q, Wang W. miR-2765 involved in ammonia nitrogen stress via negative regulation of autophagy in shrimp. Int J Biol Macromol 2024; 258:129084. [PMID: 38161029 DOI: 10.1016/j.ijbiomac.2023.129084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
MicroRNA (miRNA) is a highly conserved non-coding tiny endogenous RNA molecule that regulates various cellular functions by inhibiting mRNA translation or promoting the degradation of proteins. In this study, we identified a specific miRNA (designed as Pva-miR-2765) from Penaeus vannamei, which widely distributed in different tissues of shrimp, with the highest concentration found in the intestine. Through fluorescence in situ hybridization (FISH), we observed that Pva-miR-2765 is primarily located in the cytoplasm. Interestingly, we found that the expression of Pva-miR-2765 significantly decreased in hemocytes, hepatopancreas and gill under ammonia nitrogen stress. Furthermore, when Pva-miR-2765 was silenced, the autophagy level in shrimp significantly increased. Additionally, Pva-miR-2765 was found to promote pathological damage in the hepatopancreas of shrimp. Subsequently, correlation analysis revealed a negative relationship between the expression of Pva-miR-2765 and PvTBC1D7. To confirm this interaction, we conducted a dual luciferase reporter gene assay, which demonstrated that Pva-miR-2765 inhibit the expression of PvTBC1D7 by interacting with its 3'UTR. And the expression level of PvTBC1D7 in shrimp decreased significantly under ammonia nitrogen stress in Pva-miR-2765 overexpressed. Our findings suggest that Pva-miR-2765 can reduce autophagy in P. vannamei by inhibiting the regulation of PvTBC1D7, thereby participating in the oxidative stress of shrimp caused by ammonia nitrogen stress.
Collapse
Affiliation(s)
- Feifei Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Yingtiao Lai
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Hua Gong
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Zhibin Huang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qingjian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China; Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
Abstract
Ubiquitin-specific protease 6 (USP6) rearrangements have been identified in aneurysmal bone cyst, nodular fasciitis, myositis ossificans, fibro-osseous pseudotumour of digits and cellular fibroma of tendon sheath. These entities show clinical as well as histological overlap, suggesting they are all clonal neoplastic belonging to the same biological spectrum and referred to as 'USP6-associated neoplasms'. They all show a characteristic gene fusion formed by juxtaposition of the USP6 coding sequences to the promoter regions of several partner genes, leading to USP6 transcriptional upregulation.
Collapse
Affiliation(s)
- Fleur Cordier
- Pathology, Ghent University Hospital, Ghent, Belgium
| | | |
Collapse
|
3
|
Luo W, Zhang G, Wang Z, Wu Y, Xiong Y. Ubiquitin-specific proteases: Vital regulatory molecules in bone and bone-related diseases. Int Immunopharmacol 2023; 118:110075. [PMID: 36989900 DOI: 10.1016/j.intimp.2023.110075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Stabilization of bone structure and function involves multiple cell-to-cell and molecular interactions, in which the regulatory functions of post-translational modifications such as ubiquitination and deubiquitination shouldn't be underestimated. As the largest family of deubiquitinating enzymes, the ubiquitin-specific proteases (USPs) participate in the development of bone homeostasis and bone-related diseases through multiple classical osteogenic and osteolytic signaling pathways, such as BMP/TGF-β pathway, NF-κB/p65 pathway, EGFR-MAPK pathway and Wnt/β-catenin pathway. Meanwhile, USPs may also broadly regulate regulate hormone expression level, cell proliferation and differentiation, and may further influence bone homeostasis from gene fusion and nuclear translocation of transcription factors. The number of patients with bone-related diseases is currently enormous, making exploration of their pathogenesis and targeted therapy a hot topic. Pathological increases in the levels of inflammatory mediators such as IL-1β and TNF-α lead to inflammatory bone diseases such as osteoarthritis, rheumatoid arthritis and periodontitis. While impaired body metabolism greatly increases the probability of osteoporosis. Abnormal physiological activity of bone-associated cells results in a variety of bone tumors. The regulatory role of USPs in bone-related disease has received particular attention from academics in recent studies. In this review, we focuse on the roles and mechanisms of USPs in bone homeostasis and bone-related diseases, with the expectation of informing targeted therapies in the clinic.
Collapse
Affiliation(s)
- Wenxin Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Overexpression of microRNA-130a represses uveal melanoma cell migration and invasion through inactivation of the Wnt/β-catenin signaling pathway by downregulating USP6. Cancer Gene Ther 2022; 29:930-939. [PMID: 34522027 DOI: 10.1038/s41417-021-00377-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022]
Abstract
Uveal melanoma (UM) is a neoplasm arising from melanocytes of the ciliary body, choroid, and iris of the eye, which is the most common primary malignant intraocular tumor. microRNA-130a (miR-130a) has been confirmed to be underexpressed in many types of cancers. Here we aimed to investigate the mechanism whereby miR-130a affects the Wnt/β-catenin signaling pathway by targeting ubiquitin-specific protease 6 (USP6) in UM. Ocular specimens of 62 patients with UM and 42 participants subjected to enucleation due to trauma were collected. In the normal uveal tissues and those from metastatic and non-metastatic UM, we evaluated miR-130a expression by RT-qPCR and then measured mRNA and protein expression of recombinant human mothers against decapentaplegic homolog 4 (SMAD4), USP6, related factors of the Wnt/β-catenin signaling pathway, and epidermal growth factor receptor (EGFR) by RT-qPCR and western blot analysis. Subsequently, the interaction between miR-130a and USP6 was identified by bioinformatics analysis and dual-luciferase reporter gene assay. Next, UM cell migration and invasion abilities, as well as tumor growth in nude mice, were measured through gain- and loss-of-function studies of miR-130a and USP6. miR-130a expression was downregulated in uveal tissues from patients with UM, especially in metastatic uveal tissues. The overall survival of UM patients with low miR-130a expression was shorter than those with high miR-130a expression. USP6 was a target of miR-130a and the overexpression of miR-130a or inhibition of USP6 in UM MUM-2B and MUM-2C cell lines inhibited the expression of Wnt, β-catenin, and EGFR, and activated SMAD4 expression, while reducing UM cell migration and invasion abilities in vitro. The above changes could be reversed by overexpressing USP6 in vitro, whereas overexpressed miR-130a could inhibit the tumor growth in nude mice. Taken together, overexpressed miR-130a inhibited USP6 expression to repress UM cell migration and invasion abilities through inactivating the Wnt/β-catenin signaling pathway, which could be a potential candidate for treatment of UM.
Collapse
|
5
|
Tian J, Liang X, Wang D, Tian J, Liang H, Lei T, Yan Z, Wu D, Liu X, Liu S, Yang Y. TBC1D2 Promotes Ovarian Cancer Metastasis via Inducing E-Cadherin Degradation. Front Oncol 2022; 12:766077. [PMID: 35574392 PMCID: PMC9091366 DOI: 10.3389/fonc.2022.766077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Ovarian cancer (OC) is the most lethal gynecological malignancy worldwide. Increasing evidence indicates that TBC domain family is implicated in various cellular events contributing to initiation and development of different cancers, including OC. However, the role of TBC1D2, a crucial member of TBC domain family, remains unclear in OC. Methods IHC and qRT-PCR were employed to determine TBC1D2 expression in OC tissues and cells. In vitro and in vivo assays involving proliferation, migration, invasion were performed to explore the role of TBC1D2 in OC development. The underlying mechanism by which TBC1D2 promotes OC metastasis were elucidated using bioinformatics analysis, western blotting and co-immunoprecipitation. Results Upregulation of TBC1D2 was found in OC and was associated with a poor prognosis. Meanwhile, TBC1D2 promoted OC cell proliferation, migration, and invasion in vitro and facilitated tumor growth and metastasis in vivo. Moreover, TBC1D2 contributed to OC cell invasion by E-cadherin degradation via disassembling Rac1-IQGAP1 complex. In addition, miR-373-3p was screened out and identified to inhibit OVCAR3 invasion via negative regulation of TBC1D2. Conclusion Our findings indicated that TBC1D2 is overexpressed in OC and contributes to tumor metastasis via E-cadherin degradation. This study suggests that TBC1D2 may be an underlying therapeutic target for OC.
Collapse
Affiliation(s)
- Jiming Tian
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Dalin Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jinglin Tian
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Haiping Liang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ting Lei
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Zeyu Yan
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Dan Wu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Liu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Shujuan Liu
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Wang F, Huang L, Liang Q, Liao M, Liu C, Dong W, Zhuang X, Yin X, Liu Y, Wang W. TBC domain family 7-like enhances the tolerance of Penaeus vannamei to ammonia nitrogen by the up-regulation of autophagy. FISH & SHELLFISH IMMUNOLOGY 2022; 122:48-56. [PMID: 35077870 DOI: 10.1016/j.fsi.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
TBC domain family 7 (TBC1D7) is one of the subunits of tuberous sclerosis complex (TSC) and an important regulator of autophagosome biogenesis. However, the function of TBC1D7 is not fully understood in crustaceans. In the present study, TBC1D7 was identified from Penaeus vannamei. The complete coding sequence of PvTBC1D7 was of 960 bp encoding a predicted polypeptide of 319 amino acids with one conserved TBC domain, which shared high similarity with TBC1D7 of that other species. The mRNA of PvTBC1D7 was highly expressed in hemocyte and hepatopancreas, and the PvTBC1D7 protein was localized specifically in the cytoplasm of hemocyte of shrimp. Besides, PvTBC1D7 was co-localized with PvTSC1 in the cytoplasm of shrimp, indicating that there might existed a binding relationship between PvTBC1D7 and PvTSC1. During the ammonia nitrogen stress, the mRNA transcripts of PvTBC1D7 were significantly upregulated in hemocyte, hepatopancreas, and gill. Functionally, overexpression of PvTBC1D7 in vitro restored the inhibition to autophagy caused by chloroquine (CLQ) and increased the autophagy level, while the silencing of PvTBC1D7 could inhibit the autophagy. More importantly, after interfering with PvTBC1D7, the autophagy level decreased significantly both in hepatopancreas and hemocyte of P. vannamei, the mRNA expression of PvmTOR was increased remarkably with the significantly decrease of autophagy-related genes (PvATG12 and PvATG14). And the reduction of PvTBC1D7 remarkably exacerbated the damage of hepatopancreas, increased the accumulation of ROS, and reduced the survival proportion of shrimp under ammonia nitrogen stress. Altogether, these results indicated that PvTBC1D7 might positively regulate the autophagy by stabilizing the negative regulation of mTOR by TSC complex, reduce the oxidative stress damage and improve shrimp ammonia nitrogen tolerance.
Collapse
Affiliation(s)
- Feifei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qingjian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Can Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Wenna Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xueqi Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xiaoli Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
7
|
Integrated analysis and validation reveal ACAP1 as a novel prognostic biomarker associated with tumor immunity in lung adenocarcinoma. Comput Struct Biotechnol J 2022; 20:4390-4401. [PMID: 36051873 PMCID: PMC9403504 DOI: 10.1016/j.csbj.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
ADP-ribosylation factor (Arf)-GTPase-activating protein (GAP) with coiled-coil, ankyrin repeat and PH domains 1 (ACAP1) has been reported to serve as an adaptor for clathrin coat complex playing a role in endocytic recycling and cellular migration. The potential role of ACAP1 in lung adenocarcinoma (LUAD) has not been yet completely defined. We performed the comprehensive analyses, including gene expression, survival analysis, genetic alteration, function enrichment, and immune characteristics. ACAP1 was remarkably downregulated in tumor tissues, and linked with the clinicopathologic features in LUAD patients. Prognostic analysis demonstrated that low ACAP1 expression was correlated with unsatisfactory overall survival (OS) and disease specific survival (DSS) in LUAD patients. Moreover, ACAP1 could be determined as a prognostic biomarker according to Cox proportional hazard model and nomogram model. We also confirmed that ACAP1 was downregulated in two LUAD cell lines, comparing to normal lung cell. Overexpression of ACAP1 caused a profound attenuation in cell proliferation, migration, invasion, and promoted cell apoptosis. Additionally, functional enrichment analyses confirmed that ACAP1 was highly correlated with T cell activation and immune response. Then, we further conducted immune landscape analyses, including single cell RNA sequencing, immune cells infiltration, and immune checkpoints. ACAP1 expression was positively associated with the infiltrating level of immune cells in TME and the expression of immune checkpoint molecules. This study first comprehensively analyzed molecular expression, clinical implication, and immune landscape features of ACAP1 in LUAD, suggesting that ACAP1 was predictive of prognosis and could serve as a potential biomarker predicting immunotherapy response for LUAD patients.
Collapse
|
8
|
Sápi Z, Lippai Z, Papp G, Hegyi L, Sápi J, Dezső K, Szuhai K. Nodular fasciitis: a comprehensive, time-correlated investigation of 17 cases. Mod Pathol 2021; 34:2192-2199. [PMID: 34381187 PMCID: PMC8592838 DOI: 10.1038/s41379-021-00883-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/09/2022]
Abstract
The self-limited nature of nodular fasciitis (NF) is well-known but its precise mechanism has not yet been clarified. We observed that "young" NF (preoperative duration <1 month) consistently contains a higher percentage (~80%) of USP6 break-apart FISH signals than "old" NF (preoperative duration >3 months) (~20%). Thus, we hypothesized that our original observation may reflect a connection with the self-limited nature of NF. Seventeen cases with reliable data concerning the onset were selected, thus approximating the lifetime of each tumor. Besides the USP6 interphase FISH examination, we also checked the most common MYH9-USP6 fusion using RT-PCR. Because of the known pathways of the tumorigenesis of NF, the mRNA level of USP6, TRAIL, IFN-beta, JAK1, STAT1, STAT3, JUN, and CDKN2A was measured using qRT-PCR. Regarding proteins, USP6, p16, p27, TRAIL, and IFN-beta were examined using immunohistochemistry. Targeted gene panel next-generation sequencing (NGS) of three cases was additionally performed. We found a strong negative correlation (p = 0.000) between the lifetime and percentage of USP6 break-apart signals and a strong positive relationship (p = 0.000) between USP6 break-apart signals and mitotic counts. Results of immunostainings, along with qRT-PCR results, favored the previously-suggested USP6-induced negative feedback mechanism through activation of TRAIL and IFN-beta, likely resulting in apoptosis and senescence of tumor cells harboring USP6 fusions. Targeted-NGS resulted in the detection of several variants, but no additional recurrent changes in the pathogenesis of these tumors. We revealed on a cellular level the USP6-induced negative feedback mechanism. In conclusion, we emphasize that in "old" NF, the percentage of USP6 break-apart FISH signals can be as low as 14-27% which can be very important from a differential diagnostic point of view. We emphasize that a careful examination and interpretation of the NGS data is needed before clinical decision-making on treatment.
Collapse
Affiliation(s)
- Zoltán Sápi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis Univesity, Budapest, Hungary.
| | - Zoltán Lippai
- grid.11804.3c0000 0001 0942 98211st Department of Pathology and Experimental Cancer Research, Semmelweis Univesity, Budapest, Hungary
| | - Gergő Papp
- grid.11804.3c0000 0001 0942 98211st Department of Pathology and Experimental Cancer Research, Semmelweis Univesity, Budapest, Hungary
| | - Lajos Hegyi
- grid.11804.3c0000 0001 0942 98211st Department of Pathology and Experimental Cancer Research, Semmelweis Univesity, Budapest, Hungary ,grid.11804.3c0000 0001 0942 9821HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Johanna Sápi
- grid.440535.30000 0001 1092 7422Research and Innovation Center of Óbuda University, Physiological Controls Group, Óbuda University, Budapest, Hungary
| | - Katalin Dezső
- grid.11804.3c0000 0001 0942 98211st Department of Pathology and Experimental Cancer Research, Semmelweis Univesity, Budapest, Hungary
| | - Károly Szuhai
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
Dong Z, Guo S, Wang Y, Zhang J, Luo H, Zheng G, Yang D, Zhang T, Yan L, Song L, Liu K, Sun Z, Meng X, Zheng Z, Zhang J, Zhao Y. USP19 Enhances MMP2/MMP9-Mediated Tumorigenesis in Gastric Cancer. Onco Targets Ther 2020; 13:8495-8510. [PMID: 32904569 PMCID: PMC7457554 DOI: 10.2147/ott.s240543] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Background To investigate the clinical significance of ubiquitin-specific peptidase 19 (USP19) expression in gastric cancer (GC) compared with that in normal tissues and gastric cell lines. Methods USP19 protein expression was analyzed in 212 paired GC samples using immunohistochemical staining. Quantitative real-time PCR (qRT-PCR) and Western blotting were used to detect the level of USP19 in gastric cell lines. The biological functions of USP19 were investigated by MTT assay, colony-forming assay, wound healing assay and gelatin zymography, and apoptotic cells were detected by immunohistochemistry assays in SGC7901 xenograft models. Results USP19 expression was significantly increased in GC cells and tissues, and the high level of USP19 expression was positively correlated with the Lauren’s classification and poor prognosis. Moreover, USP19 was identified as a novel independent prognostic biomarker in GC patients. Enhanced USP19 expression promoted GC cell proliferation and metastasis through reduced cleaved caspase-3 and increased MMP2/MMP9 expression and promoted enzyme activity in the study, and verified the results through The Cancer Genome Atlas (TCGA) and bioinformatic websites from the Kaplan–Meier plotter (http://kmplot.com) and GEPIA (http://gepia2.cancer-pku.cn.). Conclusion Our study suggests that USP19 promoted tumor progression by inducing MMP2/MMP9 expression and related enzyme activity. Hence, USP19 may be a valuable prognostic predictor for GC, and the USP19-MMP2/MMP9 axis could serve as a therapeutic target.
Collapse
Affiliation(s)
- Zhe Dong
- Postgraduate School of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Shuai Guo
- Postgraduate School of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Yue Wang
- Department of Stomach Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang 110042, Liaoning Province, People's Republic of China
| | - Jun Zhang
- Department of Stomach Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang 110042, Liaoning Province, People's Republic of China
| | - Haojie Luo
- Postgraduate School of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Guoliang Zheng
- Department of Stomach Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang 110042, Liaoning Province, People's Republic of China
| | - Dong Yang
- Department of Stomach Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang 110042, Liaoning Province, People's Republic of China
| | - Tao Zhang
- Department of Stomach Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang 110042, Liaoning Province, People's Republic of China
| | - Liucun Yan
- Yidu Cloud (Beijing) Technology Co., Ltd., Beijing 100083, People's Republic of China
| | - Li Song
- Yidu Cloud (Beijing) Technology Co., Ltd., Beijing 100083, People's Republic of China
| | - Kejia Liu
- Yidu Cloud (Beijing) Technology Co., Ltd., Beijing 100083, People's Republic of China
| | - Zhe Sun
- Yidu Cloud (Beijing) Technology Co., Ltd., Beijing 100083, People's Republic of China
| | - Xiangyu Meng
- Department of Stomach Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang 110042, Liaoning Province, People's Republic of China
| | - Zhichao Zheng
- Department of Stomach Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang 110042, Liaoning Province, People's Republic of China
| | - Jianjun Zhang
- Department of Stomach Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang 110042, Liaoning Province, People's Republic of China
| | - Yan Zhao
- Department of Stomach Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang 110042, Liaoning Province, People's Republic of China
| |
Collapse
|
10
|
Sun K, He SB, Yao YZ, Qu JG, Xie R, Ma YQ, Zong MH, Chen JX. Tre2 (USP6NL) promotes colorectal cancer cell proliferation via Wnt/β-catenin pathway. Cancer Cell Int 2019; 19:102. [PMID: 31015802 PMCID: PMC6469084 DOI: 10.1186/s12935-019-0823-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/09/2019] [Indexed: 12/25/2022] Open
Abstract
Background Most colorectal cancer (CRC) patients are diagnosed at an advanced or metastatic stage with poor prognosis. Ubiquitin-specific protease 6 N-terminal-like protein (USP6NL) with high expression in CRC tissues regulates CRC cell proliferation via Wnt/β-catenin pathway. We hypothesized that USP6NL impacts CRC growth and inhibition of USP6NL may be a novel treatment strategy to improve CRC therapy. Methods USP6NL level in human CRC tissues and its association with tumor growth and metastasis were examined. Its roles and potential mechanisms in regulating tumor growth were studied by genetic and pharmacological manipulation of CRC cells in vitro and in vivo. Results Herein, we found that USP6NL was up-regulated in tumorous tissues of CRC patients. Our data suggested that knockdown of USP6NL in human CRC cell lines (HCT116 and LOVO cells) inhibited cell proliferation, induced G0/G1 cell cycle arrest, and prevented the tumorigenicity of HCT116 cells in nude mice, and which was associated with the prevention of Wnt/β-catenin pathway. On the contrary, USP6NL overexpression in human CRC cells (SW480) showed the opposite result. Our data suggested that the promoted cell proliferation, G1/S cell cycle progression, and the enhanced expression of β-catenin Cyclin D1 and C-myc while reduced P27 induced by the overexpression of USP6NL were significantly reversed by additional treatment of XAV939, indicating that activating Wnt/β-catenin pathway was the mechanism, by which USP6NL exerted carcinogenesis in CRC in vitro. Besides, our data suggested that knockdown of USP6NL increased the ubiquitination of β-catenin, indicating that USP6NL may serve as a deubiquitinase that regulated β-catenin accumulation in this process. Furthermore, 10058-F4 down-regulated USP6NL, inhibited CRC cell proliferation and induced cell cycle arrest. The result demonstrated a possible feedback loop between USP6NL, β-catenin and C-myc in regulating CRC cell growth. Conclusion USP6NL was an oncogene in CRC, and it may be a potential target for the treatment of CRC.
Collapse
Affiliation(s)
- Kang Sun
- 1Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001 People's Republic of China
| | - Song-Bing He
- 2Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 People's Republic of China
| | - Yi-Zhou Yao
- 2Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 People's Republic of China
| | - Jian-Guo Qu
- 1Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001 People's Republic of China
| | - Rong Xie
- 1Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001 People's Republic of China
| | - Yu-Qiao Ma
- 1Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001 People's Republic of China
| | - Ming-Hui Zong
- 3School of Medicine, Jiangsu University, Zhenjiang, 212013 People's Republic of China
| | - Ji-Xiang Chen
- 1Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001 People's Republic of China
| |
Collapse
|
11
|
Primary aneurysmal bone cyst of the mandibular condyle with USP6-CDH11 fusion. Pathol Res Pract 2018; 215:607-610. [PMID: 30401581 DOI: 10.1016/j.prp.2018.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 01/09/2023]
Abstract
Primary aneurysmal bone cyst (ABC) is a cystic bone neoplasm characterized by disease-defining gene fusions involving the USP6/Tre2 gene. The literature describing gnathic ABC is limited. This case report describes a 27-year-old man presenting with a long-standing left-sided facial asymmetry. Multi-detector computed tomography imaging demonstrated a large expansile lesion positioned within the left condylar head. The lesion was biopsied and resected. The specimen showed a giant cell-rich cystic neoplasm, with fibrous tissue lined by multinucleated giant cells. Next-generation sequencing confirmed the presence of a USP6-CDH11 fusion gene, consistent with classification as a primary ABC, the first reported to be translocation-positive in the head of the mandibular condyle.
Collapse
|
12
|
Henrich IC, Young R, Quick L, Oliveira AM, Chou MM. USP6 Confers Sensitivity to IFN-Mediated Apoptosis through Modulation of TRAIL Signaling in Ewing Sarcoma. Mol Cancer Res 2018; 16:1834-1843. [PMID: 30131449 DOI: 10.1158/1541-7786.mcr-18-0289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/05/2018] [Accepted: 08/02/2018] [Indexed: 01/22/2023]
Abstract
Ewing sarcoma is the second most common sarcoma of the bone, afflicting predominantly the pediatric population. Although patients with localized disease exhibit favorable survival rates, patients with metastatic disease suffer a dismal 5-year rate of approximately 25%. Thus, there is a great need to develop treatments to combat the disseminated disease. Ubiquitin-specific protease 6 (USP6/TRE17) has been implicated as the key etiologic factor in several benign mesenchymal tumors, including nodular fasciitis and aneurysmal bone cyst (ABC). However, the role of USP6 in the biology of malignant entities remains unexplored. Previously, it was observed that USP6 is sufficient to drive formation of tumors mimicking ABC and nodular fasciitis, and that it functions through JAK1/STAT3 signaling. However, in the context of Ewing sarcoma, USP6 does not enhance the transformation, but rather triggers an IFN response signature, both in cultured Ewing sarcoma cells in vitro and in clinical specimens in vivo. Not only does USP6 independently induce activation of the IFN signaling mediators, JAK1 and STAT1, but it also renders Ewing sarcoma cells exquisitely responsive to exogenous IFNs, potentiating activation of STAT1 and STAT3. Furthermore, IFNβ (a type I IFN) induces apoptosis specifically in USP6-positive but not USP6-negative Ewing sarcoma cells. Finally, apoptosis is mediated through the proapoptotic ligand TRAIL, which is synergistically induced by type I IFN and USP6. IMPLICATIONS: These findings provide the first insights into USP6 functions in a clinically relevant malignant entity, and raise the possibility of using IFN for targeting USP6-positive Ewing sarcoma.
Collapse
Affiliation(s)
- Ian C Henrich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Young
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laura Quick
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andre M Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Margaret M Chou
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
13
|
Li R, Peng C, Zhang X, Wu Y, Pan S, Xiao Y. Roles of Arf6 in cancer cell invasion, metastasis and proliferation. Life Sci 2017. [PMID: 28625359 DOI: 10.1016/j.lfs.2017.06.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ADP-ribosylation factor 6 (Arf6), a member of small GTPases ADP-ribosylation factor (Arf) family, expresses widely in mammalian cells and mainly regulates the functions of membrane traffic and actin remodeling. Current studies indicated that the activation and high expression of Arf6 protein may be significantly correlated with the invasion and metastasis of several tumors, such as breast cancer, pancreatic cancer, lung cancer, etc. Meanwhile, the ability of tumor invasion and metastasis can be suppressed when Arf6 activity is blocked by the inhibitors or small-interfering RNAs of Arf6. To explore the precisely potential mechanisms between Arf6 and the process of tumor invasion, metastasis and proliferation, we concludes the functions and potential signaling pathways of Arf6 in tumor cells and provides an overview about clinical prospects of Arf6 in the screening, diagnosis, treatment and evaluation of prognosis of neoplasms.
Collapse
Affiliation(s)
- Rui Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiology, School of Public Health, Jilin University, Changchun, China
| | - Cheng Peng
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xianzhe Zhang
- School of Clinical Medicine, Jilin University, Changchun, China
| | - Yuewei Wu
- School of Clinical Medicine, Jilin University, Changchun, China
| | - Shida Pan
- School of Clinical Medicine, Jilin University, Changchun, China
| | - Yechen Xiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China.
| |
Collapse
|
14
|
Fricke F, Lee J, Michalak M, Warnken U, Hausser I, Suarez-Carmona M, Halama N, Schnölzer M, Kopitz J, Gebert J. TGFBR2-dependent alterations of exosomal cargo and functions in DNA mismatch repair-deficient HCT116 colorectal cancer cells. Cell Commun Signal 2017; 15:14. [PMID: 28376875 PMCID: PMC5379773 DOI: 10.1186/s12964-017-0169-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/21/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Colorectal cancers (CRCs) that lack DNA mismatch repair function exhibit the microsatellite unstable (MSI) phenotype and are characterized by the accumulation of frameshift mutations at short repetitive DNA sequences (microsatellites). These tumors recurrently show inactivating frameshift mutations in the tumor suppressor Transforming Growth Factor Beta Receptor Type 2 (TGFBR2) thereby abrogating downstream signaling. How altered TGFBR2 signaling affects exosome-mediated communication between MSI tumor cells and their environment has not been resolved. Here, we report on molecular alterations of exosomes shed by MSI cells and the biological response evoked in recipient cells. METHODS Exosomes were isolated and characterized by electron microscopy, nanoparticle tracking, and western blot analysis. TGFBR2-dependent effects on the cargo and functions of exosomes were studied in a MSI CRC model cell line enabling reconstituted and inducible TGFBR2 expression and signaling. Microsatellite frameshift mutations in exosomal and cellular DNA were examined by PCR-based DNA fragment analysis and exosomal protein profiles were identified by mass spectrometry. Uptake of fluorescent-labeled exosomes by hepatoma recipient cells was monitored by confocal microscopy. TGFBR2-dependent exosomal effects on secreted cytokine levels of recipient cells were analyzed by Luminex technology and ELISA. RESULTS Frameshift mutation patterns in microsatellite stretches of TGFBR2 and other MSI target genes were found to be reflected in the cargo of MSI CRC-derived exosomes. At the proteome level, reconstituted TGFBR2 expression and signaling uncovered two protein subsets exclusively occurring in exosomes derived from TGFBR2-deficient (14 proteins) or TGFBR2-proficient (five proteins) MSI donor cells. Uptake of these exosomes by recipient cells caused increased secretion (2-6 fold) of specific cytokines (Interleukin-4, Stem Cell Factor, Platelet-derived Growth Factor-B), depending on the TGFBR2 expression status of the tumor cell. CONCLUSION Our results indicate that the coding MSI phenotype of DNA mismatch repair-deficient CRC cells is maintained in their exosomal DNA. Moreover, we uncovered that a recurrent MSI tumor driver mutation like TGFBR2 can reprogram the protein content of MSI cell-derived exosomes and in turn modulate the cytokine secretion profile of recipient cells. Apart from its diagnostic potential, these TGFBR2-dependent exosomal molecular and proteomic signatures might help to understand the signaling routes used by MSI tumors. Fricke et al. uncovered coding microsatellite instability-associated mutations of colorectal tumor driver genes like TGFBR2 in MSI tumor cellderived exosomes. Depending on the TGFBR2 expression status of their donor cells, shed exosomes show distinct proteomic signatures and promote altered cytokine secretion profiles in recipient cells.
Collapse
Affiliation(s)
- Fabia Fricke
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Jennifer Lee
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Present address: Tissue Genesis, Suite 1000, Tissue Genesis Tower, 810 Richards Street, Honolulu, HI 96813 USA
| | - Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis and Core Facility Protein Analysis (B100), German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ingrid Hausser
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Meggy Suarez-Carmona
- Department of Medical Oncology, National Center for Tumor diseases (NCT), Tissue Imaging and Analysis Center, Bioquant, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor diseases (NCT), Tissue Imaging and Analysis Center, Bioquant, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis and Core Facility Protein Analysis (B100), German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Guerreiro RJ, Brown R, Dian D, de Goede C, Bras J, Mole SE. Mutation of TBCK causes a rare recessive developmental disorder. NEUROLOGY-GENETICS 2016; 2:e76. [PMID: 27275012 PMCID: PMC4881620 DOI: 10.1212/nxg.0000000000000076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/17/2016] [Indexed: 02/01/2023]
Abstract
Objective: To characterize the underlying genetic defect in a family with 3 siblings affected by a severe, yet viable, congenital disorder. Methods: Extensive genetic and metabolic investigations were performed, and the affected children were imaged at different ages. Whole-genome genotyping and whole-exome sequencing were undertaken. A single large region (>8 Mb) of homozygosity in chromosome 4 (chr4:100,268,553–108,609,628) was identified that was shared only in affected siblings. Inspection of genetic variability within this region led to the identification of a novel mutation. Sanger sequencing confirmed segregation of the mutation with disease. Results: All affected siblings share homozygosity for a novel 4-bp deletion in the gene TBCK (NM_033115:c.614_617del:p.205_206del). Conclusions: This finding provides the genetic cause of a severe inherited disease in a family and extends the number of mutations and phenotypes associated with this recently identified disease gene.
Collapse
Affiliation(s)
- Rita J Guerreiro
- Department of Molecular Neuroscience (R.J.G., J.B.), Institute of Neurology; MRC Laboratory for Molecular Cell Biology (R.B., S.E.M.), University College London; Manchester Centre for Genomic Medicine (D.D.), University of Manchester and Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Royal Preston Hospital (C.d.G.), Genetics and Genomics Medicine Programme (S.E.M.), UCL Institute of Child Health and Department of Genetics, Evolution and Environment, University College London, UK
| | - Rachel Brown
- Department of Molecular Neuroscience (R.J.G., J.B.), Institute of Neurology; MRC Laboratory for Molecular Cell Biology (R.B., S.E.M.), University College London; Manchester Centre for Genomic Medicine (D.D.), University of Manchester and Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Royal Preston Hospital (C.d.G.), Genetics and Genomics Medicine Programme (S.E.M.), UCL Institute of Child Health and Department of Genetics, Evolution and Environment, University College London, UK
| | - Donnai Dian
- Department of Molecular Neuroscience (R.J.G., J.B.), Institute of Neurology; MRC Laboratory for Molecular Cell Biology (R.B., S.E.M.), University College London; Manchester Centre for Genomic Medicine (D.D.), University of Manchester and Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Royal Preston Hospital (C.d.G.), Genetics and Genomics Medicine Programme (S.E.M.), UCL Institute of Child Health and Department of Genetics, Evolution and Environment, University College London, UK
| | - Christian de Goede
- Department of Molecular Neuroscience (R.J.G., J.B.), Institute of Neurology; MRC Laboratory for Molecular Cell Biology (R.B., S.E.M.), University College London; Manchester Centre for Genomic Medicine (D.D.), University of Manchester and Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Royal Preston Hospital (C.d.G.), Genetics and Genomics Medicine Programme (S.E.M.), UCL Institute of Child Health and Department of Genetics, Evolution and Environment, University College London, UK
| | - Jose Bras
- Department of Molecular Neuroscience (R.J.G., J.B.), Institute of Neurology; MRC Laboratory for Molecular Cell Biology (R.B., S.E.M.), University College London; Manchester Centre for Genomic Medicine (D.D.), University of Manchester and Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Royal Preston Hospital (C.d.G.), Genetics and Genomics Medicine Programme (S.E.M.), UCL Institute of Child Health and Department of Genetics, Evolution and Environment, University College London, UK
| | - Sara E Mole
- Department of Molecular Neuroscience (R.J.G., J.B.), Institute of Neurology; MRC Laboratory for Molecular Cell Biology (R.B., S.E.M.), University College London; Manchester Centre for Genomic Medicine (D.D.), University of Manchester and Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Royal Preston Hospital (C.d.G.), Genetics and Genomics Medicine Programme (S.E.M.), UCL Institute of Child Health and Department of Genetics, Evolution and Environment, University College London, UK
| |
Collapse
|
16
|
|
17
|
Funakoshi Y, Chou MM, Kanaho Y, Donaldson JG. TRE17/USP6 regulates ubiquitylation and trafficking of cargo proteins that enter cells by clathrin-independent endocytosis. J Cell Sci 2014; 127:4750-61. [PMID: 25179595 DOI: 10.1242/jcs.156786] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plasma membrane proteins that enter cells by clathrin-independent endocytosis (CIE) are sorted either to lysosomes for degradation or recycled back to the plasma membrane. Expression of some MARCH E3 ubiquitin ligases promotes trafficking of CIE cargo proteins to lysosomes by ubiquitylating the proteins. Here, we show that co-expression of the ubiquitin-specific protease TRE17/USP6 counteracts the MARCH-dependent targeting of CIE cargo proteins, but not that of transferrin receptor, to lysosomes, leading to recovery of the stability and cell surface level of the proteins. The ubiquitylation of CIE cargo proteins by MARCH8 was reversed by TRE17, suggesting that TRE17 leads to deubiquitylation of CIE cargo proteins. The effects of TRE17 were dependent on its deubiquitylating activity and expression of TRE17 alone led to a stabilization of surface major histocompatibility complex class I (MHCI) molecules, a CIE cargo, suggesting that deubiquitylation of endogenous CIE cargo proteins promotes their stability. This study demonstrates that cycles of ubiquitylation and deubiquitylation can determine whether CIE cargo proteins are degraded or recycled.
Collapse
Affiliation(s)
- Yuji Funakoshi
- Cell Biology & Physiology Center, NHLBI, NIH, Bethesda, MD 20891, USA Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Margaret M Chou
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, 3615 Civic Center Boulevard, Philadelphia, PA19104, USA
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Julie G Donaldson
- Cell Biology & Physiology Center, NHLBI, NIH, Bethesda, MD 20891, USA
| |
Collapse
|
18
|
Genomics and epigenomics of clear cell renal cell carcinoma: recent developments and potential applications. Cancer Lett 2013; 341:111-26. [PMID: 23933176 DOI: 10.1016/j.canlet.2013.08.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/12/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022]
Abstract
Majority of clear cell renal cell carcinomas (ccRCCs) are diagnosed in the advanced metastatic stage resulting in dramatic decrease of patient survival. Thereby, early detection and monitoring of the disease may improve prognosis and treatment results. Recent technological advances enable the identification of genetic events associated with ccRCC and reveal significant molecular heterogeneity of ccRCC tumors. This review summarizes recent findings in ccRCC genomics and epigenomics derived from chromosomal aberrations, DNA sequencing and methylation, mRNA, miRNA expression profiling experiments. We provide a molecular insight into ccRCC pathology and recapitulate possible clinical applications of genomic alterations as predictive and prognostic biomarkers.
Collapse
|
19
|
Ruiz-Ontañon P, Orgaz JL, Aldaz B, Elosegui-Artola A, Martino J, Berciano MT, Montero JA, Grande L, Nogueira L, Diaz-Moralli S, Esparís-Ogando A, Vazquez-Barquero A, Lafarga M, Pandiella A, Cascante M, Segura V, Martinez-Climent JA, Sanz-Moreno V, Fernandez-Luna JL. Cellular Plasticity Confers Migratory and Invasive Advantages to a Population of Glioblastoma-Initiating Cells that Infiltrate Peritumoral Tissue. Stem Cells 2013; 31:1075-85. [DOI: 10.1002/stem.1349] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/19/2013] [Indexed: 01/28/2023]
|
20
|
Dias M, Blanc C, Thazar-Poulot N, Ben Larbi S, Cosson P, Letourneur F. Dictyostelium ACAP-A is an ArfGAP involved in cytokinesis, cell migration and actin cytoskeleton dynamics. J Cell Sci 2012; 126:756-66. [DOI: 10.1242/jcs.113951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ACAPs and ASAPs are Arf-GTPase-activating proteins with BAR, PH, GAP and ankyrin repeat domains and are known to regulate vesicular traffic and actin cytoskeleton dynamics in mammalian cells. The amoeba Dictyostelium has only two proteins with this domain organization instead of six in human, enabling a more precise functional analysis. Genetic invalidation of acapA, resulted in multinucleated cells with cytokinesis defects. Mutant acapA− cells were hardly motile and their multicellular development was significantly delayed. In addition, formation of filopodial protrusions was deficient in these cells. Conversely, re-expression of ACAP-A-GFP resulted in numerous and long filopodia-like protrusions. Mutagenesis studies showed that ACAP-A actin remodeling function was dependent on its ability to activate its substrate, the small GTPase ArfA. Likewise, the expression of a constitutively active ArfA•GTP mutant in wild-type cells led to a significant reduction of filopodia length. Together our data support a role for ACAP-A in the control of the actin cytoskeleton organization and dynamics through an ArfA-dependent mechanism.
Collapse
|