1
|
Eldeeb MA, Ragheb MA, Soliman MH, Fahlman RP. Regulation of Neurodegeneration-associated Protein Fragments by the N-degron Pathways. Neurotox Res 2022; 40:298-318. [PMID: 35043375 DOI: 10.1007/s12640-021-00396-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
Among the most salient features that underpin the development of aging-related neurodegenerative disorders are the accumulation of protein aggregates and the decrease in cellular degradation capacity. Mammalian cells have evolved sophisticated quality control mechanisms to repair or eliminate the otherwise abnormal or misfolded proteins. Chaperones identify unstable or abnormal conformations in proteins and often help them regain their correct conformation. However, if repair is not an option, abnormal proteins are selectively degraded to prevent undesired interactions with other proteins or oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of abnormal or aberrant protein fragments. Despite an increasing understanding regarding the molecular responses that counteract the formation and clearance of dysfunctional protein aggregates, the role of N-degrons in these processes is poorly understood. Previous work demonstrated that the Arg-N-end rule degradation pathway (Arg-N-degron pathway) mediates the degradation of neurodegeneration-associated proteins, thereby regulating crucial signaling hubs that modulate the progression of neurodegenerative diseases. Herein, we discuss the functional interconnection between N-degron pathways and proteins associated with neurodegenerative disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. We also highlight some future prospects related to how the molecular insights gained from these processes will help unveil novel therapeutic approaches.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt. .,Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa H Soliman
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Ivashko-Pachima Y, Hadar A, Grigg I, Korenková V, Kapitansky O, Karmon G, Gershovits M, Sayas CL, Kooy RF, Attems J, Gurwitz D, Gozes I. Discovery of autism/intellectual disability somatic mutations in Alzheimer's brains: mutated ADNP cytoskeletal impairments and repair as a case study. Mol Psychiatry 2021; 26:1619-1633. [PMID: 31664177 PMCID: PMC8159740 DOI: 10.1038/s41380-019-0563-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/09/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023]
Abstract
With Alzheimer's disease (AD) exhibiting reduced ability of neural stem cell renewal, we hypothesized that de novo mutations controlling embryonic development, in the form of brain somatic mutations instigate the disease. A leading gene presenting heterozygous dominant de novo autism-intellectual disabilities (ID) causing mutations is activity-dependent neuroprotective protein (ADNP), with intact ADNP protecting against AD-tauopathy. We discovered a genomic autism ADNP mutation (c.2188C>T) in postmortem AD olfactory bulbs and hippocampi. RNA-Seq of olfactory bulbs also identified a novel ADNP hotspot mutation, c.2187_2188insA. Altogether, 665 mutations in 596 genes with 441 mutations in AD patients (389 genes, 38% AD-exclusive mutations) and 104 genes presenting disease-causing mutations (OMIM) were discovered. OMIM AD mutated genes converged on cytoskeletal mechanisms, autism and ID causing mutations (about 40% each). The number and average frequencies of AD-related mutations per subject were higher in AD subjects compared to controls. RNA-seq datamining (hippocampus, dorsolateral prefrontal cortex, fusiform gyrus and superior frontal gyrus-583 subjects) yielded similar results. Overlapping all tested brain areas identified unique and shared mutations, with ADNP singled out as a gene associated with autism/ID/AD and presenting several unique aging/AD mutations. The large fusiform gyrus library (117 subjects) with high sequencing coverage correlated the c.2187_2188insA ADNP mutation frequency to Braak stage (tauopathy) and showed more ADNP mutations in AD specimens. In cell cultures, the ADNP-derived snippet NAP inhibited mutated-ADNP-microtubule (MT) toxicity and enhanced Tau-MT association. We propose a paradigm-shifting concept in the perception of AD whereby accumulating mosaic somatic mutations promote brain pathology.
Collapse
Affiliation(s)
- Yanina Ivashko-Pachima
- The First Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Adva Hadar
- The First Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Iris Grigg
- The First Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Vlasta Korenková
- BIOCEV, Institute of Biotechnology CAS, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Oxana Kapitansky
- The First Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Gidon Karmon
- The First Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Michael Gershovits
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - C Laura Sayas
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), Tenerife, Spain
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Johannes Attems
- Institute of Neuroscience and Newcastle University Institute of Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - David Gurwitz
- The First Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Illana Gozes
- The First Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
3
|
Rajaei S, Karima S, Sepasi Tehrani H, Shateri S, Mahmoodi Baram S, Mahdavi M, Mokhtari F, Alimohammadi A, Tafakhori A, Amiri A, Aghamollaii V, Fatemi H, Rajabibazl M, Kobarfard F, Gorji A. Conformational change and GTPase activity of human tubulin: A comparative study on Alzheimer's disease and healthy brain. J Neurochem 2020; 155:207-224. [PMID: 32196663 DOI: 10.1111/jnc.15009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/26/2022]
Abstract
In Alzheimer's disease (AD), the most common form of dementia, microtubules (MTs) play a pivotal role through their highly dynamic structure and instability. They mediate axonal transport that is crucial to synaptic viability. MT assembly, dynamic instability and stabilization are modulated by tau proteins, whose detachment initiates MT disintegration. Albeit extensive research, the role of GTPase activity in molecular mechanism of stability remains controversial. We hypothesized that GTPase activity is altered in AD leading to microtubule dynamic dysfunction and ultimately to neuronal death. In this paper, fresh tubulin was purified by chromatography from normal young adult, normal aged, and Alzheimer's brain tissues. Polymerization pattern, assembly kinetics and dynamics, critical concentration, GTPase activity, interaction with tau, intermolecular geometry, and conformational changes were explored via Förster Resonance Energy Transfer (FRET) and various spectroscopy methods. Results showed slower MT assembly process in samples from the brains of people with AD compared with normal young and aged brains. This observation was characterized by prolonged lag phase and increased critical and inactive concentration of tubulin. In addition, the GTPase activity in samples from AD brains was significantly higher than in both normal young and normal aged samples, concurrent with profound conformational changes and contracted intermolecular MT-tau distances as revealed by FRET. These alterations were partially restored in the presence of a microtubule stabilizer, paclitaxel. We proposed that alterations of both tubulin function and GTPase activity may be involved in the molecular neuropathogenesis of AD, thus providing new avenues for therapeutic approaches.
Collapse
Affiliation(s)
- Shima Rajaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | | | - Somayeh Shateri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Somayeh Mahmoodi Baram
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.,HealthWeX Clinical Research Co., Ltd., Toronto, ON, Canada
| | - Meisam Mahdavi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Farzad Mokhtari
- HealthWeX Clinical Research Co., Ltd., Toronto, ON, Canada.,Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Alimohammad Alimohammadi
- Research Center of Tehran Forensic Medicine Organization, Forensic Medicine, Legal Medicine Organization Research Center, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological research, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Amiri
- Research Center of Tehran Forensic Medicine Organization, Forensic Medicine, Legal Medicine Organization Research Center, Tehran, Iran
| | - Vajiheh Aghamollaii
- Neurology Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Fatemi
- HealthWeX Clinical Research Co., Ltd., Toronto, ON, Canada
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Ali Gorji
- Department of Neurology and Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
4
|
Barbier P, Zejneli O, Martinho M, Lasorsa A, Belle V, Smet-Nocca C, Tsvetkov PO, Devred F, Landrieu I. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Front Aging Neurosci 2019; 11:204. [PMID: 31447664 PMCID: PMC6692637 DOI: 10.3389/fnagi.2019.00204] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022] Open
Abstract
Microtubules (MTs) play a fundamental role in many vital processes such as cell division and neuronal activity. They are key structural and functional elements in axons, supporting neurite differentiation and growth, as well as transporting motor proteins along the axons, which use MTs as support tracks. Tau is a stabilizing MT associated protein, whose functions are mainly regulated by phosphorylation. A disruption of the MT network, which might be caused by Tau loss of function, is observed in a group of related diseases called tauopathies, which includes Alzheimer’s disease (AD). Tau is found hyperphosphorylated in AD, which might account for its loss of MT stabilizing capacity. Since destabilization of MTs after dissociation of Tau could contribute to toxicity in neurodegenerative diseases, a molecular understanding of this interaction and its regulation is essential.
Collapse
Affiliation(s)
- Pascale Barbier
- Fac Pharm, Aix Marseille Univ., Centre National de la Recherche Scientifique (CNRS), Inst Neurophysiopathol (INP), Fac Pharm, Marseille, France
| | - Orgeta Zejneli
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Lille, France.,Univ. Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), CHU-Lille, UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT (JPArc), Lille, France
| | - Marlène Martinho
- Aix Marseille Univ., Centre National de la Recherche Scientifique (CNRS), UMR 7281, Bioénergétique et Ingénierie des Protéines (BIP), Marseille, France
| | - Alessia Lasorsa
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Lille, France
| | - Valérie Belle
- Aix Marseille Univ., Centre National de la Recherche Scientifique (CNRS), UMR 7281, Bioénergétique et Ingénierie des Protéines (BIP), Marseille, France
| | - Caroline Smet-Nocca
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Lille, France
| | - Philipp O Tsvetkov
- Fac Pharm, Aix Marseille Univ., Centre National de la Recherche Scientifique (CNRS), Inst Neurophysiopathol (INP), Fac Pharm, Marseille, France
| | - François Devred
- Fac Pharm, Aix Marseille Univ., Centre National de la Recherche Scientifique (CNRS), Inst Neurophysiopathol (INP), Fac Pharm, Marseille, France
| | - Isabelle Landrieu
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Lille, France
| |
Collapse
|
5
|
Shrestha D, Kim N, Song K. Stathmin/Op18 depletion induces genomic instability and leads to premature senescence in human normal fibroblasts. J Cell Biochem 2017; 119:2381-2395. [PMID: 28885720 DOI: 10.1002/jcb.26401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022]
Abstract
Stathmin/oncoprotein18 regulates microtubule dynamics and participates in mitotic entry and exit. We isolated stathmin as a physically interacting partner of KIFC1, a minus-end-directed kinesin functioning in bipolar spindle formation and maintenance. We found that stathmin depletion leads to multipolar spindle formation in IMR-90 normal human fibroblasts. Stathmin-depleted IMR-90 cells showed early mitotic delay but managed to undergo chromosome segregation by forming multiple poles or pseudo-bipoles. Consistent with these observations, lagging chromosomes, and micronuclei were elevated in stathmin-depleted IMR-90 cells, demonstrating that stathmin is essential for maintaining genomic stability during mitosis in human cells. Genomic instability induced by stathmin depletion led to premature senescence without any indication of cell death in normal IMR-90 cells. Double knock-down of both stathmin and p53 also did not induce cell death in IMR-90 cells, while the stathmin knock-down triggered apoptosis in p53-proficient human lung adenocarcinoma cells. Our results suggest that stathmin is essential in bipolar spindle formation to maintain genomic stability during mitosis, and the depletion of stathmin prevents the initiation of chromosome instability by inducing senescence in human normal fibroblasts.
Collapse
Affiliation(s)
- Deepmala Shrestha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Namil Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kiwon Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Dynamic microtubule association of Doublecortin X (DCX) is regulated by its C-terminus. Sci Rep 2017; 7:5245. [PMID: 28701724 PMCID: PMC5507856 DOI: 10.1038/s41598-017-05340-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
Doublecortin X (DCX), known to be essential for neuronal migration and cortical layering in the developing brain, is a 40 kDa microtubule (MT)-associated protein. DCX directly interacts with MTs via its two structured doublecortin (DC) domains, but the dynamics of this association and the possible regulatory roles played by the flanking unstructured regions remain poorly defined. Here, we employ quantitative fluorescence recovery after photobleaching (FRAP) protocols in living cells to reveal that DCX shows remarkably rapid and complete exchange within the MT network but that the removal of the C-terminal region significantly slows this exchange. We further probed how MT organization or external stimuli could additionally modulate DCX exchange dynamics. MT depolymerisation (nocodazole treatment) or stabilization (taxol treatment) further enhanced DCX exchange rates, however the exchange rates for the C-terminal truncated DCX protein were resistant to the impact of taxol-induced stabilization. Furthermore, in response to a hyperosmotic stress stimulus, DCX exchange dynamics were slowed, and again the C-terminal truncated DCX protein was resistant to the stimulus. Thus, the DCX dynamically associates with MTs in living cells and its C-terminal region plays important roles in the MT-DCX association.
Collapse
|
7
|
De Bessa T, Breuzard G, Allegro D, Devred F, Peyrot V, Barbier P. Tau Interaction with Tubulin and Microtubules: From Purified Proteins to Cells. Methods Mol Biol 2017; 1523:61-85. [PMID: 27975244 DOI: 10.1007/978-1-4939-6598-4_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microtubules (MTs) play an important role in many cellular processes and are dynamic structures regulated by an important network of microtubules-associated proteins, MAPs, such as Tau. Tau has been discovered as an essential factor for MTs formation in vitro, and its region implicated in binding to MTs has been identified. By contrast, the affinity, the stoichiometry, and the topology of Tau-MTs interaction remain controversial. Indeed, depending on the experiment conditions a wide range of values have been obtained. In this chapter, we focus on three biophysical methods, turbidimetry, cosedimentation assay, and Förster Resonance Energy Transfer to study Tau-tubulin interaction both in vitro and in cell. We highlight precautions that must be taken in order to avoid pitfalls and we detail the nature of the conclusions that can be drawn from these methods about Tau-tubulin interaction.
Collapse
Affiliation(s)
- Tiphany De Bessa
- Aix-Marseille Université, INSERM, CRO2, UMR_S 911, 13385, Marseille, France
| | - Gilles Breuzard
- Aix-Marseille Université, INSERM, CRO2, UMR_S 911, 13385, Marseille, France
| | - Diane Allegro
- Aix-Marseille Université, INSERM, CRO2, UMR_S 911, 13385, Marseille, France
| | - François Devred
- Aix-Marseille Université, INSERM, CRO2, UMR_S 911, 13385, Marseille, France
| | - Vincent Peyrot
- Aix-Marseille Université, INSERM, CRO2, UMR_S 911, 13385, Marseille, France
| | - Pascale Barbier
- Aix-Marseille Université, INSERM, CRO2, UMR_S 911, 13385, Marseille, France.
| |
Collapse
|
8
|
Kempf SJ, Metaxas A, Ibáñez-Vea M, Darvesh S, Finsen B, Larsen MR. An integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer's mouse model. Oncotarget 2016; 7:33627-48. [PMID: 27144524 PMCID: PMC5085108 DOI: 10.18632/oncotarget.9092] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to elucidate the molecular signature of Alzheimer's disease-associated amyloid pathology.We used the double APPswe/PS1ΔE9 mouse, a widely used model of cerebral amyloidosis, to compare changes in proteome, including global phosphorylation and sialylated N-linked glycosylation patterns, pathway-focused transcriptome and neurological disease-associated miRNAome with age-matched controls in neocortex, hippocampus, olfactory bulb and brainstem. We report that signalling pathways related to synaptic functions associated with dendritic spine morphology, neurite outgrowth, long-term potentiation, CREB signalling and cytoskeletal dynamics were altered in 12 month old APPswe/PS1ΔE9 mice, particularly in the neocortex and olfactory bulb. This was associated with cerebral amyloidosis as well as formation of argyrophilic tangle-like structures and microglial clustering in all brain regions, except for brainstem. These responses may be epigenetically modulated by the interaction with a number of miRNAs regulating spine restructuring, Aβ expression and neuroinflammation.We suggest that these changes could be associated with development of cognitive dysfunction in early disease states in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Stefan J. Kempf
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Athanasios Metaxas
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - María Ibáñez-Vea
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
- Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, NS, Canada
| | - Bente Finsen
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
9
|
Liu XC, Gao JM, Liu S, Liu L, Wang JR, Qu XJ, Cai B, Wang SL. Targeting apoptosis is the major battle field for killing cancers. World J Transl Med 2015; 4:69-77. [DOI: 10.5528/wjtm.v4.i3.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/27/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023] Open
Abstract
Targeting apoptosis is one of the major strategies for cancer therapy. Essentially, most of the conventional cancer therapeutic drugs that are in the clinical use induce apoptosis and in part necrosis of malignant cells and therefore prevent cancer progression and metastasis. Although these cytotoxic anticancer drugs are important weapons for killing cancers, their toxic side effects limited their application. The molecularly targeted therapeutics that are based on the deeper understanding of the defects in the apoptotic signaling in cancers are emerging and have shown promising anticancer activity in selectively killing cancers but not normal cells. The examples of molecular targets that are under exploration for cancer therapy include the cell surface receptors such as TNFR family death receptors, the intrinsic Bcl-2 family members and some other intracellular molecules like p53, MDM2, IAP, and Smac. The advance in the high-throughput bio-technologies has greatly accelerated the progress of cancer drug discovery.
Collapse
|
10
|
Conway JRW, Carragher NO, Timpson P. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat Rev Cancer 2014; 14:314-28. [PMID: 24739578 DOI: 10.1038/nrc3724] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrating biological imaging into early stages of the drug discovery process can provide invaluable readouts of drug activity within complex disease settings, such as cancer. Iterating this approach from initial lead compound identification in vitro to proof-of-principle in vivo analysis represents a key challenge in the drug discovery field. By embracing more complex and informative models in drug discovery, imaging can improve the fidelity and statistical robustness of preclinical cancer studies. In this Review, we highlight how combining advanced imaging with three-dimensional systems and intravital mouse models can provide more informative and disease-relevant platforms for cancer drug discovery.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| |
Collapse
|