1
|
Beyer F, Tsuchida A, Soumaré A, Rajula HSR, Mishra A, Crivello F, Proust‐Lima C, Loeffler M, Tzourio C, Amouyel P, Villringer A, Scholz M, Jacqmin‐Gadda H, Joliot M, Witte AV, Dufouil C, Debette S. White matter hyperintensity spatial patterns: Risk factors and clinical correlates. Alzheimers Dement 2025; 21:e70053. [PMID: 40189793 PMCID: PMC11972985 DOI: 10.1002/alz.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/04/2025] [Accepted: 01/12/2025] [Indexed: 04/09/2025]
Abstract
INTRODUCTION White matter hyperintensities (WMHs), a major cerebral small vessel disease (cSVD) marker, may arise from different pathologies depending on their location. We explored clinical and genetic correlates of agnostically derived spatial WMH patterns in two longitudinal population-based cohorts (Three-City Study [3C]-Dijon, LIFE-Adult). METHODS We derived seven WMH spatial patterns using Bullseye segmentation in 2878 individuals aged 65+ and explored their associations with vascular and genetic risk factors, cognitive performance, dementia and stroke incidence. RESULTS WMHs in the frontoparietal and anterior periventricular region were associated with blood pressure traits, WMH genetic risk score (GRS), baseline and decline in general cognitive performance, incident all-cause dementia, and ischemic stroke. Juxtacortical-deep occipital WMHs were not associated with vascular risk factors and WMH GRS, but with incident all-cause dementia and intracerebral hemorrhage. DISCUSSION Accounting for WMH spatial distribution is key to deciphering mechanisms underlying cSVD subtypes, an essential step towards personalized therapeutic approaches. HIGHLIGHTS We studied spatial patterns of WMHs in 2878 participants. Blood pressure was associated with frontoparietal and anterior PV WMHs. Anterior PV WMHs predicted dementia and stroke risk. Juxtacortical-deep occipital WMH burden was not associated with blood pressure or WMH genetic risk. Juxtacortical-deep occipital WMH burden predicted dementia and intracerebral hemorrhage.
Collapse
Affiliation(s)
- Frauke Beyer
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Ami Tsuchida
- CEA, CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging GroupUniversity of BordeauxBordeauxFrance
| | - Aicha Soumaré
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
| | | | - Aniket Mishra
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
| | - Fabrice Crivello
- CEA, CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging GroupUniversity of BordeauxBordeauxFrance
| | - Cécile Proust‐Lima
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE)University of LeipzigLeipzigGermany
| | - Christophe Tzourio
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
- Department of Medical InformaticsBordeaux University HospitalBordeauxFrance
| | - Philippe Amouyel
- INSERM U1167University of Lille, Institut Pasteur de Lille, 1 Rue du Professeur CalmetteLilleFrance
| | - Arno Villringer
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Clinic of Cognitive NeurologyUniversity Clinic LeipzigLeipzigGermany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE)University of LeipzigLeipzigGermany
| | - Hélène Jacqmin‐Gadda
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
| | - Marc Joliot
- CEA, CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging GroupUniversity of BordeauxBordeauxFrance
| | - A. Veronica Witte
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Clinic of Cognitive NeurologyUniversity Clinic LeipzigLeipzigGermany
- CRC 1052 “Obesity Mechanisms”, Subproject A1University of LeipzigLeipzigGermany
| | - Carole Dufouil
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
| | - Stéphanie Debette
- Bordeaux Population Health Research Center, Inserm UMR1219University of BordeauxBordeauxFrance
- Department of Neurology, Institute for Neurodegenerative DiseasesBordeaux University HospitalBordeauxFrance
- Institut du Cerveau (ICM)Sorbonne UniversitéParisFrance
- Department of NeurologyPitiá‐Salpêtrière Hospital, Assistance Publique des Hôpitaux de ParisParisFrance
| |
Collapse
|
2
|
Kim HG, Yeom KW, Vasyliv I, Shokri Varniab Z, Erickson C, Baggott C, Schultz LM, Daldrup-Link HE. Brain MRI changes in children and young adults with B-cell acute lymphoblastic leukemia following chimeric antigen receptor T-cell therapy. Eur Radiol 2025:10.1007/s00330-025-11515-2. [PMID: 40111490 DOI: 10.1007/s00330-025-11515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/22/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE To evaluate brain MRI findings in children and young adults after chimeric antigen receptor (CAR) T-cell therapy for B-cell acute lymphoid leukemia (B-ALL) and associate results with clinical and neurological symptoms. METHODS We reviewed pre- and post-CAR-T cell therapy brain MRIs of B-ALL patients aged 25 years or younger who underwent therapy between April 2015 and October 2023 at a single institution. MRI abnormalities were categorized as no change, exacerbation of preexisting lesion, or newly developed lesion. Clinical CAR-mediated toxicities, including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) grades, were recorded. Patients were grouped into those with and without 'exacerbated/new lesion,' and clinical and neurological symptoms were compared using Fisher's exact test. RESULTS Sixteen patients with pre- and post-CAR brain MRIs (median age 16 years [interquartile range, 11-21]; 9 males, 7 females) were included in the analysis. Post-CAR brain abnormalities were observed in 81% (13/16) of patients, including white matter (WM) signal changes (12/16), leptomeningeal enhancement (1/16), and cerebellar embolic infarction (1/16). Of the post-CAR WM lesions, 50% (6/12) were exacerbated, 33% (4/12) were newly developed, and 17% (2/12) remained unchanged compared to pre-CAR brain MRI. No difference in CRS (p = 0.079) or ICANS grades (p > 0.99) was observed between patients with and without 'exacerbated/new lesions'. CONCLUSION Children and young adults with B-ALL can develop brain MRI abnormalities after CAR T-cell therapy, predominantly WM signal changes. These brain abnormalities did not show an association with higher CRS or ICANS grade. KEY POINTS Question Brain MRI findings after chimeric antigen receptor (CAR) T-cell therapy for B-cell acute lymphoid leukemia (B-ALL) and their association with clinical and neurological symptoms are not well understood. Findings Brain MRI abnormalities, mostly white matter changes, were seen in 81% of patients but were not associated with CAR-mediated toxicities. Clinical relevance Brain MRI abnormalities, commonly observed post-CAR T-cell therapy, do not correlate with the severity of CAR-related toxicities, aiding in the clinical management and monitoring of these patients.
Collapse
Affiliation(s)
- Hyun Gi Kim
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kristen W Yeom
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Iryna Vasyliv
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Zahra Shokri Varniab
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Courtney Erickson
- Department of Pediatrics, Bass Center for Childhood Cancer and Blood Disorders, Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA
| | - Christina Baggott
- Department of Pediatrics, Bass Center for Childhood Cancer and Blood Disorders, Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA
| | - Liora Michal Schultz
- Department of Pediatrics, Bass Center for Childhood Cancer and Blood Disorders, Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Weidauer S, Hattingen E. Cerebral Amyloid Angiopathy: Clinical Presentation, Sequelae and Neuroimaging Features-An Update. Biomedicines 2025; 13:603. [PMID: 40149580 PMCID: PMC11939913 DOI: 10.3390/biomedicines13030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The prevalence of cerebral amyloid angiopathy (CAA) has been shown to increase with age, with rates reported to be around 50-60% in individuals over 80 years old who have cognitive impairment. The disease often presents as spontaneous lobar intracerebral hemorrhage (ICH), which carries a high risk of recurrence, along with transient focal neurologic episodes (TFNE) and progressive cognitive decline, potentially leading to Alzheimer's disease (AD). In addition to ICH, neuroradiologic findings of CAA include cortical and subcortical microbleeds (MB), cortical subarachnoid hemorrhage (cSAH) and cortical superficial siderosis (cSS). Non-hemorrhagic pathologies include dilated perivascular spaces in the centrum semiovale and multiple hyperintense lesions on T2-weighted magnetic resonance imaging (MRI). A definitive diagnosis of CAA still requires histological confirmation. The Boston criteria allow for the diagnosis of a probable or possible CAA by considering specific neurological and MRI findings. The recent version, 2.0, which includes additional non-hemorrhagic MRI findings, increases sensitivity while maintaining the same specificity. The characteristic MRI findings of autoantibody-related CAA-related inflammation (CAA-ri) are similar to the so-called "amyloid related imaging abnormalities" (ARIA) observed with amyloid antibody therapies, presenting in two variants: (a) vasogenic edema and leptomeningeal effusions (ARIA-E) and (b) hemorrhagic lesions (ARIA-H). Clinical and MRI findings enable the diagnosis of a probable or possible CAA-ri, with biopsy remaining the gold standard for confirmation. In contrast to spontaneous CAA-ri, only about 20% of patients treated with monoclonal antibodies who show proven ARIA on MRI also experience clinical symptoms, including headache, confusion, other psychopathological abnormalities, visual disturbances, nausea and vomiting. Recent findings indicate that treatment should be continued in cases of mild ARIA, with ongoing MRI and clinical monitoring. This review offers a concise update on CAA and its associated consequences.
Collapse
Affiliation(s)
- Stefan Weidauer
- Institute of Neuroradiology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
4
|
Lee WJ, Jung KH, Park KI, Chu K, Lee SK. Domain-specific longitudinal associations between brain volume, white matter lesions, and cognitive function changes. Heliyon 2025; 11:e42536. [PMID: 40084028 PMCID: PMC11904571 DOI: 10.1016/j.heliyon.2025.e42536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
Objectives We investigated the domain-specific patterns of the association of segmental brain volume and white matter signal abnormality (WMSA) volume with longitudinal changes in cognitive function. Methods Participants from an institutional health check-up program who were aged >50 years, did not have a confirmed central nervous system disorder and underwent baseline and follow-up evaluations for cognitive function and brain MRI with an interval of at least 1 year were included. Cognitive function was assessed using the Consortium to Establish a Registry for Alzheimer's Disease-Korean version (CERAD-K) assessment battery. Performance changes in each cognitive domain were analyzed for associations with serial data of segmental brain volume and WMSA volume. Results A total of 190 subjects were included (115 [60.1 %] females, mean age 68.2 ± 8.2 years [range 50-82 years]). Declines in global cognition were associated with lower baseline (P=0.001) and decreasing volumes (P=0.001) of the hippocampus and amygdala and with increasing total WMSA volumes (P=0.008). Declines in the executive function domain were associated with lower baseline volumes of the hippocampus and amygdala (P = 0.018) and with increasing total WMSA volumes (P=0.015). Declines in the language function and the verbal learning domains were associated with lower baseline (P=0.009 and P=0.002, respectively) and decreasing volumes (P=0.008 and P=0.001, respectively) of the hippocampus and amygdala. Decline in the memory recall was associated with higher total WMSA volumes at baseline (P=0.014). Declines in the recognition memory domains were associated with lower baseline hippocampus and amygdala volume (P = 0.020) and with increases in total WMSA volumes (P=0.012). Conclusions The segmental brain volume and the WMSA volume parameters have domain-specific associations with longitudinal cognitive changes, which might reflect the different dependence on the brain reserve according to the cognitive domains.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeonggi-do, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Healthcare System Gangnam Center, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Chandler HL, Wheeler J, Escott‐Price V, Murphy K, Lancaster TM. Non-APOE variants predominately expressed in smooth muscle cells contribute to the influence of Alzheimer's disease genetic risk on white matter hyperintensities. Alzheimers Dement 2025; 21:e14455. [PMID: 39737667 PMCID: PMC11848156 DOI: 10.1002/alz.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION White matter hyperintensity volumes (WMHVs) are disproportionally prevalent in individuals with Alzheimer's disease (AD), potentially reflecting neurovascular injury. We quantify the association between AD polygenic risk score (AD-PRS) and WMHV, exploring single-nucleotide polymorphisms (SNPs) that are proximal to genes overexpressed in cerebrovascular cell species. METHODS In a UK-Biobank sub-sample (mean age = 64, range = 45-81 years), we associate WMHV with (1) AD-PRS estimated via SNPs across the genome (minus apolipoprotein E [APOE] locus) and (2) AD-PRS estimated with SNPs proximal to specific genes that are overexpressed in cerebrovascular cell species. RESULTS We observed a positive association between non-APOE-AD-PRS and WMHVs. We further demonstrate an association between WMHVs and AD-PRS constructed with SNPs that are proximal to genes over-represented in smooth muscles cells (SMCs; β = 0.135, PFWE < 0.01) and internally replicated (PDISCOVERY+REPLICATION < 0.01). DISCUSSION Common AD genetic risk could explain physiological processes underlying vascular pathology in AD. SMC function may offer a treatment target to prevent WMHV-related AD pathophysiology prior to the onset of symptoms. HIGHLIGHTS Alzheimer's disease (AD) risk factors such as apolipoprotein E (APOE) ε4, link to increased white matter hyperintensity volume (WMHV). WMHVs indicate vascular risk and neurovascular injury in AD. The broader genetic link between AD risk and WMHV is not fully understood. We quantify AD polygenic risk score (PRS) associations with WMHV, excluding APOE. AD-PRS in smooth muscle cells (SMCs) shows a significant association with increased WMHV.
Collapse
Affiliation(s)
- Hannah Louise Chandler
- School of Physics and AstronomyCardiff University Brain Research Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
| | - Joshua Wheeler
- School of Clinical SciencesUniversity of BristolBristolUK
- Department of PsychologyUniversity of BathBathUK
| | - Valentina Escott‐Price
- Centre for Neuropsychiatric Genetics and GenomicsDepartment of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Kevin Murphy
- School of Physics and AstronomyCardiff University Brain Research Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
| | | |
Collapse
|
6
|
Wu Q, Chen J, Yang X, Zhang X, He W, Xia J. Associations of ventriculomegaly and white matter hyperintensities with glymphatic dysfunction in idiopathic normal pressure hydrocephalus. Eur Radiol 2025:10.1007/s00330-024-11320-3. [PMID: 39836203 DOI: 10.1007/s00330-024-11320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/26/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVES To investigate glymphatic function in idiopathic normal pressure hydrocephalus (iNPH) using the diffusion tensor image analysis along the perivascular space (DTI-ALPS) method and to explore the associations of ALPS index with ventriculomegaly and white matter hyperintensities (WMH). MATERIALS AND METHODS This study included 41 patients with iNPH and 40 age- and sex-matched normal controls (NCs). All participants underwent brain MRI. Based on DTI, we then calculated the ALPS index to obtain the water diffusivity along the perivascular space. Ventricular volume and WMH were also determined. Differences in the diffusivities and ALPS indexes between the iNPH and NC groups were investigated; associations of the DTI-ALPS index with ventriculomegaly and WMH were analysed. RESULTS Patients with iNPH had a lower ALPS index than NCs (p < 0.001). The ALPS index was significantly correlated with the normalised ventricular volume (r = -0.446, p = 0.004), but not with total WMH volume (r = -0.246, p = 0.126). Further regression analyses indicated that the reduced ALPS index was associated with increased ventricular volume (β = -7.158, p = 0.016), but not with normalised WMH volume (β = -2.796, p = 0.161). The receiver operating characteristic analysis demonstrated the ALPS index's excellent diagnostic performance for iNPH (the optimal cut-off point = 1.322; sensitivity, 100.0%; specificity, 87.5%; AUC = 0.980). CONCLUSIONS Patients with iNPH had a lower ALPS index, which may suggest impaired glymphatic function. This study demonstrated an association of DTI-ALPS index with ventriculomegaly, but not WMH in patients with iNPH. KEY POINTS Question Glymphatic dysfunction is crucial in idiopathic normal pressure hydrocephalus (iNPH) development, yet its associations with neuroimaging features remains unclear. Findings Diffusion tensor image analysis along the perivascular space (DTI-ALPS) revealed a reduced ALPS index in idiopathic normal pressure hydrocephalus, negatively correlating with ventricular volume. Clinical relevance DTI-ALPS enables non-invasive assessment of glymphatic function and its relationship with neuroimaging characteristics in idiopathic normal pressure hydrocephalus, facilitating the investigation of glymphatic dysfunction in iNPH pathophysiology.
Collapse
Affiliation(s)
- Qian Wu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiakuan Chen
- Department of Radiology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Xiaolin Yang
- Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Xiejun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenjie He
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | - Jun Xia
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| |
Collapse
|
7
|
Wälchli T, Bhatia KD, Guest W, Bisschop J, Olijnyk L, Kortman H, Constanthin PE, Nicholson P, Monnier PP, Kalyvas A, Winkler EA, Berhouma M, Krings T, Radovanovic I. Identification of a T2-hyperintense Perivascular Space in Brain Arteriovenous Malformations. In Vivo 2025; 39:280-291. [PMID: 39740916 PMCID: PMC11705134 DOI: 10.21873/invivo.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM Brain arteriovenous malformations (AVMs) are vascular malformations characterized by dysmorphic, aberrant vasculature. During previous surgeries of compact nidus brain AVMs (representing the majority of cases), we have observed a "shiny" plane between nidal and perinidal AVM vessels and the surrounding grey and white matter and hypothesized that preoperative neuroimaging of brain AVMs may show a neuroradiological correlate of these intraoperative observations. PATIENTS AND METHODS We retrospectively reviewed and analyzed multiplanar and multisequence 3-Tesla magnetic resonance (3T MR) imaging in five consecutive brain AVMs with special attention on imaging characteristics of the brain-AVM interface, i.e., the perivascular and perinidal regions. RESULTS In all five patients, we identified T2-hypertinense perivascular perinidal spaces, which were predominantly observed around the AVM nidus and less prominently around the feeding arteries or draining veins. CONCLUSION The identification of T2-hypertinense perivascular spaces surrounding brain AVMs on neuroradiological imaging may provide insights into the anatomico-radiological relationships of brain AVMs and the surrounding grey and white matter parenchyma. These findings could have future implications for our understanding of brain AVM biology and may influence neurosurgical approaches to these lesions.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada;
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zürich, and Division of Neurosurgery, University and University Hospital Zürich, Zürich, Switzerland
- Division of Neurosurgery, University Hospital Zürich, Zürich, Switzerland
| | - Kartik Dev Bhatia
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, ON, Canada
- Department of Medical Imaging (K.D.B.), Sydney Children's Hospital Network, Westmead, NSW, Australia
| | - Will Guest
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, ON, Canada
| | - Jeroen Bisschop
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zürich, and Division of Neurosurgery, University and University Hospital Zürich, Zürich, Switzerland
- Division of Neurosurgery, University Hospital Zürich, Zürich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Leonardo Olijnyk
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Hans Kortman
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, ON, Canada
- Department of Radiology, Section Interventional Radiology, Elisabeth Tweesteden Ziekenhuis, Tilburg, the Netherlands
| | - Paul E Constanthin
- Department of Neurosurgery, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Patrick Nicholson
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neuroradiology, Beaumont Hospital, Dublin, Ireland
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aristotelis Kalyvas
- Attikon Hospital, Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, U.S.A
- Weill Institute for Neurosciences, University of California, San Francisco, CA, U.S.A
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, U.S.A
| | - Moncef Berhouma
- Department of Neurosurgery, University Hospital of Dijon, Bourgogne, France
| | - Timo Krings
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, Toronto, ON, Canada
- Lahey Hospital and Medical Center, TH Chan School of Medicine, University of Massachusetts, Boston, MA, U.S.A
| | - Ivan Radovanovic
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada;
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Tanaka F, Maeda M, Kishi S, Kogue R, Umino M, Ishikawa H, Ii Y, Shindo A, Sakuma H. Updated imaging markers in cerebral amyloid angiopathy: What radiologists need to know. Jpn J Radiol 2024:10.1007/s11604-024-01720-2. [PMID: 39730931 DOI: 10.1007/s11604-024-01720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is an age-related small vessel disease pathologically characterized by the progressive accumulation of amyloid-beta (Aβ) peptide in cerebrovascular walls, affecting both cortical and leptomeningeal vessels. Amyloid deposition results in fragile vessels, which may lead to lobar intracerebral hemorrhage (ICH) and cognitive impairment. To evaluate the probability and severity of CAA, the imaging markers depicted on CT and MRI techniques are crucial, as brain pathological examination is highly invasive. Although the Boston criteria have established diagnostic value and have been updated to version 2.0, due to an aging population, the patients with CAA should also be assessed for their risk of future ICH or cognitive impairment. Furthermore, an increased awareness of CAA is essential when introducing anticoagulants for infarct in elderly patients or anti-amyloid antibodies for Alzheimer's disease, as these may worsen CAA-related hemorrhagic lesions. However, the radiological literature on CAA has not been comprehensively updated. Here, we review the imaging markers of CAA and clinical significance. We also discuss the clinical and imaging characteristics of CAA-related inflammation, amyloid-related imaging abnormalities, and iatrogenic-CAA.
Collapse
Affiliation(s)
- Fumine Tanaka
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Seiya Kishi
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryota Kogue
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Maki Umino
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuichiro Ii
- Department of Neuroimaging and Pathophysiology, Mie University School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
9
|
Yuan L, Chen X, Jankovic J, Deng H. CADASIL: A NOTCH3-associated cerebral small vessel disease. J Adv Res 2024; 66:223-235. [PMID: 38176524 PMCID: PMC11674792 DOI: 10.1016/j.jare.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease (CSVD), pathologically characterized by a non-atherosclerotic and non-amyloid diffuse angiopathy primarily involving small to medium-sized penetrating arteries and leptomeningeal arteries. In 1996, mutation in the notch receptor 3 gene (NOTCH3) was identified as the cause of CADASIL. However, since that time other genetic CSVDs have been described, including the HtrA serine peptidase 1 gene-associated CSVD and the cathepsin A gene-associated CSVD, that clinically mimic the original phenotype. Though NOTCH3-associated CSVD is now a well-recognized hereditary disorder and the number of studies investigating this disease is increasing, the role of NOTCH3 in the pathogenesis of CADASIL remains elusive. AIM OF REVIEW This review aims to provide insights into the pathogenesis and the diagnosis of hereditary CSVDs, as well as personalized therapy, predictive approach, and targeted prevention. In this review, we summarize the current progress in CADASIL, including the clinical, neuroimaging, pathological, genetic, diagnostic, and therapeutic aspects, as well as differential diagnosis, in which the role of NOTCH3 mutations is highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, CADASIL is revisited as a NOTCH3-associated CSVD along with other hereditary CSVDs.
Collapse
Affiliation(s)
- Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyu Chen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Pathology, Changsha Maternal and Child Health Care Hospital, Changsha, China
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Tung H, Chou CC, Chen HM, Chen YM, Wu YY, Chai JW, Chen JP, Chen SC, Chen HC, Lee WJ. White Matter Hyperintensities and Cognitive Functions in People With the R544C Variant of the NOTCH3 Gene Without Stroke or Dementia. Neurology 2024; 103:e209941. [PMID: 39374470 DOI: 10.1212/wnl.0000000000209941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND AND OBJECTIVES NOTCH3 pathologic variants cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), which presents with stroke and dementia and is characterized by white matter hyperintensities (WMHs) on brain MRI. The R544C variant is a common pathologic variant in Taiwan, but not all carriers exhibit significant symptoms. We investigated whether WMHs occur before clinical symptoms in carriers with pathogenic variants, examined factors associated with WMHs, and explored their relationship with cognitive functions. METHODS We enrolled 63 R544C carriers without overt clinical disease (WOCD) and 37 age-matched and sex-matched noncarriers as controls from the Taiwan Precision Medicine Initiative data set. All participants underwent clinical interviews, comprehensive neuropsychological assessments, and brain MRI. We calculated total and regional WMH volumes, determined the age at which WMHs began increasing in carriers, and examined the relationship between WMHs and neuropsychological performance. Factors associated with WMH volumes were analyzed using multivariable linear regression models. RESULTS Compared with controls, R544C carriers WOCD had increased WMH volume, except in the occipital and midbrain areas, and showed a rapid increase in WMHs starting at age 48. They scored lower on the Mini-Mental State Examination (median = 28.4 vs 29.0, p = 0.048), Montreal Cognitive Assessment (MoCA) (median = 28.3 vs 29.0, p = 0.013), and memory and executive function tests than controls. After adjusting for age, sex, and education, MoCA scores were associated with whole-brain (r = -0.387, padj = 0.008) and regional WMHs (all padj < 0.05) except in the midbrain area. Age (β = 0.034, 95% CI 0.021-0.046, p < 0.001), hypercholesterolemia (β = 0.375, 95% CI 0.097-0.653, p = 0.009), and the vascular risk factor (VRF) index (β = 0.132, 95% CI 0.032-0.242, p = 0.019) were associated with the WMH severity in carriers. DISCUSSION Our study revealed that WMHs are extensively distributed in R544C carriers WOCD. They exhibited a rapid increase in WMHs beginning at age 48, approximately 7 years earlier than the reported age at symptomatic onset. Age was the strongest predictive factor of WMHs, and VRF, particularly hypercholesterolemia, might be modifying factors of WMHs.
Collapse
Affiliation(s)
- Hsin Tung
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Chih Chou
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsian-Min Chen
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ming Chen
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ying Wu
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jyh-Wen Chai
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jun-Peng Chen
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Chun Chen
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Chieh Chen
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ju Lee
- From the Department of Post-Baccalaureate Medicine (H.T., C.-C.C., Y.-M.C., W.-J.L.), College of Medicine, National Chung Hsing University; Center of Faculty Development (H.T.), Department of Medical Education, and Department of Neurology (H.T., W.-J.L.), Neurological Institute, Taichung Veterans General Hospital; Graduate Institute of Clinical Medicine (C.-C.C.), College of Medicine, National Taiwan University, Taipei; Department of Ophthalmology (C.-C.C.), Taichung Veterans General Hospital; School of Medicine (C.-C.C., Y.-M.C., H.-C.C.), National Yang Ming Chiao Tung University, Taipei; Center for Quantitative Imaging in Medicine (H.-M.C.), Department of Medical Research, Division of Allergy, Immunology and Rheumatology (Y.-M.C.), Department of Internal Medicine, and Department of Medical Research (Y.-M.C.), Taichung Veterans General Hospital; Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine & Program in Translational Medicine (Y.-M.C.), and Precision Medicine Research Center (Y.-M.C.), College of Medicine, National Chung Hsing University, Taichung; Department of Radiology (Y.-Y.W., J.-W.C., H.-C.C.), Taichung Veterans General Hospital; Department of Electrical Engineering (Y.-Y.W.), National Chung Hsing University, Taichung; Biostatistics Task Force of Taichung Veterans General Hospital (J.-P.C.), Taichung; Institute of Statistical Science (S.-C.C.), Academia Sinica, Taipei; Dementia Center (W.-J.L.), Taichung Veterans General Hospital; and Brain Research Center (W.-J.L.), National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
11
|
Lan H, Qiu W, Lei X, Xu Z, Yu J, Wang H. Deep medullary vein abnormalities impact white matter hyperintensity volume through increases in interstitial free water. BMC Neurol 2024; 24:405. [PMID: 39433983 PMCID: PMC11492461 DOI: 10.1186/s12883-024-03921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Our intent was to explore the mediating role of interstitial free water (FW) linking deep medullary vein (DMV) score to white matter hyperintensity (WMH) volume. METHODS Our research team conducted a forward-looking analysis of initial clinical and imaging information gathered from 125 patients with cerebral small vessel disease. We identified six anatomic DMV regions on susceptibility weighted imaging (SWI) studies. Each region earned a score of 0-3, determined by the visual conditions of vessels, summing all six to generate a DMV score. We utilized fluid-attenuated inversion recovery (FLAIR) sequences to measure the volume of WMH. Additionally, we employed diffusion tensor imaging (DTI) to assess FW value. RESULTS DMV score significantly positively correlated with FW value and with WMH volume (p < 0.05), and value of FW positively correlated with WMH volume (p < 0.05). The indirect effect of DMV score on WMH volume was mediated by FW (β = 0.281, 95% confidence interval [CI]: 0.178-0.388), whether adjusted for age and gender (β = 0.142, 95% CI: 0.058-0.240) or for age, gender and vascular risk factors (β = 0.141, 95% CI: 0.054-0.249). CONCLUSION DMV score correlate with WMH volume by virtue of FW increases in white matter.
Collapse
Affiliation(s)
- Haiyuan Lan
- Department of Radiology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, 323000, China
| | - Weiwen Qiu
- Department of Neurology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, 323000, China
| | - Xinjun Lei
- Department of Radiology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, 323000, China
| | - Zhihua Xu
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310000, China
| | - Jie Yu
- Department of Radiology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, 323000, China
| | - Huimei Wang
- Department of Neurology, Lishui People's Hospital, Lishui, 323000, China.
| |
Collapse
|
12
|
Weidauer S, Tafreshi M, Förch C, Hattingen E, Arendt CT, Friedauer L. Clinical and neuroimaging precursors in cerebral amyloid angiopathy: impact of the Boston criteria version 2.0. Eur J Neurol 2024; 31:e16425. [PMID: 39105407 DOI: 10.1111/ene.16425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND AND PURPOSE Although the Boston criteria version 2.0 facilitates the sensitivity of cerebral amyloid angiopathy (CAA) diagnosis, there are only limited data about precursor symptoms. This study aimed to determine the impact of neurological and imaging features in relation to the time of CAA diagnosis. METHODS Patients diagnosed with probable CAA according to the Boston criteria version 1.5, treated between 2010 and 2020 in our neurocentre, were identified through a keyword search in our medical database. Neuroimaging was assessed using Boston criteria versions 1.5 and 2.0. Medical records with primary focus on the clinical course and the occurrence of transient focal neurological episodes were prospectively evaluated. RESULTS Thirty-eight out of 81 patients (46.9%) exhibited transient focal neurological episodes, most often sensory (13.2%) or aphasic disorders (13.2%), or permanent deficits at a mean time interval of 31.1 months (SD ±26.3; range 1-108 months) before diagnosis of probable CAA (Boston criteria version 1.5). If using Boston criteria version 2.0, all patients receiving magnetic resonance imaging (MRI) met the criteria for probable CAA, and diagnosis could have been made on average 44 months earlier. Four patients were younger than 50 years, three of them with supporting pathology. Cognitive deficits were most common (34.6%) at the time of diagnosis. CONCLUSIONS Non-haemorrhagic MRI markers enhance the sensitivity of diagnosing probable CAA; however, further prospective studies are proposed to establish a minimum age for inclusion. As the neurological overture of CAA may occur several years before clinical diagnosis, early clarification by MRI including haemosensitive sequences are suggested.
Collapse
Affiliation(s)
- Stefan Weidauer
- Institute of Neuroradiology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mona Tafreshi
- Institute of Neuroradiology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Förch
- Department of Neurology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christophe T Arendt
- Institute of Neuroradiology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lucie Friedauer
- Department of Neurology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Lei X, Qiu W, Xu Z, Yu J, Lan H. Increased extracellular free water is related to white matter hyperintensity burden. Acta Radiol 2024; 65:1265-1271. [PMID: 39308415 DOI: 10.1177/02841851241282085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
BACKGROUND Extracellular free water (FW) has important roles in the occurrence and development of white matter hyperintensity (WMH). PURPOSE To explore the correlations between FW and WMH burden. MATERIAL AND METHODS A prospective analysis was conducted using magnetic resonance imaging (MRI) data from 126 individuals. WMH burden was determined based on WMH volumes and Fazekas scores from deep and periventricular white matter hyperintensity (DWMH and PWMH, respectively) in fluid-attenuated inversion recovery (FLAIR) images. FW values were taken from diffusion tensor imaging (DTI). RESULTS Univariate analysis showed that FW values were correlated with WMH burden, including WMH volumes and DWMH and PWMH Fazekas scores (P < 0.05). After multivariate analysis, FW values were correlated with WMH volumes and DWMH and PWMH Fazekas scores when adjusted for age and hypertension (P < 0.05). CONCLUSION Using MRI, increasing extracellular FW was related to WMH burden.
Collapse
Affiliation(s)
- Xinjun Lei
- Department of Radiology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, PR China
| | - Weiwen Qiu
- Department of Neurology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, PR China
| | - Zhihua Xu
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, PR China
| | - Jie Yu
- Department of Radiology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, PR China
| | - Haiyuan Lan
- Department of Radiology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, PR China
| |
Collapse
|
14
|
Deike K, Decker A, Scheyhing P, Harten J, Zimmermann N, Paech D, Peters O, Freiesleben SD, Schneider LS, Preis L, Priller J, Spruth E, Altenstein S, Lohse A, Fliessbach K, Kimmich O, Wiltfang J, Bartels C, Hansen N, Jessen F, Rostamzadeh A, Düzel E, Glanz W, Incesoy EI, Butryn M, Buerger K, Janowitz D, Ewers M, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Spottke A, Roy N, Wagner M, Roeske S, Heneka MT, Brosseron F, Ramirez A, Dobisch L, Wolfsgruber S, Kleineidam L, Yakupov R, Stark M, Schmid MC, Berger M, Hetzer S, Dechent P, Scheffler K, Petzold GC, Schneider A, Effland A, Radbruch A. Machine Learning-Based Perivascular Space Volumetry in Alzheimer Disease. Invest Radiol 2024; 59:667-676. [PMID: 38652067 DOI: 10.1097/rli.0000000000001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
OBJECTIVES Impaired perivascular clearance has been suggested as a contributing factor to the pathogenesis of Alzheimer disease (AD). However, it remains unresolved when the anatomy of the perivascular space (PVS) is altered during AD progression. Therefore, this study investigates the association between PVS volume and AD progression in cognitively unimpaired (CU) individuals, both with and without subjective cognitive decline (SCD), and in those clinically diagnosed with mild cognitive impairment (MCI) or mild AD. MATERIALS AND METHODS A convolutional neural network was trained using manually corrected, filter-based segmentations (n = 1000) to automatically segment the PVS in the centrum semiovale from interpolated, coronal T2-weighted magnetic resonance imaging scans (n = 894). These scans were sourced from the national German Center for Neurodegenerative Diseases Longitudinal Cognitive Impairment and Dementia Study. Convolutional neural network-based segmentations and those performed by a human rater were compared in terms of segmentation volume, identified PVS clusters, as well as Dice score. The comparison revealed good segmentation quality (Pearson correlation coefficient r = 0.70 with P < 0.0001 for PVS volume, detection rate in cluster analysis = 84.3%, and Dice score = 59.0%). Subsequent multivariate linear regression analysis, adjusted for participants' age, was performed to correlate PVS volume with clinical diagnoses, disease progression, cerebrospinal fluid biomarkers, lifestyle factors, and cognitive function. Cognitive function was assessed using the Mini-Mental State Examination, the Comprehensive Neuropsychological Test Battery, and the Cognitive Subscale of the 13-Item Alzheimer's Disease Assessment Scale. RESULTS Multivariate analysis, adjusted for age, revealed that participants with AD and MCI, but not those with SCD, had significantly higher PVS volumes compared with CU participants without SCD ( P = 0.001 for each group). Furthermore, CU participants who developed incident MCI within 4.5 years after the baseline assessment showed significantly higher PVS volumes at baseline compared with those who did not progress to MCI ( P = 0.03). Cognitive function was negatively correlated with PVS volume across all participant groups ( P ≤ 0.005 for each). No significant correlation was found between PVS volume and any of the following parameters: cerebrospinal fluid biomarkers, sleep quality, body mass index, nicotine consumption, or alcohol abuse. CONCLUSIONS The very early changes of PVS volume may suggest that alterations in PVS function are involved in the pathophysiology of AD. Overall, the volumetric assessment of centrum semiovale PVS represents a very early imaging biomarker for AD.
Collapse
Affiliation(s)
- Katerina Deike
- From the German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany (K.D., A.D., K.F., O.K., F.J., Annika Spottke, N.R., M.W., S.R., M.T.H., F.B., Alfredo Ramirez, S.W., L.K., M.S., M.C.S., G.C.P., Anja Schneider, Alexander Radbruch); Department of Neuroradiology, University Hospital, Bonn, Germany (K.D., P.S., D.P., Alexander Radbruch); Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University Hospital Bonn, Bonn, Germany (J.H., N.Z., K.F., M.W., Alfredo Ramirez, S.W., L.K., Anja Schneider); Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (D.P.); German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany (O.P., S.D.F., J.P., E.S., S.A.); Institute of Psychiatry and Psychotherapy, Charité-Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (O.P., S.D.F., L.-S.S., L.P.); Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany (J.P., E.S., S.A., A.L.); Department of Psychiatry and Psychotherapy, School of Medicine, Munich, Germany (J.P.); University of Edinburgh and UK DRI, Edinburgh, United Kingdom (J.P.); German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany (J.W.); Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Germany (J.W., C.B., N.H.); Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal (J.W.); Department of Psychiatry, University of Cologne, Cologne, Germany (F.J., Ayda Rostamzadeh); Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany (F.J., Alfredo Ramirez); German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany (E.D., W.G., E.I.I., Michaela Butryn, L.D., R.Y.); Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany (E.D., W.G., E.I.I., Michaela Butryn); Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, Magdeburg, Germany (E.I.I.); German Center for Neurodegenerative Diseases (DZNE), Munich, Germany (K.B., M.E., R.P.); Institute for Stroke and Dementia Research, LMU Munich, Germany (K.B., D.J., M.E.); Department of Psychiatry and Psychotherapy, LMU Munich, Germany (R.P., B.-S.R.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (R.P.); Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom (R.P.); Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom (R.P., B.-S.R.); Department of Neuroradiology, University Hospital Munich, Munich, Germany (B.-S.R.); German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany (S.T., I.K., D.G.); Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany (S.T., I.K., D.G.); German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany (C.L., M.H.M.); Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, Tübingen, Germany (C.L.); Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen Germany (M.H.M.); Department of Neurology, University of Bonn, Bonn, Germany (Annika Spottke); Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Cologne, Germany (Alfredo Ramirez); Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX (Alfredo Ramirez); Institute for Medical Biometry, Informatics, and Epidemiology, University Hospital Bonn, Bonn, Germany (M.C.S., Moritz Berger); Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin, Berlin, Germany (S.H.); MR-Research in Neurosciences, Department of Cognitive Neurology, Göttingen, Germany (P.D.); Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany (K.S.); Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany (G.C.P.); and Institute for Applied Mathematics, University of Bonn, Bonn, Germany (A.E.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhuo J, Raghavan P, Li J, Roys S, Njonkou Tchoquessi RL, Chen H, Wickwire EM, Parikh GY, Schwartzbauer GT, Grattan LM, Wang Z, Gullapalli RP, Badjatia N. Longitudinal assessment of glymphatic changes following mild traumatic brain injury: Insights from perivascular space burden and DTI-ALPS imaging. Front Neurol 2024; 15:1443496. [PMID: 39170078 PMCID: PMC11335690 DOI: 10.3389/fneur.2024.1443496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Traumatic brain injury (TBI) even in the mild form may result in long-lasting post-concussion symptoms. TBI is also a known risk to late-life neurodegeneration. Recent studies suggest that dysfunction in the glymphatic system, responsible for clearing protein waste from the brain, may play a pivotal role in the development of dementia following TBI. Given the diverse nature of TBI, longitudinal investigations are essential to comprehending the dynamic changes in the glymphatic system and its implications for recovery. Methods In this prospective study, we evaluated two promising glymphatic imaging markers, namely the enlarged perivascular space (ePVS) burden and Diffusion Tensor Imaging-based ALPS index, in 44 patients with mTBI at two early post-injury time points: approximately 14 days (14Day) and 6-12 months (6-12Mon) post-injury, while also examining their associations with post-concussion symptoms. Additionally, 37 controls, comprising both orthopedic patients and healthy individuals, were included for comparative analysis. Results Our key findings include: (1) White matter ePVS burden (WM-ePVS) and ALPS index exhibit significant correlations with age. (2) Elevated WM-ePVS burden in acute mTBI (14Day) is significantly linked to a higher number of post-concussion symptoms, particularly memory problems. (3) The increase in the ALPS index from acute (14Day) to the chronic (6-12Mon) phases in mTBI patients correlates with improvement in sleep measures. Furthermore, incorporating WM-ePVS burden and the ALPS index from acute phase enhances the prediction of chronic memory problems beyond socio-demographic and basic clinical information. Conclusion ePVS burden and ALPS index offers distinct values in assessing glymphatic structure and activity. Early evaluation of glymphatic function could be crucial for understanding TBI recovery and developing targeted interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Jiachen Zhuo
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Prashant Raghavan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jiang Li
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Steven Roys
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rosy Linda Njonkou Tchoquessi
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Hegang Chen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Emerson M. Wickwire
- Department of Psychiatry and Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gunjan Y. Parikh
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gary T. Schwartzbauer
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lynn M. Grattan
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ze Wang
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rao P. Gullapalli
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neeraj Badjatia
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS): Revisiting the Meaning and Significance of the Method. Magn Reson Med Sci 2024; 23:268-290. [PMID: 38569866 PMCID: PMC11234944 DOI: 10.2463/mrms.rev.2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
More than 5 years have passed since the Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS) method was proposed with the intention of evaluating the glymphatic system. This method is handy due to its noninvasiveness, provision of a simple index in a straightforward formula, and the possibility of retrospective analysis. Therefore, the ALPS method was adopted to evaluate the glymphatic system for many disorders in many studies. The purpose of this review is to look back and discuss the ALPS method at this moment.The ALPS-index was found to be an indicator of a number of conditions related to the glymphatic system. Thus, although this was expected in the original report, the results of the ALPS method are often interpreted as uniquely corresponding to the function of the glymphatic system. However, a number of subsequent studies have pointed out the problems on the data interpretation. As they rightly point out, a higher ALPS-index indicates predominant Brownian motion of water molecules in the radial direction at the lateral ventricular body level, no more and no less. Fortunately, the term "ALPS-index" has become common and is now known as a common term by many researchers. Therefore, the ALPS-index should simply be expressed as high or low, and whether it reflects a glymphatic system is better to be discussed carefully. In other words, when a decreased ALPS-index is observed, it should be expressed as "decreased ALPS-index" and not directly as "glymphatic dysfunction". Recently, various methods have been proposed to evaluate the glymphatic system. It has become clear that these methods also do not seem to reflect the entirety of the extremely complex glymphatic system. This means that it would be desirable to use various methods in combination to evaluate the glymphatic system in a comprehensive manner.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
17
|
Zhuo J, Raghavan P, Jiang L, Roys S, Tchoquessi RLN, Chen H, Wickwire EM, Parikh GY, Schwartzbauer GT, Grattan LM, Wang Z, Gullapalli RP, Badjatia N. Longitudinal Assessment of Glymphatic Changes Following Mild Traumatic Brain Injury: Insights from PVS burden and DTI-ALPS Imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.01.24307927. [PMID: 38854000 PMCID: PMC11160843 DOI: 10.1101/2024.06.01.24307927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Traumatic brain injury (TBI) even in the mild form may result in long-lasting post-concussion symptoms. TBI is also a known risk to late-life neurodegeneration. Recent studies suggest that dysfunction in the glymphatic system, responsible for clearing protein waste from the brain, may play a pivotal role in the development of dementia following TBI. Given the diverse nature of TBI, longitudinal investigations are essential to comprehending the dynamic changes in the glymphatic system and its implications for recovery. In this prospective study, we evaluated two promising glymphatic imaging markers, namely the enlarged perivascular space (ePVS) burden and Diffusion Tensor Imaging-based ALPS index, in 44 patients with mTBI at two early post-injury time points: approximately 14 days (14Day) and 6-12 months (6-12Mon) post-injury, while also examining their associations with post-concussion symptoms. Additionally, 37 controls, comprising both orthopedic patients and healthy individuals, were included for comparative analysis. Our key findings include: 1) White matter ePVS burden (WM-ePVS) and ALPS index exhibit significant correlations with age. 2) Elevated WM-ePVS burden in acute mTBI (14Day) is significantly linked to a higher number of post-concussion symptoms, particularly memory problems. 3) The increase in the ALPS index from acute (14Day) to the chronic (6-12Mon) phases in mTBI patients correlates with improvement in sleep measures. Furthermore, incorporating WM-ePVS burden and the ALPS index from acute phase enhances the prediction of chronic memory problems beyond socio-demographic and basic clinical information, highlighting their distinct roles in assessing glymphatic structure and activity. Early evaluation of glymphatic function could be crucial for understanding TBI recovery and developing targeted interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Jiachen Zhuo
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Prashant Raghavan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Li Jiang
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Steven Roys
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Rosy Linda Njonkou Tchoquessi
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Hegang Chen
- Department of Epidemiology & public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Emerson M. Wickwire
- Department of Psychiatry & Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Gunjan Y. Parikh
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Gary T. Schwartzbauer
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD
| | - Lynn M. Grattan
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Ze Wang
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Rao P. Gullapalli
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Neeraj Badjatia
- Program in Trauma, University of Maryland School of Medicine, Baltimore, MD
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
18
|
Basaia S, Zavarella M, Rugarli G, Sferruzza G, Cividini C, Canu E, Cacciaguerra L, Bacigaluppi M, Martino G, Filippi M, Agosta F. Caudate functional networks influence brain structural changes with aging. Brain Commun 2024; 6:fcae116. [PMID: 38665962 PMCID: PMC11043654 DOI: 10.1093/braincomms/fcae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/22/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Neurogenesis decline with aging may be associated with brain atrophy. Subventricular zone neuron precursor cells possibly modulate striatal neuronal activity via the release of soluble molecules. Neurogenesis decay in the subventricular zone may result in structural alterations of brain regions connected to the caudate, particularly to its medial component. The aim of this study was to investigate how the functional organization of caudate networks relates to structural brain changes with aging. One hundred and fifty-two normal subjects were recruited: 52 young healthy adults (≤35 years old), 42 middle-aged (36 ≤ 60 years old) and 58 elderly subjects (≥60 years old). In young adults, stepwise functional connectivity was used to characterize regions that connect to the medial and lateral caudate at different levels of link-step distances. A statistical comparison between the connectivity of medial and lateral caudate in young subjects was useful to define medial and lateral caudate connected regions. Atrophy of medial and lateral caudate connected regions was estimated in young, middle-aged and elderly subjects using T1-weighted images. Results showed that middle-aged and elderly adults exhibited decreased stepwise functional connectivity at one-link step from the caudate, particularly in the frontal, parietal, temporal and occipital brain regions, compared to young subjects. Elderly individuals showed increased stepwise functional connectivity in frontal, parietal, temporal and occipital lobes compared to both young and middle-aged adults. Additionally, elderly adults displayed decreased stepwise functional connectivity compared to middle-aged subjects in specific parietal and subcortical areas. Moreover, in young adults, the medial caudate showed higher direct connectivity to the basal ganglia (left thalamus), superior, middle and inferior frontal and inferior parietal gyri (medial caudate connected region) relative to the lateral caudate. Considering the opposite contrast, lateral caudate showed stronger connectivity to the basal ganglia (right pallidum), orbitofrontal, rostral anterior cingulate and insula cortices (lateral caudate connected region) compared to medial caudate. In elderly subjects, the medial caudate connected region showed greater atrophy relative to the lateral caudate connected region. Brain regions linked to the medial caudate appear to be more vulnerable to aging than lateral caudate connected areas. The adjacency to the subventricular zone may, at least partially, explain these findings. Stepwise functional connectivity analysis can be useful to evaluate the role of the subventricular zone in network disruptions in age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Matteo Zavarella
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giulia Rugarli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giacomo Sferruzza
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Camilla Cividini
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Bacigaluppi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gianvito Martino
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
19
|
Nishida N, Nagata N, Shimoji K, Jingami N, Uemura K, Ozaki A, Takahashi M, Urade Y, Matsumoto S, Iwasaki K, Okumura R, Ishikawa M, Toda H. Lipocalin-type prostaglandin D synthase: a glymphopathy marker in idiopathic hydrocephalus. Front Aging Neurosci 2024; 16:1364325. [PMID: 38638193 PMCID: PMC11024442 DOI: 10.3389/fnagi.2024.1364325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Idiopathic normal pressure hydrocephalus in elderly people is considered a form of glymphopathy caused by malfunction of the waste clearance pathway, called the glymphatic system. Tau is a representative waste material similar to amyloid-β. During neurodegeneration, lipocalin-type prostaglandin D synthase (L-PGDS), a major cerebrospinal fluid (CSF) protein, is reported to act as a chaperone that prevents the neurotoxic aggregation of amyloid-β. L-PGDS is also a CSF biomarker in idiopathic normal pressure hydrocephalus and significantly correlates with tau concentration, age, and age-related brain white matter changes detected by magnetic resonance imaging. To investigate this glymphopathy, we aimed to analyze white matter changes and contributing factors in vivo and their interactions ex vivo. Cerebrospinal tap tests were performed in 60 patients referred for symptomatic ventriculomegaly. Patients were evaluated using an idiopathic normal pressure hydrocephalus grading scale, mini-mental state examination, frontal assessment battery, and timed up-and-go test. The typical morphological features of high convexity tightness and ventriculomegaly were measured using the callosal angle and Evans index, and parenchymal white matter properties were evaluated with diffusion tensor imaging followed by tract-based spatial statistics. Levels of CSF biomarkers, including tau, amyloid-β, and L-PGDS, were determined by ELISA, and their interaction, and localization were determined using immunoprecipitation and immunohistochemical analyses. Tract-based spatial statistics for fractional anisotropy revealed clusters that positively correlated with mini-mental state examination, frontal assessment battery, and callosal angle, and clusters that negatively correlated with age, disease duration, idiopathic normal pressure hydrocephalus grading scale, Evans index, and L-PGDS. Other parameters also indicated clusters that correlated with symptoms, microstructural white matter changes, and L-PGDS. Tau co-precipitated with L-PGDS, and colocalization was confirmed in postmortem specimens of neurodegenerative disease obtained from the human Brain Bank. Our study supports the diagnostic value of L-PGDS as a surrogate marker for white matter integrity in idiopathic normal pressure hydrocephalus. These results increase our understanding of the molecular players in the glymphatic system. Moreover, this study indicates the potential utility of enhancing endogenous protective factors to maintain brain homeostasis.
Collapse
Affiliation(s)
- Namiko Nishida
- Department of Neurosurgery, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Nanae Nagata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keigo Shimoji
- Department of Radiology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Naoto Jingami
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kengo Uemura
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiko Ozaki
- Department of Neurology, Osaka Red Cross Hospital, Osaka, Japan
| | - Makio Takahashi
- Department of Neurodegenerative Disorders, Kansai Medical University, Osaka, Japan
| | - Yoshihiro Urade
- Hirono Satellite, Isotope Science Center, The University of Tokyo, Fukushima, Japan
| | - Sadayuki Matsumoto
- Department of Neurology, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Koichi Iwasaki
- Department of Neurosurgery, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Ryosuke Okumura
- Department of Diagnostic Radiology, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Masatsune Ishikawa
- Department of Neurosurgery, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Hiroki Toda
- Department of Neurosurgery, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| |
Collapse
|
20
|
Nimmo J, Byrne R, Daskoulidou N, Watkins L, Carpanini S, Zelek W, Morgan B. The complement system in neurodegenerative diseases. Clin Sci (Lond) 2024; 138:387-412. [PMID: 38505993 PMCID: PMC10958133 DOI: 10.1042/cs20230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacqui Nimmo
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Robert A.J. Byrne
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lewis M. Watkins
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Wioleta M. Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| |
Collapse
|
21
|
Raposo N, Périole C, Planton M. In-vivo diagnosis of cerebral amyloid angiopathy: an updated review. Curr Opin Neurol 2024; 37:19-25. [PMID: 38038409 DOI: 10.1097/wco.0000000000001236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW Sporadic cerebral amyloid angiopathy (CAA) is a highly prevalent small vessel disease in ageing population with potential severe complications including lobar intracerebral hemorrhage (ICH), cognitive impairment, and dementia. Although diagnosis of CAA was made only with postmortem neuropathological examination a few decades ago, diagnosing CAA without pathological proof is now allowed in living patients. This review focuses on recently identified biomarkers of CAA and current diagnostic criteria. RECENT FINDINGS Over the past few years, clinicians and researchers have shown increased interest for CAA, and important advances have been made. Thanks to recent insights into mechanisms involved in CAA and advances in structural and functional neuroimaging, PET amyloid tracers, cerebrospinal fluid and plasma biomarkers analysis, a growing number of biomarkers of CAA have been identified. Imaging-based diagnostic criteria including emerging biomarkers have been recently developed or updated, enabling accurate and earlier diagnosis of CAA in living patients. SUMMARY Recent advances in neuroimaging allow diagnosing CAA in the absence of pathological examination. Current imaging-based criteria have high diagnostic performance in patients presenting with ICH, but is more limited in other clinical context such as cognitively impaired patients or asymptomatic individuals. Further research is still needed to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Nicolas Raposo
- Department of neurology, Toulouse University Hospital
- Clinical Investigation Center, CIC1436, Toulouse University Hospital, F-CRIN/Strokelink Network, Toulouse
- Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| | - Charlotte Périole
- Department of neurology, Toulouse University Hospital
- Clinical Investigation Center, CIC1436, Toulouse University Hospital, F-CRIN/Strokelink Network, Toulouse
| | - Mélanie Planton
- Department of neurology, Toulouse University Hospital
- Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| |
Collapse
|
22
|
Zhao H, Sun M, Zhang Y, Kong W, Fan L, Wang K, Xu Q, Chen B, Dong J, Shi Y, Wang Z, Wang S, Zhuang X, Li Q, Lin F, Yao X, Zhang W, Kong C, Zhang R, Feng D, Zhao X. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis 2024; 15:115-152. [PMID: 37307828 PMCID: PMC10796102 DOI: 10.14336/ad.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
As a recently discovered waste removal system in the brain, cerebral lymphatic system is thought to play an important role in regulating the homeostasis of the central nervous system. Currently, more and more attention is being focused on the cerebral lymphatic system. Further understanding of the structural and functional characteristics of cerebral lymphatic system is essential to better understand the pathogenesis of diseases and to explore therapeutic approaches. In this review, we summarize the structural components and functional characteristics of cerebral lymphatic system. More importantly, it is closely associated with peripheral system diseases in the gastrointestinal tract, liver, and kidney. However, there is still a gap in the study of the cerebral lymphatic system. However, we believe that it is a critical mediator of the interactions between the central nervous system and the peripheral system.
Collapse
Affiliation(s)
- Hongxiang Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Meiyan Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yue Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Wenwen Kong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lulu Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Baiyan Chen
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jianxin Dong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yanan Shi
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhengyan Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - ShiQi Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Xiaoli Zhuang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Li
- Department of Anesthesiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Feihong Lin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - WenBo Zhang
- Department of Neurosurgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Rui Zhang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Dayun Feng
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaoyong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| |
Collapse
|
23
|
Zhuo J, Raghavan P, Shao M, Roys S, Liang X, Tchoquessi RLN, Rhodes CS, Badjatia N, Prince JL, Gullapalli RP. Automatic Quantification of Enlarged Perivascular Space in Patients With Traumatic Brain Injury Using Super-Resolution of T2-Weighted Images. J Neurotrauma 2024; 41:407-419. [PMID: 37950721 PMCID: PMC10837035 DOI: 10.1089/neu.2023.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023] Open
Abstract
The perivascular space (PVS) is important to brain waste clearance and brain metabolic homeostasis. Enlarged PVS (ePVS) becomes visible on magnetic resonance imaging (MRI) and is best appreciated on T2-weighted (T2w) images. However, quantification of ePVS is challenging because standard-of-care T1-weighted (T1w) and T2w images are often obtained via two-dimensional (2D) acquisition, whereas accurate quantification of ePVS normally requires high-resolution volumetric three-dimensional (3D) T1w and T2w images. The purpose of this study was to investigate the use of a deep-learning-based super-resolution (SR) technique to improve ePVS quantification from 2D T2w images for application in patients with traumatic brain injury (TBI). We prospectively recruited 26 volunteers (age: 31 ± 12 years, 12 male/14 female) where both 2D T2w and 3D T2w images were acquired along with 3D T1w images to validate the ePVS quantification using SR T2w images. We then applied the SR method to retrospectively acquired 2D T2w images in 41 patients with chronic TBI (age: 41 ± 16 years, 32 male/9 female). ePVS volumes were automatically quantified within the whole-brain white matter and major brain lobes (temporal, parietal, frontal, occipital) in all subjects. Pittsburgh Sleep Quality Index (PSQI) scores were obtained on all patients with TBI. Compared with the silver standard (3D T2w), in the validation study, the SR T2w provided similar whole-brain white matter ePVS volume (r = 0.98, p < 0.0001), and similar age-related ePVS burden increase (r = 0.80, p < 0.0001). In the patient study, patients with TBI with poor sleep showed a higher age-related ePVS burden increase than those with good sleep. Sleep status is a significant interaction factor in the whole brain (p = 0.047) and the frontal lobe (p = 0.027). We demonstrate that images produced by SR of 2D T2w images can be automatically analyzed to produce results comparable to those obtained by 3D T2 volumes. Reliable age-related ePVS burden across the whole-brain white matter was observed in all subjects. Poor sleep, affecting the glymphatic function, may contribute to the accelerated increase of ePVS burden following TBI.
Collapse
Affiliation(s)
- Jiachen Zhuo
- Center for Advanced Imaging Research, Neurosurgery, and Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Neurosurgery, and Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Prashant Raghavan
- Department of Diagnostic Radiology and Nuclear Medicine, Neurosurgery, and Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Muhan Shao
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Steven Roys
- Center for Advanced Imaging Research, Neurosurgery, and Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Neurosurgery, and Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiao Liang
- Center for Advanced Imaging Research, Neurosurgery, and Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Neurosurgery, and Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rosy Linda Njonkou Tchoquessi
- Center for Advanced Imaging Research, Neurosurgery, and Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Neurosurgery, and Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chandler Sours Rhodes
- National Intrepid Center of Excellence, Walter Reed National Military Medical Cent5r, Bethesda, Maryland, USA
| | - Neeraj Badjatia
- Department of Neurology, Neurosurgery, and Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jerry L. Prince
- National Intrepid Center of Excellence, Walter Reed National Military Medical Cent5r, Bethesda, Maryland, USA
| | - Rao P. Gullapalli
- Center for Advanced Imaging Research, Neurosurgery, and Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Neurosurgery, and Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Zhang X, Wang Y, Jiao B, Wang Z, Shi J, Zhang Y, Bai X, Li Z, Li S, Bai R, Sui B. Glymphatic system impairment in Alzheimer's disease: associations with perivascular space volume and cognitive function. Eur Radiol 2024; 34:1314-1323. [PMID: 37610441 DOI: 10.1007/s00330-023-10122-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVES To investigate glymphatic function in Alzheimer's disease (AD) using the diffusion tensor image analysis along the perivascular space (DTI-ALPS) method and to explore the associations between DTI-ALPS index and perivascular space (PVS) volume, as well as between DTI-ALPS index and cognitive function. METHODS Thirty patients with PET-CT-confirmed AD (15 AD dementia; 15 mild cognitive impairment due to AD) and 26 age- and sex-matched cognitively normal controls (NCs) were included in this study. All participants underwent neurological MRI and cognitive assessments. Bilateral DTI-ALPS indices were calculated. PVS volume fractions were quantitatively measured at three locations: basal ganglia (BG), centrum semiovale, and lateral ventricle body level. DTI-ALPS index and PVS volume fractions were compared among three groups; correlations among the DTI-ALPS index, PVS volume fraction, and cognitive scales were analyzed. RESULTS Patients with AD dementia showed a significantly lower DTI-ALPS index in the whole brain (p = 0.009) and in the left hemisphere (p = 0.012) compared with NCs. The BG-PVS volume fraction in patients with AD was significantly larger than the fraction in NCs (p = 0.045); it was also negatively correlated with the DTI-ALPS index (r = - 0.433, p = 0.021). Lower DTI-ALPS index was correlated with worse performance in the Boston Naming Test (β = 0.515, p = 0.008), Trail Making Test A (β = - 0.391, p = 0.048), and Digit Span Test (β = 0.408, p = 0.038). CONCLUSIONS The lower DTI-ALPS index was found in patients with AD dementia, which may suggest impaired glymphatic system function. DTI-ALPS index was correlated with BG-PVS enlargement and worse cognitive performance in certain cognitive domains. CLINICAL RELEVANCE STATEMENT Diffusion tensor image analysis along the perivascular space index may be applied as a useful indicator to evaluate the glymphatic system function. The impaired glymphatic system in patients with Alzheimer's disease (AD) dementia may provide a new perspective for understanding the pathophysiology of AD. KEY POINTS • Patients with Alzheimer's disease dementia displayed a lower diffusion tensor image analysis along the perivascular space (DTI-ALPS) index, possibly indicating glymphatic impairment. • A lower DTI-ALPS index was associated with the enlargement of perivascular space and cognitive impairment. • DTI-ALPS index could be a promising biomarker of the glymphatic system in Alzheimer's disease dementia.
Collapse
Affiliation(s)
- Xue Zhang
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Bingjie Jiao
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, No.38, Zheda Road, Hangzhou, China
| | - Zhongyan Wang
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yingkui Zhang
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, China
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiye Li
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shiping Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Ruiliang Bai
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, No.38, Zheda Road, Hangzhou, China.
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shumen Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Binbin Sui
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, China.
| |
Collapse
|
25
|
Parillo M, Vaccarino F, Di Gennaro G, Kumar S, Van Goethem J, Beomonte Zobel B, Quattrocchi CC, Parizel PM, Mallio CA. Overview of the Current Knowledge and Conventional MRI Characteristics of Peri- and Para-Vascular Spaces. Brain Sci 2024; 14:138. [PMID: 38391713 PMCID: PMC10886993 DOI: 10.3390/brainsci14020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Brain spaces around (perivascular spaces) and alongside (paravascular or Virchow-Robin spaces) vessels have gained significant attention in recent years due to the advancements of in vivo imaging tools and to their crucial role in maintaining brain health, contributing to the anatomic foundation of the glymphatic system. In fact, it is widely accepted that peri- and para-vascular spaces function as waste clearance pathways for the brain for materials such as ß-amyloid by allowing exchange between cerebrospinal fluid and interstitial fluid. Visible brain spaces on magnetic resonance imaging are often a normal finding, but they have also been associated with a wide range of neurological and systemic conditions, suggesting their potential as early indicators of intracranial pressure and neurofluid imbalance. Nonetheless, several aspects of these spaces are still controversial. This article offers an overview of the current knowledge and magnetic resonance imaging characteristics of peri- and para-vascular spaces, which can help in daily clinical practice image description and interpretation. This paper is organized into different sections, including the microscopic anatomy of peri- and para-vascular spaces, their associations with pathological and physiological events, and their differential diagnosis.
Collapse
Affiliation(s)
- Marco Parillo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Federica Vaccarino
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Gianfranco Di Gennaro
- Department of Health Sciences, Chair of Medical Statistics, University of Catanzaro "Magna Græcia", 88100 Catanzaro, Italy
| | - Sumeet Kumar
- Department of Neuroradiology, National Neuroscience Institute, Singapore 308433, Singapore
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Johan Van Goethem
- Department of Radiology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Bruno Beomonte Zobel
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Carlo Cosimo Quattrocchi
- Centre for Medical Sciences-CISMed, University of Trento, Via S. Maria Maddalena 1, 38122 Trento, Italy
| | - Paul M Parizel
- Royal Perth Hospital & University of Western Australia, Perth, WA 6000, Australia
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Carlo Augusto Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Research Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
26
|
Rowsthorn E, Pham W, Nazem-Zadeh MR, Law M, Pase MP, Harding IH. Imaging the neurovascular unit in health and neurodegeneration: a scoping review of interdependencies between MRI measures. Fluids Barriers CNS 2023; 20:97. [PMID: 38129925 PMCID: PMC10734164 DOI: 10.1186/s12987-023-00499-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The neurovascular unit (NVU) is a complex structure that facilitates nutrient delivery and metabolic waste clearance, forms the blood-brain barrier (BBB), and supports fluid homeostasis in the brain. The integrity of NVU subcomponents can be measured in vivo using magnetic resonance imaging (MRI), including quantification of enlarged perivascular spaces (ePVS), BBB permeability, cerebral perfusion and extracellular free water. The breakdown of NVU subparts is individually associated with aging, pathology, and cognition. However, how these subcomponents interact as a system, and how interdependencies are impacted by pathology remains unclear. This systematic scoping review identified 26 studies that investigated the inter-relationships between multiple subcomponents of the NVU in nonclinical and neurodegenerative populations using MRI. A further 112 studies investigated associations between the NVU and white matter hyperintensities (WMH). We identify two putative clusters of NVU interdependencies: a 'vascular' cluster comprising BBB permeability, perfusion and basal ganglia ePVS; and a 'fluid' cluster comprising ePVS, free water and WMH. Emerging evidence suggests that subcomponent coupling within these clusters may be differentially related to aging, neurovascular injury or neurodegenerative pathology.
Collapse
Affiliation(s)
- Ella Rowsthorn
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton, VIC, 3168, Australia
| | - William Pham
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mohammad-Reza Nazem-Zadeh
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Radiology, Alfred Health, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3168, Australia
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton, VIC, 3168, Australia
- Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Monash Biomedical Imaging, Monash University, 762-772 Blackburn Road, Clayton, VIC, 3168, Australia.
| |
Collapse
|
27
|
Inoue Y, Shue F, Bu G, Kanekiyo T. Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer's disease. Mol Neurodegener 2023; 18:46. [PMID: 37434208 PMCID: PMC10334598 DOI: 10.1186/s13024-023-00640-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged as the second most common form of dementia after Alzheimer's disease (AD) accounting for 20% of dementia cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal therapeutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfusion/hypoxia, blood-brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation to define potential diagnostic and therapeutic targets for cSVD.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
28
|
Munis ÖB. Association of Type 2 Diabetes Mellitus With Perivascular Spaces and Cerebral Amyloid Angiopathy in Alzheimer's Disease: Insights From MRI Imaging. Dement Neurocogn Disord 2023; 22:87-99. [PMID: 37545864 PMCID: PMC10400344 DOI: 10.12779/dnd.2023.22.3.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/08/2023] Open
Abstract
Background and Purpose According to the amyloid cascade hypothesis, fibrillary amyloid-beta load in the brain causes Alzheimer's disease (AD) with toxic effects. Recently, perivascular spaces (PVSs), fluid-filled cavities around small penetrating arterioles and venules in the brain, and the glymphatic system relationship with type 2 diabetes mellitus (DM2) and AD has been an important research topic from a physiopathological point of view. There are two types of PVSs that are associated with sporadic atherosclerosis and cerebral amyloid angiopathy. In this study, we evaluated the relationship between the number and localization of enlarged PVSs in AD. Methods A total of 254 patients with AD and 125 healthy controls were included in this study All the patients were evaluated with neurological and cognitive examinations and magnetic resonance imaging (MRI). PVSs on MRI were graded by recording their number and location. The study was a retrospective study. Results In our study, the number of white matter convexity-central semiovale localized PVSs was higher in patients than in the control group. In addition, the number of PVSs in this localization score was higher in patients with DM2. Cerebral PVS counts were higher in patients with AD than in the control group. Conclusions These results suggest the important role of cerebral amyloid angiopathy, one of the vascular risk factors, and the glymphatic system in the pathogenesis of AD. In addition, the results of our study suggest that the evaluation of PVSs levels, especially at the (centrum semiovale), using imaging studies in AD is a potential diagnostic option.
Collapse
|
29
|
Lee W, Jung K, Song H, Lee H, Park HE, Koh Y, Choi S, Park K. Clonal hematopoiesis with DNMT3A mutation is associated with lower white matter hyperintensity volume. CNS Neurosci Ther 2023; 29:1243-1253. [PMID: 36807865 PMCID: PMC10068463 DOI: 10.1111/cns.14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP) increases the risk of cerebrovascular events, while its association with cerebral white matter hyperintensity (WMH) is undemonstrated. We evaluated the effect of CHIP and its major driving mutations on cerebral WMH severity. METHODS From an institutional cohort of a routine health check-up program with a DNA repository database, subjects who were ≥50 years of age, with one or more cardiovascular risk factors but no central nervous system disorder, and performed brain MRI were included. Along with the presence of CHIP and its major driving mutations, clinical and laboratory data were obtained. WMH volume was measured in total, periventricular, and subcortical regions. RESULTS Among the total 964 subjects, 160 subjects were classified as CHIP positive group. CHIP was most frequently associated with DNMT3A mutation (48.8%), followed by TET2 (11.9%) and ASXL1 (8.1%) mutations. Linear regression analysis adjusting for age, sex, and conventional cerebrovascular risk factors suggested that CHIP with DNMT3A mutation was associated with the lower log-transformed total WMH volume, unlike other CHIP mutations. When classified according to variant allele fraction (VAF) value of DNMT3A mutation, higher VAF classes were associated with the lower log-transformed total WMH and the lower log-transformed periventricular WMH volume, but not with the log-transformed subcortical WMH volumes. CONCLUSIONS Clonal hematopoiesis with DNMT3A mutation is quantitatively associated with a lower volume of cerebral WMH, especially in the periventricular region. CHIP with DNMT3A mutation might have a protective role in the endothelial pathomechanism of WMH.
Collapse
Affiliation(s)
- Woo‐Jin Lee
- Department of NeurologySeoul National University Bundang HospitalSeongnam‐siSouth Korea
- Department of NeurologySeoul National University HospitalSeoulSouth Korea
| | - Keun‐Hwa Jung
- Department of NeurologySeoul National University HospitalSeoulSouth Korea
| | - Han Song
- Genome Opinion Inc.SeoulSouth Korea
| | - Heesun Lee
- Division of Cardiology, Department of Internal MedicineSeoul National University Healthcare System Gangnam CenterSeoulSouth Korea
- Department of Internal MedicineSeoul National University College of MedicineSeoulSouth Korea
| | - Hyo Eun Park
- Division of Cardiology, Department of Internal MedicineSeoul National University Healthcare System Gangnam CenterSeoulSouth Korea
- Department of Internal MedicineSeoul National University College of MedicineSeoulSouth Korea
| | - Youngil Koh
- Genome Opinion Inc.SeoulSouth Korea
- Division of Hemato‐oncology, Department of Internal MedicineSeoul National University HospitalSeoulSouth Korea
| | - Su‐Yeon Choi
- Division of Cardiology, Department of Internal MedicineSeoul National University Healthcare System Gangnam CenterSeoulSouth Korea
- Department of Internal MedicineSeoul National University College of MedicineSeoulSouth Korea
| | - Kyung‐Il Park
- Department of NeurologySeoul National University HospitalSeoulSouth Korea
- Department of NeurologySeoul National University Healthcare System Gangnam CenterSeoulSouth Korea
| |
Collapse
|
30
|
Oveisgharan S, Kim N, Agrawal S, Yu L, Leurgans S, Kapasi A, Arfanakis K, Bennett DA, Schneider JA, Buchman AS. Brain and spinal cord arteriolosclerosis and its associations with cerebrovascular disease risk factors in community-dwelling older adults. Acta Neuropathol 2023; 145:219-233. [PMID: 36469116 PMCID: PMC10183107 DOI: 10.1007/s00401-022-02527-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Arteriolosclerosis is common in older brains and related to cognitive and motor impairment. We compared the severity of arteriolosclerosis and its associations with cerebrovascular disease risk factors (CVD-RFs) in multiple locations in the brain and spinal cord. Participants (n = 390) were recruited in the context of a longitudinal community-based clinical-pathological study, the Rush Memory and Aging Project. CVD-RFs were assessed annually for an average of 8.7 (SD = 4.3) years before death. The annual assessments included systolic (SBP) and diastolic (DBP) blood pressure, diabetes mellitus (DM), low- and high-density lipoprotein cholesterol, triglyceride, body mass index, and smoking. Postmortem pathological assessments included assessment of arteriolosclerosis severity using the same rating scale in three brain locations (basal ganglia, frontal, and parietal white matter regions) and four spinal cord levels (cervical, thoracic, lumbar and sacral levels). A single measure was used to summarize the severity of spinal arteriolosclerosis assessments at the four levels due to their high correlations. Average age at death was 91.5 (SD = 6.2) years, and 73% were women. Half showed arteriolosclerosis in frontal white matter and spinal cord followed by parietal white matter (38%) and basal ganglia (27%). The severity of arteriolosclerosis in all three brain locations showed mild-to-moderate correlations. By contrast, spinal arteriolosclerosis was associated with brain arteriolosclerosis only in frontal white matter. Higher DBP was associated with more severe arteriolosclerosis in all three brain locations. DM was associated with more severe arteriolosclerosis only in frontal white matter. Controlling for DBP, higher SBP was inversely associated with arteriolosclerosis in parietal white matter. Blood cholesterol and triglyceride, high body mass index, or smoking were not related to the severity of arteriolosclerosis in any brain region. None of the CVD-RFs were associated with the severity of spinal arteriolosclerosis. These data indicate that severity of arteriolosclerosis and its associations with CVD-RFs may vary in different CNS locations.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Namhee Kim
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sonal Agrawal
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sue Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Alifiya Kapasi
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
31
|
Kuroda T, Ono K, Honma M, Asano M, Mori Y, Futamura A, Yano S, Kanemoto M, Hieda S, Baba Y, Izumizaki M, Murakami H. Cerebral white matter lesions and regional blood flow are associated with reduced cognitive function in early-stage cognitive impairment. Front Aging Neurosci 2023; 15:1126618. [PMID: 36875693 PMCID: PMC9978183 DOI: 10.3389/fnagi.2023.1126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Background Differences in the extent of cerebral white matter lesions (WML) and regional cerebral blood flow (rCBF) in early-stage cognitive impairment (ESCI) contribute to the prognosis of cognitive decline; however, it is unclear precisely how WML and rCBF affect cognitive decline in ESCI. Objective We examined the association between WML, rCBF, and cognitive impairment in the ESCI, using path analysis to clarify how these variables affect each other. Methods Eighty-three patients who consulted our memory clinic regarding memory loss were included in this study based on the Clinical Dementia Rating. Participants underwent the Mini-Mental State Examination (MMSE), brain magnetic resonance imaging (MRI) for voxel-based morphometry analysis, and brain perfusion single-photon emission computed tomography (SPECT) for rCBF evaluation in cortical regions, using 3D stereotactic surface projection (3D-SSP) analysis. Results Path analysis was performed on the MRI voxel-based morphometry and SPECT 3D-SSP data, showing a significant correlation between both and MMSE scores. In the most suitable model (GFI = 0.957), correlations were observed between lateral ventricular (LV-V) and periventricular WML (PvWML-V) volumes [standardized coefficient (SC) = 0.326, p = 0.005], LV-V and rCBF of the anterior cingulate gyrus (ACG-rCBF; SC = 0.395, p < 0.0001), and ACG-rCBF and PvWML-V (SC = 0.231, p = 0.041). Furthermore, a direct relationship between PvWML-V and MMSE scores was identified (SC = -0.238, p = 0.026). Conclusion Significant interrelationships were observed among the LV-V, PvWML-V, and ACG-rCBF that directly affected the MMSE score in the ESCI. The mechanisms behind these interactions and the impact of PvWML-V on cognitive function require further investigation.
Collapse
Affiliation(s)
- Takeshi Kuroda
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Motoyasu Honma
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Miki Asano
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Yukiko Mori
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Akinori Futamura
- Department of Neurology, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Satoshi Yano
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Mizuki Kanemoto
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Sotaro Hieda
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Yasuhiko Baba
- Department of Neurology, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Hidetomo Murakami
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Factors associated with the location of perivascular space enlargement in middle-aged individuals undergoing brain screening in Japan. Clin Neurol Neurosurg 2022; 223:107497. [DOI: 10.1016/j.clineuro.2022.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
|
33
|
Wang S, Zhang F, Huang P, Hong H, Jiaerken Y, Yu X, Zhang R, Zeng Q, Zhang Y, Kikinis R, Rathi Y, Makris N, Lou M, Pasternak O, Zhang M, O'Donnell LJ. Superficial white matter microstructure affects processing speed in cerebral small vessel disease. Hum Brain Mapp 2022; 43:5310-5325. [PMID: 35822593 PMCID: PMC9812245 DOI: 10.1002/hbm.26004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/15/2023] Open
Abstract
White matter hyperintensities (WMH) are a typical feature of cerebral small vessel disease (CSVD), which contributes to about 50% of dementias worldwide. Microstructural alterations in deep white matter (DWM) have been widely examined in CSVD. However, little is known about abnormalities in superficial white matter (SWM) and their relevance for processing speed, the main cognitive deficit in CSVD. In 141 CSVD patients, processing speed was assessed using Trail Making Test Part A. White matter abnormalities were assessed by WMH burden (volume on T2-FLAIR) and diffusion MRI measures. SWM imaging measures had a large contribution to processing speed, despite a relatively low SWM WMH burden. Across all imaging measures, SWM free water (FW) had the strongest association with processing speed, followed by SWM mean diffusivity (MD). SWM FW was the only marker to significantly increase between two subgroups with the lowest WMH burdens. When comparing two subgroups with the highest WMH burdens, the involvement of WMH in the SWM was accompanied by significant differences in processing speed and white matter microstructure. Mediation analysis revealed that SWM FW fully mediated the association between WMH volume and processing speed, while no mediation effect of MD or DWM FW was observed. Overall, results suggest that the SWM has an important contribution to processing speed, while SWM FW is a sensitive imaging marker associated with cognition in CSVD. This study extends the current understanding of CSVD-related dysfunction and suggests that the SWM, as an understudied region, can be a potential target for monitoring pathophysiological processes.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Fan Zhang
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Peiyu Huang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Hui Hong
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Yeerfan Jiaerken
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Xinfeng Yu
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Ruiting Zhang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Qingze Zeng
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Yao Zhang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Ron Kikinis
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nikos Makris
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Morphometric AnalysisMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Min Lou
- Department of Neurologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Ofer Pasternak
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Minming Zhang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | | |
Collapse
|
34
|
Cerebral Superficial Siderosis. Clin Neuroradiol 2022; 33:293-306. [DOI: 10.1007/s00062-022-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022]
Abstract
AbstractSuperficial siderosis (SS) of the central nervous system constitutes linear hemosiderin deposits in the leptomeninges and the superficial layers of the cerebrum and the spinal cord. Infratentorial (i) SS is likely due to recurrent or continuous slight bleeding into the subarachnoid space. It is assumed that spinal dural pathologies often resulting in cerebrospinal fluid (CSF) leakage is the most important etiological group which causes iSS and detailed neuroradiological assessment of the spinal compartment is necessary. Further etiologies are neurosurgical interventions, trauma and arteriovenous malformations. Typical neurological manifestations of this classical type of iSS are slowly progressive sensorineural hearing impairment and cerebellar symptoms, such as ataxia, kinetic tremor, nystagmus and dysarthria. Beside iSS, a different type of SS restricted to the supratentorial compartment can be differentiated, i.e. cortical (c) SS, especially in older people often due to cerebral amyloid angiopathy (CAA). Clinical presentation of cSS includes transient focal neurological episodes or “amyloid spells”. In addition, spontaneous and amyloid beta immunotherapy-associated CAA-related inflammation may cause cSS, which is included in the hemorrhagic subgroup of amyloid-related imaging abnormalities (ARIA). Because a definitive diagnosis requires a brain biopsy, knowledge of neuroimaging features and clinical findings in CAA-related inflammation is essential. This review provides neuroradiological hallmarks of the two groups of SS and give an overview of neurological symptoms and differential diagnostic considerations.
Collapse
|
35
|
Miller KB, Mi KL, Nelson GA, Norman RB, Patel ZS, Huff JL. Ionizing radiation, cerebrovascular disease, and consequent dementia: A review and proposed framework relevant to space radiation exposure. Front Physiol 2022; 13:1008640. [PMID: 36388106 PMCID: PMC9640983 DOI: 10.3389/fphys.2022.1008640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 09/05/2023] Open
Abstract
Space exploration requires the characterization and management or mitigation of a variety of human health risks. Exposure to space radiation is one of the main health concerns because it has the potential to increase the risk of cancer, cardiovascular disease, and both acute and late neurodegeneration. Space radiation-induced decrements to the vascular system may impact the risk for cerebrovascular disease and consequent dementia. These risks may be independent or synergistic with direct damage to central nervous system tissues. The purpose of this work is to review epidemiological and experimental data regarding the impact of low-to-moderate dose ionizing radiation on the central nervous system and the cerebrovascular system. A proposed framework outlines how space radiation-induced effects on the vasculature may increase risk for both cerebrovascular dysfunction and neural and cognitive adverse outcomes. The results of this work suggest that there are multiple processes by which ionizing radiation exposure may impact cerebrovascular function including increases in oxidative stress, neuroinflammation, endothelial cell dysfunction, arterial stiffening, atherosclerosis, and cerebral amyloid angiopathy. Cerebrovascular adverse outcomes may also promote neural and cognitive adverse outcomes. However, there are many gaps in both the human and preclinical evidence base regarding the long-term impact of ionizing radiation exposure on brain health due to heterogeneity in both exposures and outcomes. The unique composition of the space radiation environment makes the translation of the evidence base from terrestrial exposures to space exposures difficult. Additional investigation and understanding of the impact of low-to-moderate doses of ionizing radiation including high (H) atomic number (Z) and energy (E) (HZE) ions on the cerebrovascular system is needed. Furthermore, investigation of how decrements in vascular systems may contribute to development of neurodegenerative diseases in independent or synergistic pathways is important for protecting the long-term health of astronauts.
Collapse
Affiliation(s)
| | | | - Gregory A. Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Ryan B. Norman
- NASA Langley Research Center, Hampton, VA, United States
| | - Zarana S. Patel
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Janice L. Huff
- NASA Langley Research Center, Hampton, VA, United States
| |
Collapse
|
36
|
Jeong SH, Cha J, Park M, Jung JH, Ye BS, Sohn YH, Chung SJ, Lee PH. Association of Enlarged Perivascular Spaces With Amyloid Burden and Cognitive Decline in Alzheimer Disease Continuum. Neurology 2022; 99:e1791-e1802. [PMID: 35985826 DOI: 10.1212/wnl.0000000000200989] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To investigate the effects of enlarged perivascular space (EPVS) on amyloid burden and cognitive function in Alzheimer disease (AD) continuum. METHODS We retrospectively reviewed 208 patients with AD across the cognitive continuum (preclinical, prodromal, and AD dementia) who showed amyloid deposition on 18F-florbetaben PET scans and 82 healthy controls. EPVSs were counted for each patient in the basal ganglia (BG), centrum semiovale (CSO), and hippocampus (HP) on axial T2-weighted images. Patients were then classified according to the number of EPVSs into the EPVS+ (>10 EPVSs) and EPVS- (0-10 EPVSs) groups for the BG and CSO, respectively. In terms of HP-EPVS, equal or more than 7 EPVSs on bilateral hemisphere were regarded as the presence of HP-EPVS. After adjusting for markers of small vessel disease (SVD), multiple linear regression analyses were performed to determine the intergroup differences in global and regional amyloid deposition and cognitive function at the time of diagnosis of AD continuum. A linear mixed model was used to assess the effects of EPVSs on the longitudinal changes in the Mini-Mental State Examination (MMSE) scores. RESULTS Amyloid burden at the time of diagnosis of AD continuum was not associated with the degree of BG-, CSO-, or HP-EPVS. BG-EPVS affected language and frontal/executive function via SVD markers, and HP-EPVS was associated with general cognition via SVD markers. However, CSO-EPVS was not associated with baseline cognition. A higher number of CSO-EPVS was significantly associated with a more rapid decline in MMSE scores (β = -0.58, standard error = 0.23, p = 0.011) independent of the amyloid burden. In terms of BG and HP, there was no difference between the EPVS+ and EPVS- groups in the rate of longitudinal decreases in MMSE scores. DISCUSSION Our findings suggest that BG-, CSO-, and HP-EPVS are not associated with baseline β-amyloid burden or cognitive function independently of SVD at the diagnosis of AD continuum. However, CSO-EPVS appears to be associated with the progression of cognitive decline in an amyloid-independent manner. Further studies are needed to investigate whether CSO-EPVS is a potential therapeutic target in patients with AD continuum.
Collapse
Affiliation(s)
- Seong Ho Jeong
- From the Department of Neurology (S.H.J., M.P., B.S.Y., Y.H.S., S.J.C., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Inje University Sanggye Paik Hospital, Seoul, South Korea; Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (J.H.J.), Busan Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Yonsei Beyond Lab (S.J.C.), Yongin, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Jungho Cha
- From the Department of Neurology (S.H.J., M.P., B.S.Y., Y.H.S., S.J.C., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Inje University Sanggye Paik Hospital, Seoul, South Korea; Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (J.H.J.), Busan Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Yonsei Beyond Lab (S.J.C.), Yongin, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Mincheol Park
- From the Department of Neurology (S.H.J., M.P., B.S.Y., Y.H.S., S.J.C., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Inje University Sanggye Paik Hospital, Seoul, South Korea; Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (J.H.J.), Busan Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Yonsei Beyond Lab (S.J.C.), Yongin, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- From the Department of Neurology (S.H.J., M.P., B.S.Y., Y.H.S., S.J.C., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Inje University Sanggye Paik Hospital, Seoul, South Korea; Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (J.H.J.), Busan Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Yonsei Beyond Lab (S.J.C.), Yongin, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- From the Department of Neurology (S.H.J., M.P., B.S.Y., Y.H.S., S.J.C., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Inje University Sanggye Paik Hospital, Seoul, South Korea; Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (J.H.J.), Busan Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Yonsei Beyond Lab (S.J.C.), Yongin, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- From the Department of Neurology (S.H.J., M.P., B.S.Y., Y.H.S., S.J.C., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Inje University Sanggye Paik Hospital, Seoul, South Korea; Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (J.H.J.), Busan Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Yonsei Beyond Lab (S.J.C.), Yongin, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- From the Department of Neurology (S.H.J., M.P., B.S.Y., Y.H.S., S.J.C., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Inje University Sanggye Paik Hospital, Seoul, South Korea; Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (J.H.J.), Busan Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Yonsei Beyond Lab (S.J.C.), Yongin, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- From the Department of Neurology (S.H.J., M.P., B.S.Y., Y.H.S., S.J.C., P.H.L.), Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology (S.H.J.), Inje University Sanggye Paik Hospital, Seoul, South Korea; Nash Family Center for Advanced Circuit Therapeutics (J.C.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (J.H.J.), Busan Paik Hospital, Inje University College of Medicine, Seoul, South Korea; Department of Neurology (S.J.C.), Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; Yonsei Beyond Lab (S.J.C.), Yongin, South Korea; and Severance Biomedical Science Institute (P.H.L.), Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
37
|
Zou Q, Wang M, Wei X, Li W. Prevalence and Risk Factors for Enlarged Perivascular Spaces in Young Adults from a Neurology Clinic-Based Cohort. Brain Sci 2022; 12:brainsci12091164. [PMID: 36138900 PMCID: PMC9497082 DOI: 10.3390/brainsci12091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: This study aimed to investigate the prevalence and risk factors for enlarged perivascular spaces (EPVS) in young adults from a neurology clinic-based cohort (≤45 years old) via unenhanced brain MRI. (2) Methods: A total of 931 young adults from a neurology clinic-based cohort who underwent unenhanced brain MRI between 1 January 2021 and 30 June 2021 were retrospectively included in this study. The EPVS were rated in the centrum semiovale (CSO-EPVS), basal ganglia (BG-EPVS), and midbrain (MB-EPVS) using a visual rating scale. The degrees of the CSO-EPVS, BG-EPVS, and MB-EPVS were all divided by a cutoff value of 1. Demographic factors, vascular risk factors, and symptoms were analyzed using the chi-square test and logistic regression to determine the risk factors of EPVS. (3) Results: The overall prevalence of EPVS was 99.8% (929/931). The CSO-EPVS, BG-EPVS, and MB-EPVS were predominantly scored as 1 (52.1%, 79.1%, and 58.3%, respectively). Logistic regression analysis identified age and hypertension as factors affecting the degrees of CSO-EPVS and BG-EPVS (p < 0.05). Hypertension (p < 0.001) and diabetes (p = 0.014) were revealed to be factors affecting the degree of BG-EPVS. Furthermore, patients with headache (OR = 1.807; p = 0.001) and dizziness (OR = 1.574; p = 0.025) were associated with MB-EPVS. (4) Conclusions: EPVS were frequently found in young adults and could be related to the symptoms. Age, hypertension, and diabetes were the risk factors for the severity of EPVS in the corresponding brain regions.
Collapse
|
38
|
Barnes A, Ballerini L, Valdés Hernández MDC, Chappell FM, Muñoz Maniega S, Meijboom R, Backhouse EV, Stringer MS, Duarte Coello R, Brown R, Bastin ME, Cox SR, Deary IJ, Wardlaw JM. Topological relationships between perivascular spaces and progression of white matter hyperintensities: A pilot study in a sample of the Lothian Birth Cohort 1936. Front Neurol 2022; 13:889884. [PMID: 36090857 PMCID: PMC9449650 DOI: 10.3389/fneur.2022.889884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Enlarged perivascular spaces (PVS) and white matter hyperintensities (WMH) are features of cerebral small vessel disease which can be seen in brain magnetic resonance imaging (MRI). Given the associations and proposed mechanistic link between PVS and WMH, they are hypothesized to also have topological proximity. However, this and the influence of their spatial proximity on WMH progression are unknown. We analyzed longitudinal MRI data from 29 out of 32 participants (mean age at baseline = 71.9 years) in a longitudinal study of cognitive aging, from three waves of data collection at 3-year intervals, alongside semi-automatic segmentation masks for PVS and WMH, to assess relationships. The majority of deep WMH clusters were found adjacent to or enclosing PVS (waves-1: 77%; 2: 76%; 3: 69%), especially in frontal, parietal, and temporal regions. Of the WMH clusters in the deep white matter that increased between waves, most increased around PVS (waves-1-2: 73%; 2-3: 72%). Formal statistical comparisons of severity of each of these two SVD markers yielded no associations between deep WMH progression and PVS proximity. These findings may suggest some deep WMH clusters may form and grow around PVS, possibly reflecting the consequences of impaired interstitial fluid drainage via PVS. The utility of these relationships as predictors of WMH progression remains unclear.
Collapse
Affiliation(s)
- Abbie Barnes
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucia Ballerini
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria del C. Valdés Hernández
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Francesca M. Chappell
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Susana Muñoz Maniega
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rozanna Meijboom
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ellen V. Backhouse
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roberto Duarte Coello
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rosalind Brown
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E. Bastin
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon R. Cox
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian J. Deary
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Zeng Q, Li K, Luo X, Wang S, Xu X, Jiaerken Y, Liu X, Hong L, Hong H, Li Z, Fu Y, Zhang T, Chen Y, Liu Z, Huang P, Zhang M. The association of enlarged perivascular space with microglia-related inflammation and Alzheimer's pathology in cognitively normal elderly. Neurobiol Dis 2022; 170:105755. [PMID: 35577066 DOI: 10.1016/j.nbd.2022.105755] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Glymphatic dysfunction may contribute to the accumulation of Alzheimer's disease (AD) pathologies. Conversely, AD pathologic change might also cause neuroinflammation and aggravate glymphatic dysfunction, forming a loop that accelerates AD progression. In vivo validations are needed to confirm their relationships. METHODS In this study, we included 144 cognitively normal participants with AD pathological biomarker data (baseline CSF Aβ1-42, T-Tau, P-Tau181; plasma P-Tau181 at baseline and at least one follow-up) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Each subject had completed structural MRI scans. Among them, 117 subjects have available neuroinflammatory biomarker (soluble triggering receptor expressed on myeloid cells 2 (sTREM2), and 123 subjects have completed two times [18F]-florbetapir PET. The enlarged PVS (EPVS) visual rating scores in basal ganglia (BG) and centrum semiovale (CS) were assessed on T1-weighted images to reflect glymphatic dysfunction. Intracranial volume and white matter hyperintensities (WMH) volume were also calculated for further analysis. We performed stepwise linear regression models and mediation analyses to estimate the association between EPVS severity, sTREM2, and AD biomarkers. RESULTS CS-EPVS degree was associated with CSF sTREM2, annual change of plasma P-tau181 and total WMH volume, whereas BG-EPVS severity was associated with age, gender and intracranial volume. The sTREM2 mediated the association between CSF P-tau181 and CS-EPVS. CONCLUSION Impaired glymphatic dysfunction could contribute to the accumulation of pathological tau protein. The association between tauopathy and glymphatic dysfunction was mediated by the microglia inflammatory process. These findings may provide evidence for novel treatment strategies of anti-neuroinflammation therapy in the early stage.
Collapse
Affiliation(s)
- Qingze Zeng
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luwei Hong
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zheyu Li
- Department of Neurology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanv Fu
- Department of Neurology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyi Zhang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirong Liu
- Department of Neurology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
40
|
Mehta NH, Suss RA, Dyke JP, Theise ND, Chiang GC, Strauss S, Saint-Louis L, Li Y, Pahlajani S, Babaria V, Glodzik L, Carare RO, de Leon MJ. Quantifying cerebrospinal fluid dynamics: A review of human neuroimaging contributions to CSF physiology and neurodegenerative disease. Neurobiol Dis 2022; 170:105776. [PMID: 35643187 PMCID: PMC9987579 DOI: 10.1016/j.nbd.2022.105776] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/21/2022] [Indexed: 01/13/2023] Open
Abstract
Cerebrospinal fluid (CSF), predominantly produced in the ventricles and circulating throughout the brain and spinal cord, is a key protective mechanism of the central nervous system (CNS). Physical cushioning, nutrient delivery, metabolic waste, including protein clearance, are key functions of the CSF in humans. CSF volume and flow dynamics regulate intracranial pressure and are fundamental to diagnosing disorders including normal pressure hydrocephalus, intracranial hypotension, CSF leaks, and possibly Alzheimer's disease (AD). The ability of CSF to clear normal and pathological proteins, such as amyloid-beta (Aβ), tau, alpha synuclein and others, implicates it production, circulation, and composition, in many neuropathologies. Several neuroimaging modalities have been developed to probe CSF fluid dynamics and better relate CSF volume and flow to anatomy and clinical conditions. Approaches include 2-photon microscopic techniques, MRI (tracer-based, gadolinium contrast, endogenous phase-contrast), and dynamic positron emission tomography (PET) using existing approved radiotracers. Here, we discuss CSF flow neuroimaging, from animal models to recent clinical-research advances, summarizing current endeavors to quantify and map CSF flow with implications towards pathophysiology, new biomarkers, and treatments of neurological diseases.
Collapse
Affiliation(s)
- Neel H Mehta
- Department of Biology, Cornell University, Ithaca, NY, USA
| | - Richard A Suss
- Division of Neuroradiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan P Dyke
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA
| | - Neil D Theise
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Gloria C Chiang
- Division of Neuroradiology, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Sara Strauss
- Division of Neuroradiology, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Yi Li
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Silky Pahlajani
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Babaria
- Orange County Spine and Sports, Interventional Physiatry, Newport Beach, CA, USA
| | - Lidia Glodzik
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Roxana O Carare
- Department of Medicine, University of Southampton, Southampton, UK
| | - Mony J de Leon
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
41
|
Libecap TJ, Zachariou V, Bauer CE, Wilcock DM, Jicha GA, Raslau FD, Gold BT. Enlarged Perivascular Spaces Are Negatively Associated With Montreal Cognitive Assessment Scores in Older Adults. Front Neurol 2022; 13:888511. [PMID: 35847209 PMCID: PMC9283758 DOI: 10.3389/fneur.2022.888511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Emerging evidence suggests that enlarged perivascular spaces (ePVS) may be a clinically significant neuroimaging marker of global cognitive function related to cerebral small vessel disease (cSVD). We tested this possibility by assessing the relationship between ePVS and both a standardized measure of global cognitive function, the Montreal Cognitive Assessment (MoCA), and an established marker of cSVD, white matter hyperintensity volume (WMH) volume. One hundred and eleven community-dwelling older adults (56-86) underwent neuroimaging and MoCA testing. Quantification of region-specific ePVS burden was performed using a previously validated visual rating method and WMH volumes were computed using the standard ADNI pipeline. Separate linear regression models were run with ePVS as a predictor of MoCA scores and whole brain WMH volume. Results indicated a negative association between MoCA scores and both total ePVS counts (P ≤ 0.001) and centrum semiovale ePVS counts (P ≤ 0.001), after controlling for other relevant cSVD variables. Further, WMH volumes were positively associated with total ePVS (P = 0.010), basal ganglia ePVS (P ≤ 0.001), and centrum semiovale ePVS (P = 0.027). Our results suggest that ePVS burden, particularly in the centrum semiovale, may be a clinically significant neuroimaging marker of global cognitive dysfunction related to cSVD.
Collapse
Affiliation(s)
- Timothy J. Libecap
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Valentinos Zachariou
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Christopher E. Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Donna M. Wilcock
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Gregory A. Jicha
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Flavius D. Raslau
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Brian T. Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, United States
- Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
42
|
Lorenzini L, Ansems LT, Lopes Alves I, Ingala S, Vállez García D, Tomassen J, Sudre C, Salvadó G, Shekari M, Operto G, Brugulat-Serrat A, Sánchez-Benavides G, ten Kate M, Tijms B, Wink AM, Mutsaerts HJMM, den Braber A, Visser PJ, van Berckel BNM, Gispert JD, Barkhof F, Collij LE. Regional associations of white matter hyperintensities and early cortical amyloid pathology. Brain Commun 2022; 4:fcac150. [PMID: 35783557 PMCID: PMC9246276 DOI: 10.1093/braincomms/fcac150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
White matter hyperintensities (WMHs) have a heterogeneous aetiology, associated with both vascular risk factors and amyloidosis due to Alzheimer's disease. While spatial distribution of both amyloid and WM lesions carry important information for the underlying pathogenic mechanisms, the regional relationship between these two pathologies and their joint contribution to early cognitive deterioration remains largely unexplored. We included 662 non-demented participants from three Amyloid Imaging to Prevent Alzheimer's disease (AMYPAD)-affiliated cohorts: EPAD-LCS (N = 176), ALFA+ (N = 310), and EMIF-AD PreclinAD Twin60++ (N = 176). Using PET imaging, cortical amyloid burden was assessed regionally within early accumulating regions (medial orbitofrontal, precuneus, and cuneus) and globally, using the Centiloid method. Regional WMH volume was computed using Bayesian Model Selection. Global associations between WMH, amyloid, and cardiovascular risk scores (Framingham and CAIDE) were assessed using linear models. Partial least square (PLS) regression was used to identify regional associations. Models were adjusted for age, sex, and APOE-e4 status. Individual PLS scores were then related to cognitive performance in 4 domains (attention, memory, executive functioning, and language). While no significant global association was found, the PLS model yielded two components of interest. In the first PLS component, a fronto-parietal WMH pattern was associated with medial orbitofrontal-precuneal amyloid, vascular risk, and age. Component 2 showed a posterior WMH pattern associated with precuneus-cuneus amyloid, less related to age or vascular risk. Component 1 was associated with lower performance in all cognitive domains, while component 2 only with worse memory. In a large pre-dementia population, we observed two distinct patterns of regional associations between WMH and amyloid burden, and demonstrated their joint influence on cognitive processes. These two components could reflect the existence of vascular-dependent and -independent manifestations of WMH-amyloid regional association that might be related to distinct primary pathophysiology.
Collapse
Affiliation(s)
- Luigi Lorenzini
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Loes T Ansems
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Isadora Lopes Alves
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Silvia Ingala
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - David Vállez García
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jori Tomassen
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Carole Sudre
- Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK
- MRC Unit for Lifelong Health and Ageing - University CollegeLondon, UK
- School of Biomedical Engineering, King’s College LondonUK
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Gregory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Atlantic Fellow for Equity in Brain Health at the University of California San Francisco, SanFrancisco, California, USA
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Mara ten Kate
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Betty Tijms
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alle Meije Wink
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Henk J M M Mutsaerts
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Anouk den Braber
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department. of Biological Psychology, Vrije Universiteit Amsterdam, Neuroscience Amsterdam, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Bart N M van Berckel
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales Y Nanomedicina, Madrid, Spain
| | - Frederik Barkhof
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Lyduine E Collij
- Dept. of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Scheel N, Tarumi T, Tomoto T, Cullum CM, Zhang R, Zhu DC. Resting-state functional MRI signal fluctuation amplitudes are correlated with brain amyloid- β deposition in patients with mild cognitive impairment. J Cereb Blood Flow Metab 2022; 42:876-890. [PMID: 34861133 PMCID: PMC9254039 DOI: 10.1177/0271678x211064846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mounting evidence suggests that amyloid-β (Aβ) and vascular etiologies are intertwined in the pathogenesis of Alzheimer's disease (AD). Blood-oxygen-level-dependent (BOLD) signals, measured by resting-state functional MRI (rs-fMRI), are associated with neuronal activity and cerebrovascular hemodynamics. Nevertheless, it is unclear if BOLD fluctuations are associated with Aβ deposition in individuals at high risk of AD. Thirty-three patients with amnestic mild cognitive impairment underwent rs-fMRI and AV45 PET. The AV45 standardized uptake value ratio (AV45-SUVR) was calculated using cerebral white matter as reference, to assess Aβ deposition. The whole-brain normalized amplitudes of low-frequency fluctuations (sALFF) of local BOLD signals were calculated in the frequency band of 0.01-0.08 Hz. Stepwise increasing physiological/vascular signal regressions on the rs-fMRI data examined whether sALFF-AV45 correlations were driven by vascular hemodynamics, neuronal activities, or both. We found that sALFF and AV45-SUVR were negatively correlated in regions of default-mode and visual networks (precuneus, angular, lingual and fusiform gyri). Regions with higher sALFF had less Aβ accumulation. Correlated cluster sizes in MNI space (r ≈ -0.47) were reduced from 3018 mm3 to 1072 mm3 with stronger cardiovascular regression. These preliminary findings imply that local brain blood fluctuations due to vascular hemodynamics or neuronal activity can affect Aβ homeostasis.
Collapse
Affiliation(s)
- Norman Scheel
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI, USA
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.,Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C Munro Cullum
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David C Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
44
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
45
|
Wang XX, Cao QC, Teng JF, Wang RF, Yang ZT, Wang MG, Cao ZH. MRI-visible enlarged perivascular spaces: imaging marker to predict cognitive impairment in older chronic insomnia patients. Eur Radiol 2022; 32:5446-5457. [PMID: 35286409 DOI: 10.1007/s00330-022-08649-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Perivascular spaces (PVS), components of the glymphatic system in the brain, have been known to be important conduits for clearing metabolic waste, and this process mainly increases during sleep. Sleep disruption might result in PVS dysfunction and cognitive impairment. In this study, we aim to explore whether MRI-visible enlarged perivascular spaces (EPVS) could be imaging markers to predict cognitive impairment in chronic insomnia patients. METHOD We obtained data from 156 patients with chronic insomnia and 79 age-matched healthy individuals. Using T2-weighted MRI images, visible EPVS in various brain regions were measured and analyzed. The associations between EPVS numbers and cerebrospinal fluid (CSF) β-amyloid 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) level in chronic insomnia patients were evaluated. RESULT Our results showed that MRI-visible EPVS in the frontal cortex, centrum semiovale, basal ganglia, and hippocampus of chronic insomnia patients with impaired cognition (ICG) significantly increased than that in normal cognition (NCG) patients. The increased MRI-visible EPVS in the frontal cortex, centrum semiovale, and basal ganglia were also associated with the increased CSF Aβ42, t-tau, and p-tau level in ICG patients. MRI-visible EPVS in the basal ganglia and centrum semiovale had high sensitivity and specificity in distinguishing ICG chronic insomnia patients from those with NCG. CONCLUSION Our study indicated that MRI-visible EPVS in the basal ganglia and centrum semiovale might be valuable imaging markers to predict cognitive impairment in chronic insomnia patients. It will be meaningful to discern those cognitive decline patients in preclinical stage and take some measures to prevent disease progression. KEY POINTS • Increased MRI-visible EPVS were associated with the increased CSF Aβ42, t-tau, and p-tau level in older chronic insomnia patients with impaired cognition.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Qin-Chen Cao
- Department of Radiation Therapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jun-Fang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Rui-Fang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, 450052, Henan, China
| | - Zi-Tao Yang
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Meng-Ge Wang
- Department of Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zheng-Hao Cao
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
46
|
van Veluw SJ, Arfanakis K, Schneider JA. Neuropathology of Vascular Brain Health: Insights From Ex Vivo Magnetic Resonance Imaging-Histopathology Studies in Cerebral Small Vessel Disease. Stroke 2022; 53:404-415. [PMID: 35000425 PMCID: PMC8830602 DOI: 10.1161/strokeaha.121.032608] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sporadic cerebral small vessel disease (SVD) is a major contributor to vascular cognitive impairment and dementia in the aging human brain. On neuropathology, sporadic SVD is characterized by abnormalities to the small vessels of the brain predominantly in the form of cerebral amyloid angiopathy and arteriolosclerosis. These pathologies frequently coexist with Alzheimer disease changes, such as plaques and tangles, in a single brain. Conversely, during life, magnetic resonance imaging (MRI) only captures the larger manifestations of SVD in the form of parenchymal brain abnormalities. There appears to be a major knowledge gap regarding the underlying neuropathology of individual MRI-detectable SVD abnormalities. Ex vivo MRI in postmortem human brain tissue is a powerful tool to bridge this gap. This review summarizes current insights into the histopathologic correlations of MRI manifestations of SVD, their underlying cause, presumed pathophysiology, and associated secondary tissue injury. Moreover, we discuss the advantages and limitations of ex vivo MRI-guided histopathologic investigations and make recommendations for future studies.
Collapse
Affiliation(s)
- Susanne J. van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA,Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA,Departments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago IL, USA
| |
Collapse
|
47
|
Zellner A, Müller SA, Lindner B, Beaufort N, Rozemuller AJM, Arzberger T, Gassen NC, Lichtenthaler SF, Kuster B, Haffner C, Dichgans M. Proteomic profiling in cerebral amyloid angiopathy reveals an overlap with CADASIL highlighting accumulation of HTRA1 and its substrates. Acta Neuropathol Commun 2022; 10:6. [PMID: 35074002 PMCID: PMC8785498 DOI: 10.1186/s40478-021-01303-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an age-related condition and a major cause of intracerebral hemorrhage and cognitive decline that shows close links with Alzheimer's disease (AD). CAA is characterized by the aggregation of amyloid-β (Aβ) peptides and formation of Aβ deposits in the brain vasculature resulting in a disruption of the angioarchitecture. Capillaries are a critical site of Aβ pathology in CAA type 1 and become dysfunctional during disease progression. Here, applying an advanced protocol for the isolation of parenchymal microvessels from post-mortem brain tissue combined with liquid chromatography tandem mass spectrometry (LC-MS/MS), we determined the proteomes of CAA type 1 cases (n = 12) including a patient with hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D), and of AD cases without microvascular amyloid pathology (n = 13) in comparison to neurologically healthy controls (n = 12). ELISA measurements revealed microvascular Aβ1-40 levels to be exclusively enriched in CAA samples (mean: > 3000-fold compared to controls). The proteomic profile of CAA type 1 was characterized by massive enrichment of multiple predominantly secreted proteins and showed significant overlap with the recently reported brain microvascular proteome of patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebral small vessel disease (SVD) characterized by the aggregation of the Notch3 extracellular domain. We found this overlap to be largely attributable to the accumulation of high-temperature requirement protein A1 (HTRA1), a serine protease with an established role in the brain vasculature, and several of its substrates. Notably, this signature was not present in AD cases. We further show that HTRA1 co-localizes with Aβ deposits in brain capillaries from CAA type 1 patients indicating a pathologic recruitment process. Together, these findings suggest a central role of HTRA1-dependent protein homeostasis in the CAA microvasculature and a molecular connection between multiple types of brain microvascular disease.
Collapse
Affiliation(s)
- Andreas Zellner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Barbara Lindner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nils C Gassen
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Christof Haffner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
48
|
Jung KH, Park KI, Lee WJ, Son H, Chu K, Lee SK. Association of Plasma Oligomerized Amyloid-β and Cerebral White Matter Lesions in a Health Screening Population. J Alzheimers Dis 2022; 85:1835-1844. [PMID: 34974433 DOI: 10.3233/jad-215399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cerebral white matter lesions (WML) are related to a higher risk of vascular and Alzheimer's dementia. Moreover, oligomerized amyloid-β (OAβ) can be measured from blood for dementia screening. OBJECTIVE We aimed to investigate the relationship of plasma OAβ levels with clinical and radiological variables in a health screening population. METHODS WML, other volumetric parameters of magnetic resonance images, cognitive assessment, and plasma OAβ level were evaluated. RESULTS Ninety-two participants were analyzed. The majority of participants' clinical dementia rating was 0 or 0.5 (96.7%). White matter hyperintensities (WMH) increased with age, but OAβ levels did not (r2 = 0.19, p < 0.001, r2 = 0.03, p = 0.10, respectively). No volumetric data, including cortical thickness/hippocampal volume, showed any significant correlation with OAβ. Log-WMH volume was positively correlated with OAβ (r = 0.24, p = 0.02), and this association was significant in the periventricular area. White matter signal abnormalities from 3D-T1 images were also correlated with the OAβ in the periventricular area (p = 0.039). Multivariate linear regression showed that log-WMH values were independently associated with OAβ (B = 0.879 (95% confidence interval 0.098 -1.660, p = 0.028)). Higher tertiles of WMH showed higher OAβ levels than lower tertiles showed (p = 0.044). Using a cutoff of 0.78 ng/mL, the high OAβ group had a larger WMH volume, especially in the periventricular area, than the low OAβ group (p = 0.036). CONCLUSION Both WML and plasma OAβ levels can be early markers for neurodegeneration in the healthcare population. The lesions, especially in the periventricular area, might be related to amyloid pathogenesis, which strengthens the importance of WML in the predementia stage.
Collapse
Affiliation(s)
- Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Healthcare System Gangnam Center, Seoul, South Korea.,Department of Neurology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Woo-Jin Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Hyoshin Son
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Department of Neurology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
49
|
Tudor A, Vasile AI, Trifu SC, Cristea MB. Morphological classification and changes in dementia (Review). Exp Ther Med 2022; 23:33. [PMID: 34824641 PMCID: PMC8611489 DOI: 10.3892/etm.2021.10955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 11/06/2022] Open
Abstract
The progressive functional decline that involves both cognitive and neuropsychiatric symptoms characteristic to dementia is one of the leading research topics. The risk for dementia is an intertwined mix between aging, genetic risk factors, and environmental influences. APOEε4, which is one of the apolipoprotein E (APOE) alleles, is the major genetic risk factor for late-onset of the most common form of dementia, Alzheimer's. Advances in machine learning have led to the development of artificial intelligence (AI) algorithms to help diagnose dementia by magnetic resonance imaging (MRI) in order to detect it in the preclinical stage. The basis of the determinations starts from the morphometry of cerebral atrophies. The present review focused on MRI techniques which are a leading tool in identifying cortical atrophy, white matter dysfunctionalities, cerebral vessel quality (as a factor for cognitive impairment) and metabolic asymmetries. In addition, a brief overview of Alzheimer's disease was presented and recent neuroimaging in the field of dementia with an emphasis on structural MR imaging and more powerful methods such as diffusion tensor imaging, quantitative susceptibility mapping, and magnetic transfer imaging were explored in order to propose a simple systematic approach for the diagnosis and treatment of dementia.
Collapse
Affiliation(s)
- Alexandra Tudor
- Department of Psychiatry, ‘Prof. Dr. Alex. Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Antonia Ioana Vasile
- Department of General Medicine, Medical Military Institute, 010919 Bucharest, Romania
| | - Simona Corina Trifu
- Department of Clinical Neurosciences, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihai Bogdan Cristea
- Department of Morphological Sciences, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
50
|
Turkin AM, Afandiev RM, Melnikova-Pitskhelauri TV, Fadeeva LM, Solozhentseva KD, Pogosbekyan EL, Oshorov AV, Pronin IN. [Periventricular changes following hydrocephalus: quantitative MR-based assessment of tissue characteristics]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:41-49. [PMID: 35942836 DOI: 10.17116/neiro20228604141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To study tissue characteristics of periventricular white matter in patients with open hydrocephalus using DWI MRI and their correlations with CSF flow parameters. MATERIAL AND METHODS MRI was performed in 55 patients (35 women and 20 men) with open normal pressure hydrocephalus, as well as 16 patients with malignant occlusive hydrocephalus and interstitial edema (control group). We determined the correlations between severity of hydrocephalus, periventricular lesions and CSF flow parameters considering MR data. Dimensions of ventricular system were assessed using the Evans' index, periventricular changes - using visual four-level scale with calculation of apparent diffusion coefficient (ADC) and fractional anisotropy coefficient (FA). RESULTS Among patients with open hydrocephalus, ACD range for periventricular white matter was 1.57±0.15·10-3 mm2/s in subgroup of patients without periventricular changes (n=29) and 1.62±0.11×10-3 mm2/s in patients with periventricular changes (n=26). In the control group, mean ADC was 1.76±0.18·10-3 mm2/s (p<0.05). In patients with open hydrocephalus, FA coefficient in the areas of periventricular changes was 0.70-0.80, in case of occlusive hydrocephalus - 0.68-0.82. There was a significant relationship between the Evans' index and CSF pulsation velocity amplitude, Evans' index and stroke volume, Evans' index and cerebral aqueduct cross-sectional area in patients with open hydrocephalus. Periventricular changes were pronounced in patients with open hydrocephalus and Evans' index > 0.4 (p<0.05). CONCLUSION According to MR data, periventricular changes in patients with open hydrocephalus differ from true periventricular interstitial edema following occlusive hydrocephalus. Severity of periventricular changes in patients with open hydrocephalus depends on patient age and width of the ventricles, but does not correlate with CSF flow parameters. In our opinion, periventricular changes are associated with dysfunction of glymphatic system. Further research is required to study the functioning of glymphatic system and related processes.
Collapse
Affiliation(s)
- A M Turkin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | - L M Fadeeva
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | - A V Oshorov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|