1
|
Martinez‐Horta S, Perez‐Perez J, Perez‐Gonzalez R, Sampedro F, Horta‐Barba A, Campolongo A, Rivas‐Asensio E, Puig‐Davi A, Pagonabarraga J, Kulisevsky J. Cognitive phenotype and neurodegeneration associated with Tau in Huntington's disease. Ann Clin Transl Neurol 2024; 11:1160-1171. [PMID: 38544341 PMCID: PMC11093246 DOI: 10.1002/acn3.52031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 05/15/2024] Open
Abstract
OBJECTIVE The clinical phenotype of Huntington's disease (HD) can be very heterogeneous between patients, even when they share equivalent CAG repeat length, age, or disease burden. This heterogeneity is especially evident in terms of the cognitive profile and related brain changes. To shed light on the mechanisms participating in this heterogeneity, the present study delves into the association between Tau pathology and more severe cognitive phenotypes and brain damage in HD. METHODS We used a comprehensive neuropsychological examination to characterize the cognitive phenotype of a sample of 30 participants with early-to-middle HD for which we also obtained 3 T structural magnetic resonance image (MRI) and cerebrospinal fluid (CSF). We quantified CSF levels of neurofilament light chain (NfL), total Tau (tTau), and phosphorylated Tau-231 (pTau-231). Thanks to the cognitive characterization carried out, we subsequently explored the relationship between different levels of biomarkers, the cognitive phenotype, and brain integrity. RESULTS The results confirmed that more severe forms of cognitive deterioration in HD extend beyond executive dysfunction and affect processes with clear posterior-cortical dependence. This phenotype was in turn associated with higher CSF levels of tTau and pTau-231 and to a more pronounced pattern of posterior-cortical atrophy in specific brain regions closely linked to the cognitive processes affected by Tau. INTERPRETATION Our findings reinforce the association between Tau pathology, cognition, and neurodegeneration in HD, emphasizing the need to explore the role of Tau in the cognitive heterogeneity of the disease.
Collapse
Affiliation(s)
- Saul Martinez‐Horta
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Jesús Perez‐Perez
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Rocío Perez‐Gonzalez
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) and Instituto de Neurociencias UMH‐CSICAlicanteSpain
| | - Frederic Sampedro
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Neuroradiology unit, Radiology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Andrea Horta‐Barba
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- European Huntington's Disease Network (EHDN)
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
| | - Elisa Rivas‐Asensio
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Arnau Puig‐Davi
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| |
Collapse
|
2
|
Taghian T, Gallagher J, Batcho E, Pullan C, Kuchel T, Denney T, Perumal R, Moore S, Muirhead R, Herde P, Johns D, Christou C, Taylor A, Passler T, Pulaparthi S, Hall E, Chandra S, O’Neill CA, Gray-Edwards H. Brain Alterations in Aged OVT73 Sheep Model of Huntington's Disease: An MRI Based Approach. J Huntingtons Dis 2022; 11:391-406. [PMID: 36189602 PMCID: PMC9837686 DOI: 10.3233/jhd-220526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a fatal neurodegenerative autosomal dominant disorder with prevalence of 1 : 20000 that has no effective treatment to date. Translatability of candidate therapeutics could be enhanced by additional testing in large animal models because of similarities in brain anatomy, size, and immunophysiology. These features enable realistic pre-clinical studies of biodistribution, efficacy, and toxicity. OBJECTIVE AND METHODS Here we non-invasively characterized alterations in brain white matter microstructure, neurochemistry, neurological status, and mutant Huntingtin protein (mHTT) levels in cerebrospinal fluid (CSF) of aged OVT73 HD sheep. RESULTS Similar to HD patients, CSF mHTT differentiates HD from normal sheep. Our results are indicative of a decline in neurological status, and alterations in brain white matter diffusion and spectroscopy metric that are more severe in aged female HD sheep. Longitudinal analysis of aged female HD sheep suggests that the decline is detectable over the course of a year. In line with reports of HD human studies, white matter alterations in corpus callosum correlates with a decline in gait of HD sheep. Moreover, alterations in the occipital cortex white matter correlates with a decline in clinical rating score. In addition, the marker of energy metabolism in striatum of aged HD sheep, shows a correlation with decline of clinical rating score and eye coordination. CONCLUSION This data suggests that OVT73 HD sheep can serve as a pre-manifest large animal model of HD providing a platform for pre-clinical testing of HD therapeutics and non-invasive tracking of the efficacy of the therapy.
Collapse
Affiliation(s)
- Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA,
Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jillian Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin Batcho
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Caitlin Pullan
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Tim Kuchel
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Thomas Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Raj Perumal
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Shamika Moore
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Robb Muirhead
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Paul Herde
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Daniel Johns
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Chris Christou
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Amanda Taylor
- Department of Clinical Sciences, Auburn University, Auburn, AL, USA
| | - Thomas Passler
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Sanjana Pulaparthi
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin Hall
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sundeep Chandra
- Sana Biotechnology, South San Francisco, CA, USA,Bio Marin Pharmaceutical Inc., San Rafael, CA, USA
| | | | - Heather Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA,
Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA,Correspondence to: Heather L. Gray-Edwards, DVM, PhD, University of Massachusetts Medical School, Department of Radiology and Horae Gene Therapy Center, 368 Plantation Street, ASC6-2055, Worcester, MA 01605, USA. Tel.: +1 508 856 4051; Fax: +1 508 856 1552; E-mail:
| |
Collapse
|
3
|
Hickman RA, Faust PL, Marder K, Yamamoto A, Vonsattel JP. The distribution and density of Huntingtin inclusions across the Huntington disease neocortex: regional correlations with Huntingtin repeat expansion independent of pathologic grade. Acta Neuropathol Commun 2022; 10:55. [PMID: 35440014 PMCID: PMC9020040 DOI: 10.1186/s40478-022-01364-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Huntington disease is characterized by progressive neurodegeneration, especially of the striatum, and the presence of polyglutamine huntingtin (HTT) inclusions. Although HTT inclusions are most abundant in the neocortex, their neocortical distribution and density in relation to the extent of CAG repeat expansion in the HTT gene and striatal pathologic grade have yet to be formally established. We immunohistochemically studied 65 brains with a pathologic diagnosis of Huntington disease to investigate the cortical distributions and densities of HTT inclusions within the calcarine (BA17), precuneus (BA7), motor (BA4) and prefrontal (BA9) cortices; in 39 of these brains, a p62 immunostain was used for comparison. HTT inclusions predominate in the infragranular cortical layers (layers V-VI) and layer III, however, the densities of HTT inclusions across the human cerebral cortex are not uniform but are instead regionally contingent. The density of HTT and p62 inclusions (intranuclear and extranuclear) in layers V-VI increases caudally to rostrally (BA17 < BA7 < BA4 < BA9) with the median burden of HTT inclusions being 38-fold greater in the prefrontal cortex (BA9) than in the calcarine cortex (BA17). Conversely, intranuclear HTT inclusions prevail in the calcarine cortex irrespective of HTT CAG length. Neocortical HTT inclusion density correlates with CAG repeat expansion, but not with the neuropathologic grade of striatal degeneration (Vonsattel grade) or with the duration of clinical disease since motor onset. Extrapolation of these findings suggest that HTT inclusions are at a regionally-contingent, CAG-dependent, density during the advanced stages of HD. The distribution and density of HTT inclusions in HD therefore does not provide a measure of pathologic disease stage but rather infers the degree of pathogenic HTT expansion.
Collapse
Affiliation(s)
- Richard A. Hickman
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Phyllis L. Faust
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA
| | - Karen Marder
- grid.21729.3f0000000419368729Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Ai Yamamoto
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA ,grid.21729.3f0000000419368729Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Jean-Paul Vonsattel
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA ,grid.239585.00000 0001 2285 2675Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, 710 West 168th Street, New York, NY 10032 USA
| |
Collapse
|
4
|
Mouro Pinto R, Arning L, Giordano JV, Razghandi P, Andrew MA, Gillis T, Correia K, Mysore JS, Grote Urtubey DM, Parwez CR, von Hein SM, Clark HB, Nguyen HP, Förster E, Beller A, Jayadaev S, Keene CD, Bird TD, Lucente D, Vonsattel JP, Orr H, Saft C, Petrasch-Parwez E, Wheeler VC. Patterns of CAG repeat instability in the central nervous system and periphery in Huntington's disease and in spinocerebellar ataxia type 1. Hum Mol Genet 2021; 29:2551-2567. [PMID: 32761094 PMCID: PMC7471505 DOI: 10.1093/hmg/ddaa139] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.
Collapse
Affiliation(s)
- Ricardo Mouro Pinto
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
| | - James V Giordano
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pedram Razghandi
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marissa A Andrew
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kevin Correia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jayalakshmi S Mysore
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Constanze R Parwez
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Sarah M von Hein
- Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Allison Beller
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Suman Jayadaev
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA.,Department of Medicine, University of Washington, Seattle, Washington 98195, USA.,Geriatrics Research Education and Clinical Center, VA Puget Sound Medical Center, Seattle, WA 98108, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jean-Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Harry Orr
- Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Carsten Saft
- Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
| | - Elisabeth Petrasch-Parwez
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Martinez-Horta S, Sampedro F, Horta-Barba A, Perez-Perez J, Pagonabarraga J, Gomez-Anson B, Kulisevsky J. Structural brain correlates of dementia in Huntington's disease. NEUROIMAGE-CLINICAL 2020; 28:102415. [PMID: 32979842 PMCID: PMC7519361 DOI: 10.1016/j.nicl.2020.102415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Dementia may occur in the early stages of HD and with independence of disease burden. More severe posterior-cortical atrophy is associated with dementia in HD. Neuropsychological alterations of dementia in HD extends beyond executive dysfunction. CAG-independent neuropathological mechanisms may contribute to dementia in HD.
Background Huntington’s disease (HD) is a fatal genetic neurodegenerative disorder with no effective treatment currently available. Progressive basal ganglia and whole-brain atrophy and concurrent cognitive deterioration are prototypical aspects of HD. However, the specific patterns of brain atrophy underlying cognitive impairment of different severity in HD are poorly understood. The aim of this study was to investigate the specific structural brain correlates of major cognitive deficits in HD and to explore its association with neuropsychological indicators. Participants Thirty-five symptomatic early-to-mild HD patients and 15 healthy controls (HC) with available T1-MRI imaging were included in this study. Methods In this cross-sectional study, HD patients were classified as patients with (HD-Dem) and without (HD-ND) major cognitive impairment in the range of dementia. This classification was based on previously validated PD-CRS cutoff scores for HD. Differences in brain atrophy across groups were studied by means of grey-matter volume voxel-based morphometry (GMV-VBM) and cortical thickness (Cth). Voxelwise and vertexwise general linear models were used to assess the group comparisons, controlling for the effects of age, sex, education, CAG repeat length and severity of motor symptoms. Clusters surviving p < 0.05 and family-wise error (FWE) correction were considered statistically significant. In order to characterize the impact on cognitive performance of the observed brain differences across groups, GMV and Cth values in the set of significant regions were computed and correlated with specific neuropsychological tests. Results All groups had similar sociodemographic profiles, and the HD groups did not significantly differ in terms of CAG repeat length. Compared to HC, both HD groups exhibited significant atrophy in multiple subcortical and parietal brain regions. However, compared to HC and HD-ND groups, HD-Dem patients showed a more prominent pattern of reduced GMV and cortical thinning. Importantly, this thinning was restricted to regions of the parietal-temporal and occipital cortices. Furthermore, these brain alterations were further associated with poorer cognitive performance in tasks assessing frontal-executive and attention domains as well as memory, language and constructional abilities. Conclusions Major cognitive impairment in the range of dementia in HD is associated with brain and cognitive alterations exceeding the prototypical frontal-executive deficits commonly recognized in HD. The observed posterior-cortical damage identified by MRI and its association with memory, language, and visuoconstructive dysfunction suggest a strong involvement of extra-striatal atrophy in the onset of severe cognitive dysfunction in HD patients. Critically, major cognitive impairment in this sample was not associated with CAG repeat length, age or education. This finding could support a possible involvement of additional neuropathological mechanisms aggravating cognitive deterioration in HD.
Collapse
Affiliation(s)
- Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Autonomous University of Barcelona, Department of Medicine, Spain; European Huntington's Disease Network (EHDN), Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; European Huntington's Disease Network (EHDN), Spain
| | - Jesús Perez-Perez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Autonomous University of Barcelona, Department of Medicine, Spain; European Huntington's Disease Network (EHDN), Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Autonomous University of Barcelona, Department of Medicine, Spain; European Huntington's Disease Network (EHDN), Spain
| | - Beatriz Gomez-Anson
- Neuroradiology, Radiology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Autonomous University of Barcelona, Department of Medicine, Spain; European Huntington's Disease Network (EHDN), Spain.
| |
Collapse
|
6
|
McColgan P, Joubert J, Tabrizi SJ, Rees G. The human motor cortex microcircuit: insights for neurodegenerative disease. Nat Rev Neurosci 2020; 21:401-415. [PMID: 32555340 DOI: 10.1038/s41583-020-0315-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
The human motor cortex comprises a microcircuit of five interconnected layers with different cell types. In this Review, we use a layer-specific and cell-specific approach to integrate physiological accounts of this motor cortex microcircuit with the pathophysiology of neurodegenerative diseases affecting motor functions. In doing so we can begin to link motor microcircuit pathology to specific disease stages and clinical phenotypes. Based on microcircuit physiology, we can make future predictions of axonal loss and microcircuit dysfunction. With recent advances in high-resolution neuroimaging we can then test these predictions in humans in vivo, providing mechanistic insights into neurodegenerative disease.
Collapse
Affiliation(s)
- Peter McColgan
- Huntington's Disease Research Centre, UCL Institute of Neurology, University College London, London, UK.
| | - Julie Joubert
- Huntington's Disease Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Research Centre, UCL Institute of Neurology, University College London, London, UK.,Dementia Research Institute at UCL, London, UK
| | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, UK.,UCL Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
7
|
Caton M, Ochoa ELM, Barrantes FJ. The role of nicotinic cholinergic neurotransmission in delusional thinking. NPJ SCHIZOPHRENIA 2020; 6:16. [PMID: 32532978 PMCID: PMC7293341 DOI: 10.1038/s41537-020-0105-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Delusions are a difficult-to-treat and intellectually fascinating aspect of many psychiatric illnesses. Although scientific progress on this complex topic has been challenging, some recent advances focus on dysfunction in neural circuits, specifically in those involving dopaminergic and glutamatergic neurotransmission. Here we review the role of cholinergic neurotransmission in delusions, with a focus on nicotinic receptors, which are known to play a part in some illnesses where these symptoms appear, including delirium, schizophrenia spectrum disorders, bipolar disorder, Parkinson, Huntington, and Alzheimer diseases. Beginning with what we know about the emergence of delusions in these illnesses, we advance a hypothesis of cholinergic disturbance in the dorsal striatum where nicotinic receptors are operative. Striosomes are proposed to play a central role in the formation of delusions. This hypothesis is consistent with our current knowledge about the mechanism of action of cholinergic drugs and with our abstract models of basic cognitive mechanisms at the molecular and circuit levels. We conclude by pointing out the need for further research both at the clinical and translational levels.
Collapse
Affiliation(s)
- Michael Caton
- The Permanente Medical Group, Kaiser Santa Rosa Department of Psychiatry, 2235 Mercury Way, Santa Rosa, CA, 95047, USA
- Heritage Oaks Hospital, 4250 Auburn Boulevard, Sacramento, CA, 95841, USA
| | - Enrique L M Ochoa
- Heritage Oaks Hospital, 4250 Auburn Boulevard, Sacramento, CA, 95841, USA
- Volunteer Clinical Faculty, Department of Psychiatry and Behavioral Sciences, University of California at Davis, 2230 Stockton Boulevard, Sacramento, CA, 95817, USA
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
9
|
Mangin JF, Rivière D, Duchesnay E, Cointepas Y, Gaura V, Verny C, Damier P, Krystkowiak P, Bachoud-Lévi AC, Hantraye P, Remy P, Douaud G. Neocortical morphometry in Huntington's disease: Indication of the coexistence of abnormal neurodevelopmental and neurodegenerative processes. NEUROIMAGE-CLINICAL 2020; 26:102211. [PMID: 32113174 PMCID: PMC7044794 DOI: 10.1016/j.nicl.2020.102211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
We found shallower central, intraparietal and left intermediate frontal sulci in HD. Shallow calcarine fissure is further evidence of primary cortical degeneration in HD. Healthy subjects show strong asymmetry in length of posterior Sylvian fissure (pSF). Absence of pSF asymmetry in HD indicates genetic interplay with neurodevelopment.
Huntington's disease (HD) is an inherited, autosomal dominant disorder that is characteristically thought of as a degenerative disorder. Despite cellular and molecular grounds suggesting HD could also impact normal development, there has been scarce systems-level data obtained from in vivo human studies supporting this hypothesis. Sulcus-specific morphometry analysis may help disentangle the contribution of coexisting neurodegenerative and neurodevelopmental processes, but such an approach has never been used in HD. Here, we investigated cortical sulcal depth, related to degenerative process, as well as cortical sulcal length, related to developmental process, in early-stage HD and age-matched healthy controls. This morphometric analysis revealed significant differences in the HD participants compared with the healthy controls bilaterally in the central and intra-parietal sulcus, but also in the left intermediate frontal sulcus and calcarine fissure. As the primary visual cortex is not connected to the striatum, the latter result adds to the increasing in vivo evidence for primary cortical degeneration in HD. Those sulcal measures that differed between HD and healthy populations were mainly atrophy-related, showing shallower sulci in HD. Conversely, the sulcal morphometry also revealed a crucial difference in the imprint of the Sylvian fissure that could not be related to loss of grey matter volume: an absence of asymmetry in the length of this fissure in HD. Strong asymmetry in that cortical region is typically observed in healthy development. As the formation of the Sylvian fissure appears early in utero, and marked asymmetry is specifically found in this area of the neocortex in newborns, this novel finding likely indicates the foetal timing of a disease-specific, genetic interplay with neurodevelopment.
Collapse
Affiliation(s)
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France
| | - Edouard Duchesnay
- Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France
| | - Yann Cointepas
- Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France
| | - Véronique Gaura
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), MIRCen, France
| | - Christophe Verny
- Centre national de référence des maladies neurogénétiques, Service de neurologie, CHU, 49000 Angers, France, UMR CNRS 6214 - INSERM U1083, France
| | | | | | | | - Philippe Hantraye
- MIRCen, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux Energies Alternatives, France
| | - Philippe Remy
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), MIRCen, France
| | - Gwenaëlle Douaud
- Functional Magnetic Resonance Imaging of the Brain (FMRIB) Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.
| |
Collapse
|
10
|
Gregory S, Odish OFF, Mayer I, Mills J, Johnson EB, Scahill RI, Rothwell J, Rees G, Long JD, Tabrizi SJ, Roos RAC, Orth M. Multimodal characterization of the visual network in Huntington's disease gene carriers. Clin Neurophysiol 2019; 130:2053-2059. [PMID: 31541982 DOI: 10.1016/j.clinph.2019.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE A sensorimotor network structural phenotype predicted motor task performance in a previous study in Huntington's disease (HD) gene carriers. We investigated in the visual network whether structure - function - behaviour relationship patterns, and the effects of the HD mutation, extended beyond the sensorimotor network. METHODS We used multimodal visual network MRI structural measures (cortical thickness and white matter connectivity), plus visual evoked potentials and task performance (Map Search; Symbol Digit Modalities Test) in healthy controls and HD gene carriers. RESULTS Using principal component (PC) analysis, we identified a structure - function relationship common to both groups. PC scores differed between groups indicating white matter disorganization (higher RD, lower FA) and slower, and more disperse, VEP signal transmission (higher VEP P100 latency and lower VEP P100 amplitude) in HD than controls while task performance was similar. CONCLUSIONS HD may be associated with reduced white matter organization and efficient visual network function but normal task performance. SIGNIFICANCE These findings indicate that structure - function relationships in the visual network, and the effects of the HD mutation, share some commonalities with those in the sensorimotor network. However, implications for task performance differ between the two networks suggesting the influence of network specific factors.
Collapse
Affiliation(s)
- Sarah Gregory
- Huntington's Disease Centre, UCL Institute of Neurology, London, UK
| | - Omar F F Odish
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands
| | - Isabella Mayer
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - James Mills
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | | | | | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, Queen Square, London, UK
| | - Geraint Rees
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA; Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Sarah J Tabrizi
- Huntington's Disease Centre, UCL Institute of Neurology, London, UK
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Michael Orth
- Department of Neurology, Ulm University Hospital, Ulm, Germany.
| |
Collapse
|
11
|
Abstract
In this study we longitudinally investigated the rate of microstructural alterations in the occipital cortex in different stages of Huntington's disease (HD) by applying an automated atlas-based approach to diffusion MRI data. Twenty-two premanifest (preHD), 10 early manifest HD (early HD) and 24 healthy control subjects completed baseline and two year follow-up scans. The preHD group was stratified based on the predicted years to disease onset into a far (preHD-A) and near (preHD-B) to disease onset group. Clinical and behavioral measures were collected per assessment time point. An automated atlas-based DTI analysis approach was used to obtain the mean, axial and radial diffusivities of the occipital cortex. We found that the longitudinal rate of diffusivity change in the superior occipital gyrus (SOG), middle occipital gyrus (MOG), and inferior occipital gyrus (IOG) was significantly higher in early HD compared to both preHD and controls (all p's ≤ 0.005), which can be interpreted as an increased rate of microstructural degeneration. Furthermore, the change rate in the diffusivity of the MOG could significantly discriminate between preHD-B compared to preHD-A and the other groups (all p's ≤ 0.04). Finally, we found an inverse correlation between the Stroop Word Reading task and diffusivities in the SOG and MOG (all p's ≤ 0.01). These findings suggest that measures obtained from the occipital cortex can serve as sensitive longitudinal biomarkers for disease progression in preHD-B and early HD. These could in turn be used to assess potential effects of proposed disease modifying therapies.
Collapse
|
12
|
Dhalla A, Pallikadavath S, Hutchinson CV. Visual Dysfunction in Huntington's Disease: A Systematic Review. J Huntingtons Dis 2019; 8:233-242. [PMID: 30932892 DOI: 10.3233/jhd-180340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is well-documented that patients with Huntington's disease (HD) exhibit specific deficits in visual cognition. A less well-documented literature also exists that suggests people with HD experience a number of disease-related changes to more rudimentary sensory visual processing. Here, we review evidence for the effects of HD on the integrity of the early visual pathways in humans along with changes to low-level visual sensitivity. We find evidence for reduced structural and functional integrity of the visual pathways, marked by retinal thinning, reduced VEP amplitude, and cell loss and thinning in visual cortex. We also find evidence of visual perceptual deficits, particularly for colour and motion. We suggest that future studies with well-defined HD and HD-related groups in appropriate numbers that systematically examine the relationship between structural changes to the visual system, basic visual perceptual deficits and disease stage/severity are therefore likely to yield promising results.
Collapse
Affiliation(s)
- Amit Dhalla
- School of Medicine, College of Life Sciences, University of Leicester, Leicester, UK
| | - Susil Pallikadavath
- School of Medicine, College of Life Sciences, University of Leicester, Leicester, UK
| | - Claire V Hutchinson
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
13
|
Coppen EM, van der Grond J, Hafkemeijer A, Barkey Wolf JJH, Roos RAC. Structural and functional changes of the visual cortex in early Huntington's disease. Hum Brain Mapp 2018; 39:4776-4786. [PMID: 30144208 PMCID: PMC6866293 DOI: 10.1002/hbm.24322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/19/2018] [Accepted: 07/11/2018] [Indexed: 01/13/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder characterized by motor disturbances, psychiatric disturbances, and cognitive impairment. Visual cognitive deficits and atrophy of the posterior cerebral cortex are additionally present in early disease stages. This study aimed to assess the extent of structural and functional brain alterations of the visual cortex in HD gene carriers using different neuroimaging modalities. Structural and functional magnetic resonance imaging data were acquired from 18 healthy controls, 21 premanifest, and 20 manifest HD gene carriers. Voxel-based morphometry (VBM) analysis and cortical thickness measurements were performed to assess structural changes in the visual cortex. Brain function was measured by assessing neuronal connectivity changes in response to visual stimulation and at rest in visual resting-state networks. Multiple linear regression analyses were performed to examine the relationship between visual cognitive function and structural imaging measures. Compared to controls, pronounced atrophy and decreased neuronal function at rest were present in associative visual cortices in manifest HD. The primary visual cortex did not show group differences in cortical thickness and in vascular activity after visual stimulation. Thinning of the associative visual cortex was related to worse visual perceptual function. Premanifest HD gene carriers did not show any differences in brain structure or function compared to controls. This study improves the knowledge on posterior brain changes in HD, as our findings suggest that the primary visual cortex remains preserved, both structurally and functionally, while atrophy of associative visual cortices is present in early HD and linked to clinical visual deficits.
Collapse
Affiliation(s)
- Emma M. Coppen
- Department of NeurologyLeiden University Medical CenterLeidenthe Netherlands
| | | | - Anne Hafkemeijer
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Department of Methodology and Statistics, Institute of PsychologyLeiden UniversityLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeiden UniversityLeidenthe Netherlands
| | - Jurriaan J. H. Barkey Wolf
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Department of Molecular EpidemiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Raymund A. C. Roos
- Department of NeurologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
14
|
Coppen EM, van der Grond J, Hart EP, Lakke EAJF, Roos RAC. The visual cortex and visual cognition in Huntington's disease: An overview of current literature. Behav Brain Res 2018; 351:63-74. [PMID: 29792890 DOI: 10.1016/j.bbr.2018.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/01/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022]
Abstract
The processing of visual stimuli from retina to higher cortical areas has been extensively studied in the human brain. In Huntington's disease (HD), an inherited neurodegenerative disorder, it is suggested that visual processing deficits are present in addition to more characteristic signs such as motor disturbances, cognitive dysfunction, and behavioral changes. Visual deficits are clinically important because they influence overall cognitive performance and have implications for daily functioning. The aim of this review is to summarize current literature on clinical visual deficits, visual cognitive impairment, and underlying visual cortical changes in HD patients. A literature search was conducted using the electronic database of PubMed/Medline. This review shows that changes of the visual system in patients with HD were not the primary focus of currently published studies. Still, early atrophy and alterations of the posterior cerebral cortex was frequently observed, primarily in the associative visual cortical areas such as the lingual and fusiform gyri, and lateral occipital cortex. Changes were even present in the premanifest phase, before clinical onset of motor symptoms, suggesting a primary region for cortical degeneration in HD. Although impairments in visuospatial processing and visual perception were reported in early disease stages, heterogeneous cognitive batteries were used, making a direct comparison between studies difficult. The use of a standardized battery of visual cognitive tasks might therefore provide more detailed information regarding the extent of impairments in specific visual domains. Further research could provide more insight into clinical, functional, and pathophysiological changes of the visual pathway in HD.
Collapse
Affiliation(s)
- Emma M Coppen
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ellen P Hart
- Centre for Human Drug Research, Leiden, The Netherlands.
| | - Egbert A J F Lakke
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
15
|
Adanyeguh IM, Monin ML, Rinaldi D, Freeman L, Durr A, Lehéricy S, Henry PG, Mochel F. Expanded neurochemical profile in the early stage of Huntington disease using proton magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2018; 31:10.1002/nbm.3880. [PMID: 29315899 PMCID: PMC5841244 DOI: 10.1002/nbm.3880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
The striatum is a well-known region affected in Huntington disease (HD). However, other regions, including the visual cortex, are implicated. We have identified previously an abnormal energy response in the visual cortex of patients at an early stage of HD using 31 P magnetic resonance spectroscopy (31 P MRS). We therefore sought to further characterize these metabolic alterations with 1 H MRS using a well-validated semi-localized by adiabatic selective refocusing (semi-LASER) sequence that allows the measurement of an expanded number of neurometabolites. Ten early affected patients [Unified Huntington Disease Rating Scale (UHDRS), total motor score = 13.6 ± 10.8] and 10 healthy volunteers of similar age and body mass index (BMI) were recruited for the study. We performed 1 H MRS in the striatum - the region that is primarily affected in HD - and the visual cortex. The protocol allowed a reliable quantification of 10 metabolites in the visual cortex and eight in the striatum, compared with three to five metabolites in previous 1 H MRS studies performed in HD. We identified higher total creatine (p < 0.05) in the visual cortex and lower glutamate (p < 0.001) and total creatine (p < 0.05) in the striatum of patients with HD compared with controls. Less abundant neurometabolites [glutamine, γ-aminobutyric acid (GABA), glutathione, aspartate] showed similar concentrations in both groups. The protocol allowed the measurement of several additional metabolites compared with standard vendor protocols. Our study points to early changes in metabolites involved in energy metabolism in the visual cortex and striatum of patients with HD. Decreased striatal glutamate could reflect early neuronal dysfunction or impaired glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Isaac M. Adanyeguh
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Marie-Lorraine Monin
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France
| | - Daisy Rinaldi
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Léorah Freeman
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, Unites States
| | - Alexandra Durr
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France
| | - Stéphane Lehéricy
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- Center for NeuroImaging Research (CENIR), Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Fanny Mochel
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
- AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France
- University Pierre and Marie Curie, Neurometabolic Research Group, Paris, France
| |
Collapse
|
16
|
Progress in developing transgenic monkey model for Huntington's disease. J Neural Transm (Vienna) 2017; 125:401-417. [PMID: 29127484 DOI: 10.1007/s00702-017-1803-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
Huntington's disease (HD) is a complex neurodegenerative disorder that has no cure. Although treatments can often be given to relieve symptoms, the neuropathology associated with HD cannot be stopped or reversed. HD is characterized by degeneration of the striatum and associated pathways that leads to impairment in motor and cognitive functions as well as psychiatric disturbances. Although cell and rodent models for HD exist, longitudinal study in a transgenic HD nonhuman primate (i.e., rhesus macaque; HD monkeys) shows high similarity in its progression with human patients. Progressive brain atrophy and changes in white matter integrity examined by magnetic resonance imaging are coherent with the decline in cognitive behaviors related to corticostriatal functions and neuropathology. HD monkeys also express higher anxiety and irritability/aggression similar to human HD patients that other model systems have not yet replicated. While a comparative model approach is critical for advancing our understanding of HD pathogenesis, HD monkeys could provide a unique platform for preclinical studies and long-term assessment of translatable outcome measures. This review summarizes the progress in the development of the transgenic HD monkey model and the opportunities for advancing HD preclinical research.
Collapse
|
17
|
Johnson EB, Gregory S, Johnson HJ, Durr A, Leavitt BR, Roos RA, Rees G, Tabrizi SJ, Scahill RI. Recommendations for the Use of Automated Gray Matter Segmentation Tools: Evidence from Huntington's Disease. Front Neurol 2017; 8:519. [PMID: 29066997 PMCID: PMC5641297 DOI: 10.3389/fneur.2017.00519] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/19/2017] [Indexed: 01/15/2023] Open
Abstract
The selection of an appropriate segmentation tool is a challenge facing any researcher aiming to measure gray matter (GM) volume. Many tools have been compared, yet there is currently no method that can be recommended above all others; in particular, there is a lack of validation in disease cohorts. This work utilizes a clinical dataset to conduct an extensive comparison of segmentation tools. Our results confirm that all tools have advantages and disadvantages, and we present a series of considerations that may be of use when selecting a GM segmentation method, rather than a ranking of these tools. Seven segmentation tools were compared using 3 T MRI data from 20 controls, 40 premanifest Huntington's disease (HD), and 40 early HD participants. Segmented volumes underwent detailed visual quality control. Reliability and repeatability of total, cortical, and lobular GM were investigated in repeated baseline scans. The relationship between each tool was also examined. Longitudinal within-group change over 3 years was assessed via generalized least squares regression to determine sensitivity of each tool to disease effects. Visual quality control and raw volumes highlighted large variability between tools, especially in occipital and temporal regions. Most tools showed reliable performance and the volumes were generally correlated. Results for longitudinal within-group change varied between tools, especially within lobular regions. These differences highlight the need for careful selection of segmentation methods in clinical neuroimaging studies. This guide acts as a primer aimed at the novice or non-technical imaging scientist providing recommendations for the selection of cohort-appropriate GM segmentation software.
Collapse
Affiliation(s)
- Eileanoir B. Johnson
- Huntington’s Disease Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Sarah Gregory
- Huntington’s Disease Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Hans J. Johnson
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States
| | - Alexandra Durr
- Department of Genetics and Cytogenetics, INSERMUMR S679, APHP, ICM Institute, Hôpital de la Salpêtrière, Paris, France
| | - Blair R. Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Raymund A. Roos
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
- George-Huntington-Institut, münster, Germany
| | - Geraint Rees
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Sarah J. Tabrizi
- Huntington’s Disease Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Rachael I. Scahill
- Huntington’s Disease Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
18
|
Piano C, Mazzucchi E, Bentivoglio AR, Losurdo A, Calandra Buonaura G, Imperatori C, Cortelli P, Della Marca G. Wake and Sleep EEG in Patients With Huntington Disease: An eLORETA Study and Review of the Literature. Clin EEG Neurosci 2017; 48:60-71. [PMID: 27094758 DOI: 10.1177/1550059416632413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 02/02/2023]
Abstract
The aim of the study was to evaluate the EEG modifications in patients with Huntington disease (HD) compared with controls, by means of the exact LOw REsolution Tomography (eLORETA) software. We evaluated EEG changes during wake, non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Moreover, we reviewed the literature concerning EEG modifications in HD. Twenty-three consecutive adult patients affected by HD were enrolled, 14 women and 9 men, mean age was 57.0 ± 12.4 years. Control subjects were healthy volunteers (mean age 58.2 ± 14.6 years). EEG and polygraphic recordings were performed during wake (before sleep) and during sleep. Sources of EEG activities were determined using the eLORETA software. In wake EEG, significant differences between patients and controls were detected in the delta frequency band (threshold T = ±4.606; P < .01) in the Brodmann areas (BAs) 3, 4, and 6 bilaterally. In NREM sleep, HD patients showed increased alpha power (T = ±4.516; P < .01) in BAs 4 and 6 bilaterally; decreased theta power (T = ±4.516; P < .01) in the BAs 23, 29, and 30; and decreased beta power (T = ±4.516; P < .01) in the left BA 30. During REM, HD patients presented decreased theta and alpha power (threshold T = ±4.640; P < .01) in the BAs 23, 29, 30, and 31 bilaterally. In conclusion, EEG data suggest a motor cortex dysfunction during wake and sleep in HD patients, which correlates with the clinical and polysomnographic evidence of increased motor activity during wake and NREM, and nearly absent motor abnormalities in REM.
Collapse
Affiliation(s)
- Carla Piano
- Center for Parkinson Disease and Extrapyramidal Disorders, Movement Disorders Unit, Institute of Neurology, Catholic University, Rome, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Edoardo Mazzucchi
- Sleep Disorders Unit; Institute of Neurology, Catholic University, Rome, Italy
| | - Anna Rita Bentivoglio
- Center for Parkinson Disease and Extrapyramidal Disorders, Movement Disorders Unit, Institute of Neurology, Catholic University, Rome, Italy.,Don Carlo Gnocchi Foundation, Milan, Italy
| | - Anna Losurdo
- Sleep Disorders Unit; Institute of Neurology, Catholic University, Rome, Italy
| | - Giovanna Calandra Buonaura
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giacomo Della Marca
- Sleep Disorders Unit; Institute of Neurology, Catholic University, Rome, Italy
| |
Collapse
|
19
|
Rüb U, Seidel K, Heinsen H, Vonsattel J, den Dunnen W, Korf H. Huntington's disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol 2016; 26:726-740. [PMID: 27529157 PMCID: PMC8029421 DOI: 10.1111/bpa.12426] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominantly inherited, and currently untreatable, neuropsychiatric disorder. This progressive and ultimately fatal disease is named after the American physician George Huntington and according to the underlying molecular biological mechanisms is assigned to the human polyglutamine or CAG-repeat diseases. In the present article we give an overview of the currently known neurodegenerative hallmarks of the brains of HD patients. Subsequent to recent pathoanatomical studies the prevailing reductionistic concept of HD as a human neurodegenerative disease, which is primarily and more or less exclusively confined to the striatum (ie, caudate nucleus and putamen) has been abandoned. Many recent studies have improved our neuropathological knowledge of HD; many of the early groundbreaking findings of neuropathological HD research have been rediscovered and confirmed. The results of this investigation have led to the stepwise revision of the simplified pathoanatomical and pathophysiological HD concept and culminated in the implementation of the current concept of HD as a multisystem degenerative disease of the human brain. The multisystem character of the neuropathology of HD is emphasized by a brain distribution pattern of neurodegeneration (i) which apart from the striatum includes the cerebral neo-and allocortex, thalamus, pallidum, brainstem and cerebellum, and which (ii) therefore, shares more similarities with polyglutamine spinocerebellar ataxias than previously thought.
Collapse
Affiliation(s)
- U. Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe‐UniversityFrankfurt/MainD‐60590Germany
| | - K. Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe‐UniversityFrankfurt/MainD‐60590Germany
| | - H. Heinsen
- Department of PathologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil
- Morphological Brain Research Unit, Psychiatric Clinic, Julius Maximilians University WürzburgWürzburgD‐97080Germany
| | - J.P. Vonsattel
- The New York Brain Bank/Taub Institute, The Presbyterian Hospital and Columbia UniversityNew YorkNY
| | - W.F. den Dunnen
- Department of Pathology and Medical BiologyUniversity Medical Center Groningen University of GroningenRB GroningenNL‐5970The Netherlands
| | - H.W. Korf
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe‐UniversityFrankfurt/MainD‐60590Germany
| |
Collapse
|
20
|
Seidel K, Siswanto S, Fredrich M, Bouzrou M, den Dunnen WFA, Özerden I, Korf HW, Melegh B, de Vries JJ, Brunt ER, Auburger G, Rüb U. On the distribution of intranuclear and cytoplasmic aggregates in the brainstem of patients with spinocerebellar ataxia type 2 and 3. Brain Pathol 2016; 27:345-355. [PMID: 27377427 DOI: 10.1111/bpa.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022] Open
Abstract
The polyglutamine (polyQ) diseases are a group of genetically and clinically heterogeneous neurodegenerative diseases, characterized by the expansion of polyQ sequences in unrelated disease proteins, which form different types of neuronal aggregates. The aim of this study was to characterize the aggregation pathology in the brainstem of spinocerebellar ataxia type 2 (SCA2) and 3 (SCA3) patients. For good recognition of neurodegeneration and rare aggregates, we employed 100 µm PEG embedded brainstem sections, which were immunostained with the 1C2 antibody, targeted at polyQ expansions, or with an antibody against p62, a reliable marker of protein aggregates. Brainstem areas were scored semiquantitatively for neurodegeneration, severity of granular cytoplasmic staining (GCS) and frequency of neuronal nuclear inclusions (NNI). SCA2 and SCA3 tissue exhibited the same aggregate types and similar staining patterns. Several brainstem areas showed statistically significant differences between disease groups, whereby SCA2 showed more severe GCS and SCA3 showed more numerous NNI. We observed a positive correlation between GCS severity and neurodegeneration in SCA2 and SCA3 and an inverse correlation between the frequency of NNI and neurodegeneration in SCA3. Although their respective disease proteins are unrelated, SCA2 and SCA3 showed the same aggregate types. Apparently, the polyQ sequence alone is sufficient as a driver of protein aggregation. This is then modified by protein context and intrinsic properties of neuronal populations. The severity of GCS was the best predictor of neurodegeneration in both disorders, while the inverse correlation of neurodegeneration and NNI in SCA3 tissue implies a protective role of these aggregates.
Collapse
Affiliation(s)
- Kay Seidel
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| | - Sonny Siswanto
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| | - Michaela Fredrich
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| | - Mohamed Bouzrou
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Inci Özerden
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| | - Horst-Werner Korf
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| | - Bela Melegh
- Department of Medical Genetics, University of Pécs, Pécs, Hungary
| | - Jeroen J de Vries
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Ewout R Brunt
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Georg Auburger
- Experimental Neurology, J.W. Goethe University Medical School, Frankfurt, Germany
| | - Udo Rüb
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
21
|
Johnson EB, Rees EM, Labuschagne I, Durr A, Leavitt BR, Roos RAC, Reilmann R, Johnson H, Hobbs NZ, Langbehn DR, Stout JC, Tabrizi SJ, Scahill RI. The impact of occipital lobe cortical thickness on cognitive task performance: An investigation in Huntington's Disease. Neuropsychologia 2015; 79:138-46. [PMID: 26519555 DOI: 10.1016/j.neuropsychologia.2015.10.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/07/2015] [Accepted: 10/26/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND The occipital lobe is an important visual processing region of the brain. Following consistent findings of early neural changes in the occipital lobe in Huntington's Disease (HD), we examined cortical thickness across four occipital regions in premanifest (preHD) and early HD groups compared with controls. Associations between cortical thickness in gene positive individuals and performance on six cognitive tasks, each with a visual component, were examined. In addition, the association between cortical thickness in gene positive participants and one non-visual motor task was also examined for comparison. METHODS Cortical thickness was determined using FreeSurfer on T1-weighted 3T MR datasets from controls (N=97), preHD (N=109) and HD (N=69) from the TRACK-HD study. Regression models were fitted to assess between-group differences in cortical thickness, and relationships between performance on the cognitive tasks, the motor task and occipital thickness were examined in a subset of gene-positive participants (N=141). RESULTS Thickness of the occipital cortex in preHD and early HD participants was reduced compared with controls. Regionally-specific associations between reduced cortical thickness and poorer performance were found for five of the six cognitive tasks, with the strongest associations in lateral occipital and lingual regions. No associations were found with the cuneus. The non-visual motor task was not associated with thickness of any region. CONCLUSIONS The heterogeneous pattern of associations found in the present study suggests that occipital thickness negatively impacts cognition, but only in regions that are linked to relatively advanced visual processing (e.g., lateral occipital, lingual regions), rather than in basic visual processing regions such as the cuneus. Our results show, for the first time, the functional implications of occipital atrophy highlighted in recent studies in HD.
Collapse
Affiliation(s)
| | - Elin M Rees
- UCL Institute of Neurology, University College London, UK
| | - Izelle Labuschagne
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia; School of Psychology, Australian Catholic University, Melbourne, Victoria, Australia
| | - Alexandra Durr
- Department of Genetics and Cytogenetics, and INSERMUMR S679, APHP, ICM Institute, Hôpital de la Salpêtrière, Paris, France
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Hans Johnson
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Nicola Z Hobbs
- UCL Institute of Neurology, University College London, UK
| | | | - Julie C Stout
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|