1
|
Alhalabi OT, Dao Trong P, Kaes M, Jakobs M, Kessler T, Oehler H, König L, Eichkorn T, Sahm F, Debus J, von Deimling A, Wick W, Wick A, Krieg SM, Unterberg AW, Jungk C. Repeat surgery of recurrent glioma for molecularly informed treatment in the age of precision oncology: A risk-benefit analysis. J Neurooncol 2024; 167:245-255. [PMID: 38334907 PMCID: PMC11023957 DOI: 10.1007/s11060-024-04595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE Surgery for recurrent glioma provides cytoreduction and tissue for molecularly informed treatment. With mostly heavily pretreated patients involved, it is unclear whether the benefits of repeat surgery outweigh its potential risks. METHODS Patients receiving surgery for recurrent glioma WHO grade 2-4 with the goal of tissue sampling for targeted therapies were analyzed retrospectively. Complication rates (surgical, neurological) were compared to our institutional glioma surgery cohort. Tissue molecular diagnostic yield, targeted therapies and post-surgical survival rates were analyzed. RESULTS Between 2017 and 2022, tumor board recommendation for targeted therapy through molecular diagnostics was made for 180 patients. Of these, 70 patients (38%) underwent repeat surgery. IDH-wildtype glioblastoma was diagnosed in 48 patients (69%), followed by IDH-mutant astrocytoma (n = 13; 19%) and oligodendroglioma (n = 9; 13%). Gross total resection (GTR) was achieved in 50 patients (71%). Tissue was processed for next-generation sequencing in 64 cases (91%), and for DNA methylation analysis in 58 cases (83%), while immunohistochemistry for mTOR phosphorylation was performed in 24 cases (34%). Targeted therapy was recommended in 35 (50%) and commenced in 21 (30%) cases. Postoperatively, 7 patients (11%) required revision surgery, compared to 7% (p = 0.519) and 6% (p = 0.359) of our reference cohorts of patients undergoing first and second craniotomy, respectively. Non-resolving neurological deterioration was documented in 6 cases (10% vs. 8%, p = 0.612, after first and 4%, p = 0.519, after second craniotomy). Median survival after repeat surgery was 399 days in all patients and 348 days in GBM patients after repeat GTR. CONCLUSION Surgery for recurrent glioma provides relevant molecular diagnostic information with a direct consequence for targeted therapy under a reasonable risk of postoperative complications. With satisfactory postoperative survival it can therefore complement a multi-modal glioma therapy approach.
Collapse
Affiliation(s)
- Obada T Alhalabi
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Philip Dao Trong
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Manuel Kaes
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Martin Jakobs
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
- Department of Neurosurgery, Division for Stereotactic Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Hannah Oehler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Antje Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Penkova A, Kuziakova O, Gulaia V, Tiasto V, Goncharov NV, Lanskikh D, Zhmenia V, Baklanov I, Farniev V, Kumeiko V. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects. Front Mol Biosci 2023; 10:1216102. [PMID: 37908227 PMCID: PMC10613994 DOI: 10.3389/fmolb.2023.1216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
Glioma is one of the most intractable types of cancer, due to delayed diagnosis at advanced stages. The clinical symptoms of glioma are unclear and due to a variety of glioma subtypes, available low-invasive testing is not effective enough to be introduced into routine medical laboratory practice. Therefore, recent advances in the clinical diagnosis of glioma have focused on liquid biopsy approaches that utilize a wide range of techniques such as next-generation sequencing (NGS), droplet-digital polymerase chain reaction (ddPCR), and quantitative PCR (qPCR). Among all techniques, NGS is the most advantageous diagnostic method. Despite the rapid cheapening of NGS experiments, the cost of such diagnostics remains high. Moreover, high-throughput diagnostics are not appropriate for molecular profiling of gliomas since patients with gliomas exhibit only a few diagnostic markers. In this review, we highlighted all available assays for glioma diagnosing for main pathogenic glioma DNA sequence alterations. In the present study, we reviewed the possibility of integrating routine molecular methods into the diagnosis of gliomas. We state that the development of an affordable assay covering all glioma genetic aberrations could enable early detection and improve patient outcomes. Moreover, the development of such molecular diagnostic kits could potentially be a good alternative to expensive NGS-based approaches.
Collapse
Affiliation(s)
- Alina Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Nikolay V. Goncharov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Daria Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Ivan Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Vladislav Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| |
Collapse
|
3
|
Chapman RJ, Ghasemi DR, Andreiuolo F, Zschernack V, Espariat AT, Buttarelli FR, Giangaspero F, Grill J, Haberler C, Paine SML, Scott I, Jacques TS, Sill M, Pfister S, Kilday JP, Leblond P, Massimino M, Witt H, Modena P, Varlet P, Pietsch T, Grundy RG, Pajtler KW, Ritzmann TA. Optimizing biomarkers for accurate ependymoma diagnosis, prognostication, and stratification within International Clinical Trials: A BIOMECA study. Neuro Oncol 2023; 25:1871-1882. [PMID: 36916248 PMCID: PMC10547510 DOI: 10.1093/neuonc/noad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Accurate identification of brain tumor molecular subgroups is increasingly important. We aimed to establish the most accurate and reproducible ependymoma subgroup biomarker detection techniques, across 147 cases from International Society of Pediatric Oncology (SIOP) Ependymoma II trial participants, enrolled in the pan-European "Biomarkers of Ependymoma in Children and Adolescents (BIOMECA)" study. METHODS Across 6 European BIOMECA laboratories, we evaluated epigenetic profiling (DNA methylation array); immunohistochemistry (IHC) for nuclear p65-RELA, H3K27me3, and Tenascin-C; copy number analysis via fluorescent in situ hybridization (FISH) and MLPA (1q, CDKN2A), and MIP and DNA methylation array (genome-wide copy number evaluation); analysis of ZFTA- and YAP1-fusions by RT-PCR and sequencing, Nanostring and break-apart FISH. RESULTS DNA Methylation profiling classified 65.3% (n = 96/147) of cases as EPN-PFA and 15% (n = 22/147) as ST-ZFTA fusion-positive. Immunohistochemical loss of H3K27me3 was a reproducible and accurate surrogate marker for EPN-PFA (sensitivity 99%-100% across 3 centers). IHC for p65-RELA, FISH, and RNA-based analyses effectively identified ZFTA- and YAP-fused supratentorial ependymomas. Detection of 1q gain using FISH exhibited only 57% inter-center concordance and low sensitivity and specificity while MIP, MLPA, and DNA methylation-based approaches demonstrated greater accuracy. CONCLUSIONS We confirm, in a prospective trial cohort, that H3K27me3 immunohistochemistry is a robust EPN-PFA biomarker. Tenascin-C should be abandoned as a PFA marker. DNA methylation and MIP arrays are effective tools for copy number analysis of 1q gain, 6q, and CDKN2A loss while FISH is inadequate. Fusion detection was successful, but rare novel fusions need more extensive technologies. Finally, we propose test sets to guide future diagnostic approaches.
Collapse
Affiliation(s)
- Rebecca J Chapman
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - David R Ghasemi
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felipe Andreiuolo
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
- Instituto Estadual do Cerebro Paulo Niemeyer, Rio de Janerio, Brazil
- IDOR Institute, Rio de Janeiro, Brazil
| | - Valentina Zschernack
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Arnault Tauziede Espariat
- Departement de Neuropathologie, Hopital Sainte-Anne, Paris, France
- INSERM Unit 981 and Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Francesca R Buttarelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Jacques Grill
- INSERM Unit 981 and Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Simon M L Paine
- Department of Neuropathology, Nottingham University Hospital, Nottingham, UK
| | - Ian Scott
- Department of Neuropathology, Nottingham University Hospital, Nottingham, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Programme, UCL GOS Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Martin Sill
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Stefan Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - John-Paul Kilday
- Children’s Brain Tumour Research Network (CBTRN), Royal Manchester Children’s Hospital, Manchester, UK
- The Centre for Paediatric, Teenage and Young Adult Cancer, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pierre Leblond
- Institute of Hematology and Pediatric Oncology (IHOPe), Leon Berard Comprehensive Cancer Center, Lyon, France
| | - Maura Massimino
- Paediatric Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milano, Italy
| | - Hendrik Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Pascale Varlet
- Departement de Neuropathologie, Hopital Sainte-Anne, Paris, France
- INSERM Unit 981 and Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Richard G Grundy
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Kristian W Pajtler
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy A Ritzmann
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Komori T. Grading of adult diffuse gliomas according to the 2021 WHO Classification of Tumors of the Central Nervous System. J Transl Med 2022; 102:126-133. [PMID: 34504304 DOI: 10.1038/s41374-021-00667-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
The grading of gliomas based on histological features has been a subject of debate for several decades. A consensus has not yet been reached because of technical limitations and inter-observer variations. While the traditional grading system has failed to stratify the risk of IDH-mutant astrocytoma, canonical histological and proliferative markers may be applicable to the risk stratification of IDH-wild-type astrocytoma. Numerous studies have examined molecular markers in order to obtain more clinically relevant information that will improve the risk stratification of gliomas. The CDKN2A/B homozygous deletion for IDH-mutant astrocytoma and the following three criteria for IDH-wild-type astrocytoma: the concurrent gain of whole chromosome 7 and loss of whole chromosome 10, TERT promoter mutations, and EGFR amplification, were identified as independent molecular markers of the worst clinical outcomes. Therefore, the 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System adopted these molecular markers into the revised grading criteria of IDH-mutant and -wild-type astrocytoma, respectively, as a grading system within tumor types. Of note, several recent studies have shown that some low-grade IDH-wild-type astrocytoma lacking both the molecular glioblastoma signature and genetic alterations typical of pediatric-type gliomas may demonstrate a relatively indolent clinical course, suggesting the existence of lower-grade adult IDH-wild-type astrocytoma. In terms of oligodendroglioma, IDH-mutant, and 1p/19q codeleted, consistent makers that predict poor outcomes have not yet been identified, and, thus, the current criteria have remained unchanged. Molecular testing to fulfill the revised WHO criteria is, however, not always available worldwide, and in that case, an integrated diagnosis combining all available complementary information is highly recommended. This review discusses controversial issues surrounding legacy grading systems and newly identified potential genetic markers of adult diffuse gliomas and provides perspectives on future grading systems.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| |
Collapse
|
5
|
Gielen GH, Baugh JN, van Vuurden DG, Veldhuijzen van Zanten SEM, Hargrave D, Massimino M, Biassoni V, Morales la Madrid A, Karremann M, Wiese M, Thomale U, Janssens GO, von Bueren AO, Perwein T, Nussbaumer G, Hoving EW, Niehusmann P, Gessi M, Kwiecien R, Bailey S, Pietsch T, Andreiuolo F, Kramm CM. Pediatric high-grade gliomas and the WHO CNS Tumor Classification—Perspectives of pediatric neuro-oncologists and neuropathologists in light of recent updates. Neurooncol Adv 2022; 4:vdac077. [PMID: 35733513 PMCID: PMC9209749 DOI: 10.1093/noajnl/vdac077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
The WHO Classification of Tumors of the Central Nervous System has undergone major restructuring. Molecularly defined diagnostic criteria were introduced in 2016 (revised 4th edition) and expanded in 2021 (5th edition) to incorporate further essential diagnostic molecular parameters. We investigated potential differences between specialists in perception of these molecularly defined subtypes for pediatric high-grade gliomas (pedHGG).
Methods
We designed a 22-question survey studying the impact of the revised 4th edition of the WHO classification on pedHGG. Data were collected and statistically analyzed to examine the spectrum of viewpoints and possible differences between neuro-oncologists and neuropathologists.
Results
465 participants from 53 countries were included; 187 pediatric neuro-oncologists (40%), 160 neuropathologists (34%), and 118 additional experts (26%). Neuro-oncologists reported issues with the introduction of molecularly defined tumor types, as well as the abolishment or renaming of established tumor entities, while neuropathologists did not to the same extent. Both groups indicated less relevant or insufficient diagnostic definitions were available in 2016. Reported issues were classified and assessed in the 2021 WHO classification and a substantial improvement was perceived. However, issues of high clinical relevance remain to be addressed, including the definition of clinical phenotypes for diffuse intrinsic pontine glioma and gliomatosis cerebri.
Conclusions
Within the WHO classification of pediatric brain tumors, such as pedHGG, rapid changes in molecular characterization have been introduced. This study highlights the ongoing need for cross talk between pathologist and oncologist to advance the classification of pedHGG subtypes and ensure biological relevance and clinical impact.
Collapse
Affiliation(s)
- Gerrit H Gielen
- Institute of Neuropathology, Medical Center Bonn , Bonn , Germany
| | - Joshua N Baugh
- Princess Máxima Center for Pediatric Oncology , Utrecht , The Netherlands
| | | | - Sophie E M Veldhuijzen van Zanten
- Princess Máxima Center for Pediatric Oncology , Utrecht , The Netherlands
- Erasmus University Medical Center, Department of Radiology and Nuclear Medicine , Rotterdam , The Netherlands
| | - Darren Hargrave
- Great Ormond Street Hospital for Children, NHS Trust , London , UK
| | - Maura Massimino
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori , Milan , Italy
| | - Veronica Biassoni
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori , Milan , Italy
| | - Andres Morales la Madrid
- Pediatric Neuro-Oncology, Department of Pediatric Oncology, Hospital Sant Joan de Deu, Passeig Sant Joan de Déu 2 , Barcelona , Spain
| | - Michael Karremann
- Department of Pediatric and Adolescent Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Maria Wiese
- Division of Pediatric Hematology and Oncology , University Medical Center Goettingen , Goettingen , Germany
| | - Ulrich Thomale
- Pediatric Neurosurgery, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Geert O Janssens
- Princess Máxima Center for Pediatric Oncology , Utrecht , The Netherlands
- Department of Radiation Oncology, University Medical Center Utrecht , Utrecht , The Netherlands
| | - André O von Bueren
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Hospital of Geneva , Geneva , Switzerland
- CANSEARCH research platform in Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics,University of Geneva , Switzerland
| | - Thomas Perwein
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz , Graz , Austria
| | - Gunther Nussbaumer
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz , Graz , Austria
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology , Utrecht , The Netherlands
| | - Pitt Niehusmann
- Department of Neuropathology, Oslo University Hospital , Oslo , Norway
| | - Marco Gessi
- Department of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS , Rome , Italy
| | - Robert Kwiecien
- Institute of Biostatistics and Clinical Research, Faculty of Medicine, University of Münster , Münster , Germany
| | - Simon Bailey
- Sir James Spence Institute of Child Health, Royal Victoria Infirmary , Newcastle upon Tyne , UK
| | - Torsten Pietsch
- Institute of Neuropathology, Medical Center Bonn , Bonn , Germany
| | - Felipe Andreiuolo
- Institute of Neuropathology, Medical Center Bonn , Bonn , Germany
- Instituto Estadual Do Cérebro Paulo Niemeyer and the IDOR Institute , Rio de Janeiro , Brazil
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology , University Medical Center Goettingen , Goettingen , Germany
| |
Collapse
|
6
|
Baugh JN, Gielen GH, van Vuurden DG, Veldhuijzen van Zanten SEM, Hargrave D, Massimino M, Biassoni V, Morales la Madrid A, Karremann M, Wiese M, Thomale U, Janssens GO, von Bueren AO, Perwein T, Hoving EW, Pietsch T, Andreiuolo F, Kramm CM. Transitioning to molecular diagnostics in pediatric high-grade glioma: experiences with the 2016 WHO classification of CNS tumors. Neurooncol Adv 2021; 3:vdab113. [PMID: 34595479 PMCID: PMC8478775 DOI: 10.1093/noajnl/vdab113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Pediatric neuro-oncology was profoundly changed in the wake of the 2016 revision of the WHO Classification of Tumors of the Central Nervous System. Practitioners were challenged to quickly adapt to a system of tumor classification redefined by molecular diagnostics. Methods We designed a 22-question survey studying the impact of the revised WHO classification on pediatric high-grade glioma. The survey collected basic demographics, general attitudes, issues encountered, and opinions on pediatric subtypes. Participant answers were analyzed along socioeconomic lines utilizing the human development index (HDI) of the United Nations and membership in the group of seven (G7) world economic forum. Results Four hundred and sixty-five participants from 53 countries were included, 187 pediatric neurooncologists (40%), 160 neuropathologists (34%), and 118 other experts (26%). When asked about pediatric high-grade glioma entities, participants from very high development countries preferred treating a patient based on genetic findings. Participants from high and medium development countries indicated using traditional histology and tumor location as mainstays for therapeutic decisions. Non-G7 countries tended to regard the introduction of molecularly characterized tumor entities as a problem for daily routine due to lack of resources. Conclusions Our findings demonstrate an overall greater reliance and favorability to molecular diagnostics among very high development countries. A disparity in resources and access to molecular diagnostics has left some centers unable to classify pediatric high-grade glioma per the WHO classification. The forthcoming edition should strain to abate disparities in molecular diagnostic availability and work toward universal adaptation.
Collapse
Affiliation(s)
- Joshua N Baugh
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Gerrit H Gielen
- Institute of Neuropathology, Medical Center Bonn, Bonn, Germany
| | | | | | - Darren Hargrave
- Great Ormond Street Hospital for Children NHS Trust London, London, UK
| | - Maura Massimino
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Biassoni
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milan, Italy
| | - Andres Morales la Madrid
- Pediatric Neuro-Oncology, Department of Pediatric Oncology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Michael Karremann
- Department of Pediatric and Adolescent Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maria Wiese
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Ulrich Thomale
- Pediatric Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Geert O Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - André O von Bueren
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Hospital of Geneva, Geneva, Switzerland.,CANSEARCH research platform in Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Thomas Perwein
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Torsten Pietsch
- Institute of Neuropathology, Medical Center Bonn, Bonn, Germany
| | - Felipe Andreiuolo
- Institute of Neuropathology, Medical Center Bonn, Bonn, Germany.,Instituto Estadual Do Cérebro Paulo Niemeyer and the IDOR Institute, Rio de Janeiro, Brazil
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
7
|
Louis DN, Cree IA. Response to letter to the editor by Moudgil-Joshi and Kaliaperumal. Neuro Oncol 2021; 23:2122. [PMID: 34596684 DOI: 10.1093/neuonc/noab215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- David N Louis
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ian A Cree
- Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
8
|
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021; 23:1231-1251. [PMID: 34185076 PMCID: PMC8328013 DOI: 10.1093/neuonc/noab106] [Citation(s) in RCA: 4984] [Impact Index Per Article: 1661.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, is the sixth version of the international standard for the classification of brain and spinal cord tumors. Building on the 2016 updated fourth edition and the work of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy, the 2021 fifth edition introduces major changes that advance the role of molecular diagnostics in CNS tumor classification. At the same time, it remains wedded to other established approaches to tumor diagnosis such as histology and immunohistochemistry. In doing so, the fifth edition establishes some different approaches to both CNS tumor nomenclature and grading and it emphasizes the importance of integrated diagnoses and layered reports. New tumor types and subtypes are introduced, some based on novel diagnostic technologies such as DNA methylome profiling. The present review summarizes the major general changes in the 2021 fifth edition classification and the specific changes in each taxonomic category. It is hoped that this summary provides an overview to facilitate more in-depth exploration of the entire fifth edition of the WHO Classification of Tumors of the Central Nervous System.
Collapse
Affiliation(s)
- David N Louis
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ian A Cree
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Dominique Figarella-Branger
- Service d’Anatomie Pathologique et de Neuropathologie, APHM, CNRS, Institut de Neurophysiopathologie, Hôpital de la Timone, Aix-Marseille University, Marseille, France
| | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - H K Ng
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Stefan M Pfister
- Hopp Children’s Cancer Center at the NCT Heidelberg (KiTZ), Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), and Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, and German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Riccardo Soffietti
- Department of Neurology and Neuro-Oncology, University of Turin Medical School, Turin, Italy
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David W Ellison
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
9
|
Nix JS, Gardner JM, Costa F, Soares AL, Rodriguez FJ, Moore B, Martinez-Lage M, Ahlawat S, Gokden M, Anthony DC. Neuropathology Education Using Social Media. J Neuropathol Exp Neurol 2018; 77:454-460. [DOI: 10.1093/jnen/nly025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- James S Nix
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jerad M Gardner
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Felipe Costa
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | | | - Brian Moore
- Department of Pathology, Colorado University School of Medicine, Aurora, Colorado
| | - Maria Martinez-Lage
- Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Sunita Ahlawat
- Histopathology, SRL-Fortis Memorial Research Institute, Gurgaon, Haryana, India
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Douglas C Anthony
- Departments of Pathology and Laboratory Medicine, and Neurology, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, Rhode Island
| |
Collapse
|
10
|
The 2016 WHO classification of central nervous system tumors: what neurologists need to know. Curr Opin Neurol 2017; 30:643-649. [DOI: 10.1097/wco.0000000000000490] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Patterns of diagnostic marker assessment in adult diffuse glioma: a survey of the European Confederation of Neuropathological Societies (Euro-CNS). Clin Neuropathol 2017; 36 (2017):5-14. [PMID: 27966427 PMCID: PMC5312234 DOI: 10.5414/np301009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2016] [Indexed: 11/23/2022] Open
Abstract
The 2016 update of the WHO classification has introduced an integrated diagnostic approach that incorporates both tumor morphology and molecular information. This conceptual change has far-reaching implications, especially for neuropathologists who are in the forefront of translating molecular markers to routine diagnostic use. Adult diffuse glioma is a prototypic example for a group of tumors that underwent substantial regrouping, and it represents a major workload for surgical neuropathologists. Hence, we conducted a survey among members of the European Confederation of Neuropathological Societies (Euro-CNS) in order to assess 1) the extent to which molecular markers have already been incorporated in glioma diagnoses, 2) which molecular techniques are in daily use, and 3) to set a baseline for future surveys in this field. Based on 130 responses from participants across 40 nations neuropathologists uniformly rate molecular marker testing as highly relevant and already incorporate molecular information in their diagnostic assessments. At the same time however, the survey documents substantial differences in access to crucial biomarkers and molecular techniques across geographic regions and within individual countries. Concerns are raised concerning the validity of test assays with MGMT, 1p19q, and ATRX; being perceived as most problematic. Neuropathologists advocate the need for international harmonization of standards and consensus guidelines, and the majority is willing to actively engage in interlaboratory trials aiming at quality control (Figure 1).
Collapse
|
12
|
ERRATUM. Brain Pathol 2016; 27:120. [PMID: 28032418 DOI: 10.1111/bpa.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Perry A. WHO’s arrived in 2016! An updated weather forecast for integrated brain tumor diagnosis. Brain Tumor Pathol 2016; 33:157-60. [DOI: 10.1007/s10014-016-0266-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|