1
|
Beiter RM, Raghavan TP, Suchocki O, Ennerfelt HE, Rivet-Noor CR, Merchak AR, Phillips JL, Bathe T, Lukens JR, Prokop S, Dupree JL, Gaultier A. Clusterin induced by OPC phagocytosis blocks IL-9 secretion to inhibit myelination in a model of Alzheimer's disease. Heliyon 2025; 11:e41635. [PMID: 39866464 PMCID: PMC11761289 DOI: 10.1016/j.heliyon.2025.e41635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/01/2025] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Background Variants in the CLUSTERIN gene have been identified as a risk factor for late-onset Alzheimer's disease and are linked to decreased white matter integrity in healthy adults. However, the specific role for clusterin in myelin maintenance in the context of Alzheimer's disease remains unclear. Methods We employed a combination of immunofluorescence and transmission electron microscopy techniques, primary culture of OPCs, and an animal model of Alzheimer's disease. Results We found that phagocytosis of debris such as amyloid beta, myelin, and apoptotic cells, increases clusterin expression in oligodendrocyte progenitors. We further discovered that exposure to clusterin inhibits differentiation of oligodendrocyte progenitors. Mechanistically, clusterin blunts production of IL-9 and addition of exogenous IL-9 can rescue clusterin-inhibited myelination. Lastly, we demonstrate that clusterin deletion in mice prevents myelin loss in the 5XFAD model. Discussion Our data suggest that clusterin could play a key role in Alzheimer's disease myelin pathology.
Collapse
Affiliation(s)
- Rebecca M. Beiter
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Tula P. Raghavan
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Olivia Suchocki
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
| | - Hannah E. Ennerfelt
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
| | - Courtney R. Rivet-Noor
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
| | - Andrea R. Merchak
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
| | - Jennifer L. Phillips
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Tim Bathe
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jeffrey L. Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, Charlottesville, VA 22908, USA
| |
Collapse
|
2
|
Christ W, Kapell S, Sobkowiak MJ, Mermelekas G, Evertsson B, Sork H, Saher O, Bazaz S, Gustafsson O, Cardenas EI, Villa V, Ricciarelli R, Sandberg JK, Bergquist J, Sturchio A, Svenningsson P, Malm T, Espay AJ, Pernemalm M, Lindén A, Klingström J, El Andaloussi S, Ezzat K. SARS-CoV-2 and HSV-1 Induce Amyloid Aggregation in Human CSF Resulting in Drastic Soluble Protein Depletion. ACS Chem Neurosci 2024; 15:4095-4104. [PMID: 39510798 DOI: 10.1021/acschemneuro.4c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
The corona virus (SARS-CoV-2) pandemic and the resulting long-term neurological complications in patients, known as long COVID, have renewed interest in the correlation between viral infections and neurodegenerative brain disorders. While many viruses can reach the central nervous system (CNS) causing acute or chronic infections (such as herpes simplex virus 1, HSV-1), the lack of a clear mechanistic link between viruses and protein aggregation into amyloids, a characteristic of several neurodegenerative diseases, has rendered such a connection elusive. Recently, we showed that viruses can induce aggregation of purified amyloidogenic proteins via the direct physicochemical mechanism of heterogeneous nucleation (HEN). In the current study, we show that the incubation of HSV-1 and SARS-CoV-2 with human cerebrospinal fluid (CSF) leads to the amyloid aggregation of several proteins known to be involved in neurodegenerative diseases, such as APLP1 (amyloid β precursor like protein 1), ApoE, clusterin, α2-macroglobulin, PGK-1 (phosphoglycerate kinase 1), ceruloplasmin, nucleolin, 14-3-3, transthyretin, and vitronectin. Importantly, UV-inactivation of SARS-CoV-2 does not affect its ability to induce amyloid aggregation, as amyloid formation is dependent on viral surface catalysis via HEN and not its ability to replicate. Additionally, viral amyloid induction led to a dramatic drop in the soluble protein concentration in the CSF. Our results show that viruses can physically induce amyloid aggregation of proteins in human CSF and result in soluble protein depletion, thus providing a potential mechanism that may account for the association between persistent and latent/reactivating brain infections and neurodegenerative diseases.
Collapse
Affiliation(s)
- Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Sebastian Kapell
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1 Chome-12-4 Sakamoto, Nagasaki 852-8102, Japan
| | - Michal J Sobkowiak
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Georgios Mermelekas
- Cancer Proteomics Mass Spectrometry, SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Björn Evertsson
- Department of Clinical Neuroscience and Centrum for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Helena Sork
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Osama Saher
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Safa Bazaz
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Oskar Gustafsson
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Eduardo I Cardenas
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Viviana Villa
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
| | - Roberta Ricciarelli
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Jonas Bergquist
- Department of Chemistry-Biomedical Center, Analytical Chemistry and Neuro Chemistry, Uppsala University, 75105 Uppsala, Sweden
| | - Andrea Sturchio
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, 17177 Stockholm, Sweden
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267-0525, United States
| | - Per Svenningsson
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267-0525, United States
| | - Maria Pernemalm
- Cancer Proteomics Mass Spectrometry, SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anders Lindén
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
- Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Samir El Andaloussi
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Kariem Ezzat
- Regain Therapeutics, Novum, 14157 Stockholm, Sweden
| |
Collapse
|
3
|
Zhao R. Can exercise benefits be harnessed with drugs? A new way to combat neurodegenerative diseases by boosting neurogenesis. Transl Neurodegener 2024; 13:36. [PMID: 39049102 PMCID: PMC11271207 DOI: 10.1186/s40035-024-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Adult hippocampal neurogenesis (AHN) is affected by multiple factors, such as enriched environment, exercise, ageing, and neurodegenerative disorders. Neurodegenerative disorders can impair AHN, leading to progressive neuronal loss and cognitive decline. Compelling evidence suggests that individuals engaged in regular exercise exhibit higher production of proteins that are essential for AHN and memory. Interestingly, specific molecules that mediate the effects of exercise have shown effectiveness in promoting AHN and cognition in different transgenic animal models. Despite these advancements, the precise mechanisms by which exercise mimetics induce AHN remain partially understood. Recently, some novel exercise molecules have been tested and the underlying mechanisms have been proposed, involving intercommunications between multiple organs such as muscle-brain crosstalk, liver-brain crosstalk, and gut-brain crosstalk. In this review, we will discuss the current evidence regarding the effects and potential mechanisms of exercise mimetics on AHN and cognition in various neurological disorders. Opportunities, challenges, and future directions in this research field are also discussed.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Palihati N, Tang Y, Yin Y, Yu D, Liu G, Quan Z, Ni J, Yan Y, Qing H. Clusterin is a Potential Therapeutic Target in Alzheimer's Disease. Mol Neurobiol 2024; 61:3836-3850. [PMID: 38017342 DOI: 10.1007/s12035-023-03801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
In recent years, Clusterin, a glycosylated protein with multiple biological functions, has attracted extensive research attention. It is closely associated with the physiological and pathological states within the organism. Particularly in Alzheimer's disease (AD) research, Clusterin plays a significant role in the disease's occurrence and progression. Numerous studies have demonstrated a close association between Clusterin and AD. Firstly, the expression level of Clusterin in the brain tissue of AD patients is closely related to pathological progression. Secondly, Clusterin is involved in the deposition and formation of β-amyloid, which is a crucial process in AD development. Furthermore, Clusterin may affect the pathogenesis of AD through mechanisms such as regulating inflammation, controlling cell apoptosis, and clearing pathological proteins. Therefore, further research on the relationship between Clusterin and AD will contribute to a deeper understanding of the etiology of this neurodegenerative disease and provide a theoretical basis for developing early diagnostic and therapeutic strategies for AD. This also makes Clusterin one of the research focuses as a potential biomarker for AD diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Nazhakaiti Palihati
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Ding Yu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yan Yan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China.
| |
Collapse
|
5
|
Beiter RM, Raghavan TP, Suchocki O, Ennerfelt HE, Rivet-Noor CR, Merchak AR, Phillips JL, Bathe T, Lukens JR, Prokop S, Dupree JL, Gaultier A. Oligomeric amyloid beta prevents myelination in a clusterin-dependent manner. RESEARCH SQUARE 2024:rs.3.rs-4415143. [PMID: 38853911 PMCID: PMC11160922 DOI: 10.21203/rs.3.rs-4415143/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background White matter loss is a well-documented phenomenon in Alzheimer's disease (AD) patients that has been recognized for decades. However, the underlying reasons for the failure of oligodendrocyte progenitor cells (OPCs) to repair myelin deficits in these patients remain elusive. A single nucleotide polymorphism (SNP) in Clusterin has been identified as a risk factor for late-onset Alzheimer's disease and linked to a decrease in white matter integrity in healthy adults, but its specific role in oligodendrocyte function and myelin maintenance in Alzheimer's disease pathology remains unclear. Methods To investigate the impact of Clusterin on OPCs in the context of Alzheimer's disease, we employed a combination of immunofluorescence and transmission electron microscopy techniques, primary culture of OPCs, and an animal model of Alzheimer's disease. Results Our findings demonstrate that Clusterin, a risk factor for late-onset AD, is produced by OPCs and inhibits their differentiation into oligodendrocytes. Specifically, we observed upregulation of Clusterin in OPCs in the 5xFAD mouse model of AD. We also found that the phagocytosis of debris, including amyloid beta (Aβ), myelin, and apoptotic cells leads to the upregulation of Clusterin in OPCs. In vivo experiments confirmed that Aβ oligomers stimulate Clusterin upregulation and that OPCs are capable of phagocytosing Aβ. Furthermore, we discovered that Clusterin significantly inhibits OPC differentiation and hinders the production of myelin proteins. Finally, we demonstrate that Clusterin inhibits OPC differentiation by reducing the production of IL-9 by OPCs. Conclusion Our data suggest that Clusterin may play a key role in the impaired myelin repair observed in AD and could serve as a promising therapeutic target for addressing AD-associated cognitive decline.
Collapse
|
6
|
Liu X, Su X, Chen M, Xie Y, Li M. Self-calibrating surface-enhanced Raman scattering-lateral flow immunoassay for determination of amyloid-β biomarker of Alzheimer's disease. Biosens Bioelectron 2024; 245:115840. [PMID: 37988777 DOI: 10.1016/j.bios.2023.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
Rapid early diagnosis of Alzheimer's disease (AD) is critical for its effective and prompt treatment since the clinically available treatments can only relieve the symptoms or slow the disease progression. However, it is still a grand challenge to accurately diagnose AD at its early stage because of the indiscernible early symptoms and the lack of sensitive detection tools. Here, we develop a self-calibrating surface-enhanced Raman scattering (SERS)-lateral flow immunoassay (LFIA) biosensor for quantitative analysis of amyloid-β1-42 (Aβ1-42) biomarker in biofluids, enabling accurate AD diagnosis. The designed SERS-LFIA biosensor makes full use of the unique aspects of the LFIA format and the SERS technique to quantify the Aβ1-42 level in complex biofluids with high sensitivity, excellent anti-interference capability, low-cost, and operation simplicity. The key aspect of the design of this biosensor is that internal standard (IS)-SERS nanoparticles are embedded in the test line of the test strip as a self-calibration unit for correction of fluctuations of SERS signals caused by various external factors such as test parameters and sample heterogeneity. We demonstrate significant improvement of the detection performance of the SERS-LFIA biosensor for ratiometric quantification of Aβ1-42 owing to the built-in IS in the test line. We expect that the present IS-based biosensing strategy provides a promising tool for accurate AD diagnosis and longitudinal monitoring of therapeutic response with great promises for clinical translation.
Collapse
Affiliation(s)
- Xinyu Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Xiaoming Su
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Mingyang Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
7
|
Bian X, Wang Q, Wang Y, Lou S. The function of previously unappreciated exerkines secreted by muscle in regulation of neurodegenerative diseases. Front Mol Neurosci 2024; 16:1305208. [PMID: 38249295 PMCID: PMC10796786 DOI: 10.3389/fnmol.2023.1305208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The initiation and progression of neurodegenerative diseases (NDs), distinguished by compromised nervous system integrity, profoundly disrupt the quality of life of patients, concurrently exerting a considerable strain on both the economy and the social healthcare infrastructure. Exercise has demonstrated its potential as both an effective preventive intervention and a rehabilitation approach among the emerging therapeutics targeting NDs. As the largest secretory organ, skeletal muscle possesses the capacity to secrete myokines, and these myokines can partially improve the prognosis of NDs by mediating the muscle-brain axis. Besides the well-studied exerkines, which are secreted by skeletal muscle during exercise that pivotally exert their beneficial function, the physiological function of novel exerkines, e.g., apelin, kynurenic acid (KYNA), and lactate have been underappreciated previously. Herein, this review discusses the roles of these novel exerkines and their mechanisms in regulating the progression and improvement of NDs, especially the significance of their functions in improving NDs' prognoses through exercise. Furthermore, several myokines with potential implications in ameliorating ND progression are proposed as the future direction for investigation. Elucidation of the function of exerkines secreted by skeletal muscle in the regulation of NDs advances the understanding of its pathogenesis and facilitates the development of therapeutics that intervene in these processes to cure NDs.
Collapse
Affiliation(s)
- Xuepeng Bian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qian Wang
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
8
|
Zhou J, Singh N, Galske J, Hudobenko J, Hu X, Yan R. BACE1 regulates expression of Clusterin in astrocytes for enhancing clearance of β-amyloid peptides. Mol Neurodegener 2023; 18:31. [PMID: 37143090 PMCID: PMC10161466 DOI: 10.1186/s13024-023-00611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Abnormal accumulation of amyloid beta peptide (Aβ) in the brain induces a cascade of pathological changes in Alzheimer's disease (AD), and inhibiting BACE1, which is required for Aβ generation, is therefore being explored for the treatment of AD by reducing Aβ accumulation. As Bace1 knockout mice exhibit increased number of reactive astrocytes and AD brains have reactive astrocytes that surround amyloid plaques, we investigated the role of BACE1 in astrocytes and determined whether BACE1 regulates astrocytic functions. METHODS We conducted unbiased single cell RNA-seq (scRNA-seq) using purified astrocytes from Bace1 KO mice and wild type control littermates. Similar scRNA-seq was also conducted using AD mice with conditional deletion of Bace1 in the adult stage (5xFAD;Bace1fl/fl;UBC-creER compared to 5xFAD;Bace1fl/fl controls). We compared the transcriptomes of astrocyte and reactive astrocyte clusters and identified several differentially expressed genes, which were further validated using Bace1 KO astrocyte cultures. Mice with astrocyte-specific Bace1 knockout in 5xFAD background were used to compare amyloid deposition. Mechanistic studies using cultured astrocytes were used to identify BACE1 substrates for changes in gene expression and signaling activity. RESULTS Among altered genes, Clusterin (Clu) and Cxcl14 were significantly upregulated and validated by measuring protein levels. Moreover, BACE1 deficiency enhanced both astrocytic Aβ uptake and degradation, and this effect was significantly attenuated by siRNA knockdown of Clu. Mechanistic study suggests that BACE1 deficiency abolishes cleavage of astrocytic insulin receptors (IR), and this may enhance expression of Clu and Cxcl14. Acutely isolated astrocytes from astrocyte-specific knockout of Bace1 mice (Bace1 fl/fl;Gfap-cre) show similar increases in CLU and IR. Furthermore, astrocyte-specific knockout of Bace1 in a 5xFAD background resulted in a significant attenuation in cortical Aβ plaque load through enhanced clearance. CONCLUSION Together, our study suggests that BACE1 in astrocytes regulates expression of Clu and Cxcl14, likely via the control of insulin receptor pathway, and inhibition of astrocytic BACE1 is a potential alternative strategy for enhancing Aβ clearance.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, United States
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, United States
| | - Neeraj Singh
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - James Galske
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Jacob Hudobenko
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Xiangyou Hu
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Riqiang Yan
- Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| |
Collapse
|
9
|
Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Hakami ZH, Khamjan NA, Saad HM, Batiha GES, De Waard M. A Potential Link Between Visceral Obesity and Risk of Alzheimer's Disease. Neurochem Res 2023; 48:745-766. [PMID: 36409447 DOI: 10.1007/s11064-022-03817-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia characterized by the deposition of amyloid beta (Aβ) plaques and tau-neurofibrillary tangles in the brain. Visceral obesity (VO) is usually associated with low-grade inflammation due to higher expression of pro-inflammatory cytokines by adipose tissue. The objective of the present review was to evaluate the potential link between VO and the development of AD. Tissue hypoxia in obesity promotes tissue injury, production of adipocytokines, and release of pro-inflammatory cytokines leading to an oxidative-inflammatory loop with induction of insulin resistance. Importantly, brain insulin signaling is involved in the pathogenesis of AD and lower cognitive function. Obesity and enlargement of visceral adipose tissue are associated with the deposition of Aβ. All of this is consonant with VO increasing the risk of AD through the dysregulation of adipocytokines which affect the development of AD. The activated nuclear factor kappa B (NF-κB) pathway in VO might be a potential link in the development of AD. Likewise, the higher concentration of advanced glycation end-products in VO could be implicated in the pathogenesis of AD. Taken together, different inflammatory signaling pathways are activated in VO that all have a negative impact on the cognitive function and progression of AD except hypoxia-inducible factor 1 which has beneficial and neuroprotective effects in mitigating the progression of AD. In addition, VO-mediated hypoadiponectinemia and leptin resistance may promote the progression of Aβ formation and tau phosphorylation with the development of AD. In conclusion, VO-induced AD is mainly mediated through the induction of oxidative stress, inflammatory changes, leptin resistance, and hypoadiponectinemia that collectively trigger Aβ formation and neuroinflammation. Thus, early recognition of VO by visceral adiposity index with appropriate management could be a preventive measure against the development of AD in patients with VO.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120, Saint-Egrève, France.,L'institut du thorax, INSERM, CNRS, UNIV NANTES, 44007, Nantes, France.,LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
10
|
Wang B, Zhong X, Fields L, Lu H, Zhu Z, Li L. Structural Proteomic Profiling of Cerebrospinal Fluids to Reveal Novel Conformational Biomarkers for Alzheimer's Disease. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:459-471. [PMID: 36745855 PMCID: PMC10276618 DOI: 10.1021/jasms.2c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Alzheimer's disease (AD) is the most common representation of dementia, with brain pathological hallmarks of protein abnormal aggregation, such as with amyloid beta and tau protein. It is well established that posttranslational modifications on tau protein, particularly phosphorylation, increase the likelihood of its aggregation and subsequent formation of neurofibrillary tangles, another hallmark of AD. As additional misfolded proteins presumably exist distinctly in AD disease states, which would serve as potential source of AD biomarkers, we used limited proteolysis-coupled with mass spectrometry (LiP-MS) to probe protein structural changes. After optimizing the LiP-MS conditions, we further applied this method to human cerebrospinal fluid specimens collected from healthy control, mild cognitive impairment (MCI), and AD subject groups to characterize proteome-wide misfolding tendencies as a result of disease progression. The fully tryptic peptides embedding LiP sites were compared with the half-tryptic peptides generated from internal cleavage of the same region to determine any structural unfolding or misfolding. We discovered hundreds of significantly up- and down-regulated peptides associated with MCI and AD indicating their potential structural changes in AD progression. Moreover, we detected 53 structurally changed regions in 12 proteins with high confidence between the healthy control and disease groups, illustrating the functional relevance of these proteins with AD progression. These newly discovered conformational biomarker candidates establish valuable future directions for exploring the molecular mechanism of designing therapeutic targets for AD.
Collapse
Affiliation(s)
- Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
11
|
Milinkeviciute G, Green KN. Clusterin/apolipoprotein J, its isoforms and Alzheimer's disease. Front Aging Neurosci 2023; 15:1167886. [PMID: 37122381 PMCID: PMC10133478 DOI: 10.3389/fnagi.2023.1167886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Giedre Milinkeviciute
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Giedre Milinkeviciute
| | - Kim N. Green
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
12
|
Kim YM, Choi SY, Hwang O, Lee JY. Pyruvate Prevents Dopaminergic Neurodegeneration and Motor Deficits in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Model of Parkinson's Disease. Mol Neurobiol 2022; 59:6956-6970. [PMID: 36057709 DOI: 10.1007/s12035-022-03017-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopamine(DA)rgic neurons in the substantia nigra of the midbrain, and primarily causes motor symptoms. While the pathological cause of PD remains uncertain, oxidative damage, neuroinflammation, and energy metabolic perturbation have been implicated. Pyruvate has been shown neuroprotective in animal models for many neurological disorders, presumably owing to its potent anti-oxidative, anti-inflammatory, and energy metabolic properties. We therefore investigated whether exogenous pyruvate could also protect nigral DA neurons from degeneration and reverse the associated motor deficits in an animal model of PD using the DA neuron-specific toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP (20 mg/kg) was injected four times every 2 h into the peritoneum of mice, which resulted in a massive loss of DA neurons as well as an increase in neuronal death and cytosolic labile zinc overload. There were rises in inflammatory and oxidative responses, a drop in the striatal DA level, and the emergence of PD-related motor deficits. In comparison, when sodium pyruvate was administered intraperitoneally at a daily dose of 250 mg/kg for 7 days starting 2 h after the final MPTP treatment, significant relief in the MPTP-induced neuropathology, neurodegeneration, DA depletion, and motor symptoms was observed. Equiosmolar dose of NaCl had no neuroprotective effect, and lower doses of sodium pyruvate did not have any statistically significant effects. These findings suggest that pyruvate has therapeutic potential for the treatment of PD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun-Mi Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Su Yeon Choi
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
13
|
Kim YM, Park S, Choi SY, Oh SB, Jung M, Pack CG, Hwang JJ, Tak E, Lee JY. Clusterin Binding Modulates the Aggregation and Neurotoxicity of Amyloid-β(1-42). Mol Neurobiol 2022; 59:6228-6244. [PMID: 35904715 DOI: 10.1007/s12035-022-02973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) aggregates in the brain. Clusterin (CLU), also known as apolipoprotein J, is a potent risk factor associated with AD pathogenesis, in which Aβ aggregation is essentially involved. We observed close colocalization of CLU and Aβ(1-42) (Aβ42) in parenchymal amyloid plaques or vascular amyloid deposits in the brains of human amyloid precursor protein (hAPP)-transgenic Tg2576 mice. Therefore, to elucidate the binding interaction between CLU and Aβ42 and its impact on amyloid aggregation and toxicity, the two synthetic proteins were incubated together under physiological conditions, and their structural and morphological variations were investigated using biochemical, biophysical, and microscopic analyses. Synthetic CLU spontaneously bound to different possible variants of Aβ42 aggregates with very high affinity (Kd = 2.647 nM) in vitro to form solid CLU-Aβ42 complexes. This CLU binding prevented further aggregation of Aβ42 into larger oligomers or fibrils, enriching the population of smaller Aβ42 oligomers and protofibrils and monomers. CLU either alleviated or augmented Aβ42-induced cytotoxicity and apoptosis in the neuroblastoma-derived SH-SY5Y and N2a cells, depending on the incubation period and the molar ratio of CLU:Aβ42 involved in the reaction before addition to the cells. Thus, the effects of CLU on Aβ42-induced cytotoxicity were likely determined by the extent to which it bound and sequestered toxic Aβ42 oligomers or protofibrils. These findings suggest that CLU could influence amyloid neurotoxicity and pathogenesis by modulating Aβ aggregation.
Collapse
Affiliation(s)
- Yun-Mi Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - SuJi Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Su Yeon Choi
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Shin Bi Oh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - MinKyo Jung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jung Jin Hwang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Eunyoung Tak
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea. .,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
14
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
15
|
Ring J, Tadic J, Ristic S, Poglitsch M, Bergmann M, Radic N, Mossmann D, Liang Y, Maglione M, Jerkovic A, Hajiraissi R, Hanke M, Küttner V, Wolinski H, Zimmermann A, Domuz Trifunović L, Mikolasch L, Moretti DN, Broeskamp F, Westermayer J, Abraham C, Schauer S, Dammbrueck C, Hofer SJ, Abdellatif M, Grundmeier G, Kroemer G, Braun RJ, Hansen N, Sommer C, Ninkovic M, Seba S, Rockenfeller P, Vögtle F, Dengjel J, Meisinger C, Keller A, Sigrist SJ, Eisenberg T, Madeo F. The HSP40 chaperone Ydj1 drives amyloid beta 42 toxicity. EMBO Mol Med 2022; 14:e13952. [PMID: 35373908 PMCID: PMC9081910 DOI: 10.15252/emmm.202113952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 01/22/2023] Open
Abstract
Amyloid beta 42 (Abeta42) is the principal trigger of neurodegeneration during Alzheimer's disease (AD). However, the etiology of its noxious cellular effects remains elusive. In a combinatory genetic and proteomic approach using a yeast model to study aspects of intracellular Abeta42 toxicity, we here identify the HSP40 family member Ydj1, the yeast orthologue of human DnaJA1, as a crucial factor in Abeta42-mediated cell death. We demonstrate that Ydj1/DnaJA1 physically interacts with Abeta42 (in yeast and mouse), stabilizes Abeta42 oligomers, and mediates their translocation to mitochondria. Consequently, deletion of YDJ1 strongly reduces co-purification of Abeta42 with mitochondria and prevents Abeta42-induced mitochondria-dependent cell death. Consistently, purified DnaJ chaperone delays Abeta42 fibrillization in vitro, and heterologous expression of human DnaJA1 induces formation of Abeta42 oligomers and their deleterious translocation to mitochondria in vivo. Finally, downregulation of the Ydj1 fly homologue, Droj2, improves stress resistance, mitochondrial morphology, and memory performance in a Drosophila melanogaster AD model. These data reveal an unexpected and detrimental role for specific HSP40s in promoting hallmarks of Abeta42 toxicity.
Collapse
|
16
|
Yuste-Checa P, Bracher A, Hartl FU. The chaperone Clusterin in neurodegeneration-friend or foe? Bioessays 2022; 44:e2100287. [PMID: 35521968 DOI: 10.1002/bies.202100287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022]
Abstract
Fibrillar protein aggregates are the pathological hallmark of a group of age-dependent neurodegenerative conditions, including Alzheimer's and Parkinson's disease. Aggregates of the microtubule-associated protein Tau are observed in Alzheimer's disease and primary tauopathies. Tau pathology propagates from cell to cell in a prion-like process that is likely subject to modulation by extracellular chaperones such as Clusterin. We recently reported that Clusterin delayed Tau fibril formation but enhanced the activity of Tau oligomers to seed aggregation of endogenous Tau in a cellular model. In contrast, Clusterin inhibited the propagation of α-Synuclein aggregates associated with Parkinson's disease. These findings raise the possibility of a mechanistic link between Clusterin upregulation observed in Alzheimer's disease and the progression of Tau pathology. Here we review the diverse functions of Clusterin in the pathogenesis of neurodegenerative diseases, focusing on evidence that Clusterin may act either as a suppressor or enhancer of pathology.
Collapse
Affiliation(s)
- Patricia Yuste-Checa
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
17
|
Drummond E, Kavanagh T, Pires G, Marta-Ariza M, Kanshin E, Nayak S, Faustin A, Berdah V, Ueberheide B, Wisniewski T. The amyloid plaque proteome in early onset Alzheimer's disease and Down syndrome. Acta Neuropathol Commun 2022; 10:53. [PMID: 35418158 PMCID: PMC9008934 DOI: 10.1186/s40478-022-01356-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid plaques contain many proteins in addition to beta amyloid (Aβ). Previous studies examining plaque-associated proteins have shown these additional proteins are important; they provide insight into the factors that drive amyloid plaque development and are potential biomarkers or therapeutic targets for Alzheimer's disease (AD). The aim of this study was to comprehensively identify proteins that are enriched in amyloid plaques using unbiased proteomics in two subtypes of early onset AD: sporadic early onset AD (EOAD) and Down Syndrome (DS) with AD. We focused our study on early onset AD as the drivers of the more aggressive pathology development in these cases is unknown and it is unclear whether amyloid-plaque enriched proteins differ between subtypes of early onset AD. Amyloid plaques and neighbouring non-plaque tissue were microdissected from human brain sections using laser capture microdissection and label-free LC-MS was used to quantify the proteins present. 48 proteins were consistently enriched in amyloid plaques in EOAD and DS. Many of these proteins were more significantly enriched in amyloid plaques than Aβ. The most enriched proteins in amyloid plaques in both EOAD and DS were: COL25A1, SMOC1, MDK, NTN1, OLFML3 and HTRA1. Endosomal/lysosomal proteins were particularly highly enriched in amyloid plaques. Fluorescent immunohistochemistry was used to validate the enrichment of four proteins in amyloid plaques (moesin, ezrin, ARL8B and SMOC1) and to compare the amount of total Aβ, Aβ40, Aβ42, phosphorylated Aβ, pyroglutamate Aβ species and oligomeric species in EOAD and DS. These studies showed that phosphorylated Aβ, pyroglutamate Aβ species and SMOC1 were significantly higher in DS plaques, while oligomers were significantly higher in EOAD. Overall, we observed that amyloid plaques in EOAD and DS largely contained the same proteins, however the amount of enrichment of some proteins was different in EOAD and DS. Our study highlights the significant enrichment of many proteins in amyloid plaques, many of which may be potential therapeutic targets and/or biomarkers for AD.
Collapse
Affiliation(s)
- Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Geoffrey Pires
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Mitchell Marta-Ariza
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Shruti Nayak
- Merck & Co., Inc, Computational & Structural Chemistry, Kenilworth, NJ, USA
| | - Arline Faustin
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Valentin Berdah
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
- Departments of Pathology and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Apolipoprotein J Attenuates Vascular Restenosis by Promoting Autophagy and Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells. J Cardiovasc Transl Res 2022; 15:1086-1099. [PMID: 35244876 DOI: 10.1007/s12265-022-10227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
Abstract
This research investigated the mechanism of CLU in vascular restenosis by regulating vascular smooth muscle cell (VSMC) proliferation and migration. Firstly, rat models of balloon injury (BI) were established, followed by the assessment of the injury to the common carotid artery. The effect of CLU on the intimal hyperplasia of BI rats was measured after the intervention in CLU, in addition to the evaluation of proliferation, migration, and autophagy of VSMCs. Moreover, the interaction between ATG and LC3 was analyzed, followed by validation of the role of autophagy in CLU's regulation on the proliferation and migration of VSMCs. It was found that CLU was highly expressed in BI rats. Altogether, our findings indicated that CLU was highly expressed in vascular restenosis, and CLU over-expression promoted the binding between ATG3 and LC3, thus facilitating VSMC autophagy and eventually attenuating intimal hyperplasia and vascular restenosis.
Collapse
|
19
|
Spatharas PM, Nasi GI, Tsiolaki PL, Theodoropoulou MK, Papandreou NC, Hoenger A, Trougakos IP, Iconomidou VA. Clusterin in Alzheimer's disease: An amyloidogenic inhibitor of amyloid formation? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166384. [DOI: 10.1016/j.bbadis.2022.166384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/20/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
|
20
|
The extracellular chaperone Clusterin enhances Tau aggregate seeding in a cellular model. Nat Commun 2021; 12:4863. [PMID: 34381050 PMCID: PMC8357826 DOI: 10.1038/s41467-021-25060-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Spreading of aggregate pathology across brain regions acts as a driver of disease progression in Tau-related neurodegeneration, including Alzheimer’s disease (AD) and frontotemporal dementia. Aggregate seeds released from affected cells are internalized by naïve cells and induce the prion-like templating of soluble Tau into neurotoxic aggregates. Here we show in a cellular model system and in neurons that Clusterin, an abundant extracellular chaperone, strongly enhances Tau aggregate seeding. Upon interaction with Tau aggregates, Clusterin stabilizes highly potent, soluble seed species. Tau/Clusterin complexes enter recipient cells via endocytosis and compromise the endolysosomal compartment, allowing transfer to the cytosol where they propagate aggregation of endogenous Tau. Thus, upregulation of Clusterin, as observed in AD patients, may enhance Tau seeding and possibly accelerate the spreading of Tau pathology. Variants of the extracellular chaperone Clusterin are associated with Alzheimer’s disease (AD) and Clusterin levels are elevated in AD patient brains. Here, the authors show that Clusterin binds to oligomeric Tau, which enhances the seeding capacity of Tau aggregates upon cellular uptake. They also demonstrate that Tau/Clusterin complexes enter cells via the endosomal pathway, resulting in damage to endolysosomes and entry into the cytosol, where they induce the aggregation of endogenous, soluble Tau.
Collapse
|
21
|
Nakai T, Yamada K, Mizoguchi H. Alzheimer's Disease Animal Models: Elucidation of Biomarkers and Therapeutic Approaches for Cognitive Impairment. Int J Mol Sci 2021; 22:5549. [PMID: 34074018 PMCID: PMC8197360 DOI: 10.3390/ijms22115549] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disorder. It is widely accepted that AD is mainly caused by the accumulation of extracellular amyloid β (Aβ) and intracellular neurofibrillary tau tangles. Aβ begins to accumulate years before the onset of cognitive impairment, suggesting that the benefit of currently available interventions would be greater if they were initiated in the early phases of AD. To understand the mechanisms of AD pathogenesis, various transgenic mouse models with an accelerated accumulation of Aβ and tau tangles have been developed. However, none of these models exhibit all pathologies present in human AD. To overcome these undesirable phenotypes, APP knock-in mice, which were presented with touchscreen-based tasks, were developed to better evaluate the efficacy of candidate therapeutics in mouse models of early-stage AD. This review assesses several AD mouse models from the aspect of biomarkers and cognitive impairment and discusses their potential as tools to provide novel AD therapeutic approaches.
Collapse
Affiliation(s)
- Tsuyoshi Nakai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.N.); (K.Y.)
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
22
|
Zhou J, Bao Q, Liang S, Guo H, Meng X, Zhang G, Li P. rs1344706 polymorphism of zinc finger protein 804a (ZNF804a) gene related to the integrity of white matter fiber bundle in schizophrenics. Exp Ther Med 2021; 22:778. [PMID: 34055077 PMCID: PMC8145689 DOI: 10.3892/etm.2021.10210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022] Open
Abstract
Genetic factors play an important role in the pathogenesis of schizophrenia (SZ), and the zinc finger protein 804a (ZNF804a) gene has been considered to be a risk gene for schizophrenia. In the present study, the correlation between rs1344706 polymorphism of ZNF804a gene and the integrity of white matter in schizophrenic cases was explored. A total of 60 SZ patients and 100 healthy controls (HC) were included to undergo head MRI. According to the genotyping of rs1344706 in ZNF804a, the subjects in each group were divided into a normal allele and risk allele-carrying group. The imaging data were preprocessed by PANDA software, and thefractional anisotropy (FA) of each subject was calculated. With SPM8 software, age and years of education were considered as covariates, and diagnosis as well as genotype (AA, GG/AG) were considered as intergroup factors. Four groups of FA images were analyzed by two-factor analysis of variance. The FA value of the right posterior radiocrown in the patient group was lower than that in the control group, and the difference was statistically significant. The FA value of the right lower frontal occipital tract and the right upper radiocrown in the G allele carrier group was lower than that in the A allele homozygous group. There was detection of an interaction between the FA value of the splenium of corpus callosum, the body part of the corpus callosum and the right cingulate tract. In the present study, it was demonstrated that the rs1344706 GG/AG genotype of the ZNF804a gene locus in SZ patients suffered from abnormal structure in a specific region of the brain. This finding indicated that the rs1344706 single nucleotide polymorphism of the ZNF804a gene may affect the integrity of the white matter of the brain in SZ patients and may be involved in the pathophysiological mechanism of SZ.
Collapse
Affiliation(s)
- Jian Zhou
- Department of MRI, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Quan Bao
- Department of MRI, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Shuang Liang
- Department of Radiology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Hong Guo
- Department of Radiology, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Xin Meng
- Department of MRI, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Guangfeng Zhang
- Department of MRI, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
23
|
Trujillo-Estrada L, Sanchez-Mejias E, Sanchez-Varo R, Garcia-Leon JA, Nuñez-Diaz C, Davila JC, Vitorica J, LaFerla FM, Moreno-Gonzalez I, Gutierrez A, Baglietto-Vargas D. Animal and Cellular Models of Alzheimer's Disease: Progress, Promise, and Future Approaches. Neuroscientist 2021; 28:572-593. [PMID: 33769131 DOI: 10.1177/10738584211001753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease affecting over 45 million people worldwide. Transgenic mouse models have made remarkable contributions toward clarifying the pathophysiological mechanisms behind the clinical manifestations of AD. However, the limited ability of these in vivo models to accurately replicate the biology of the human disease have precluded the translation of promising preclinical therapies to the clinic. In this review, we highlight several major pathogenic mechanisms of AD that were discovered using transgenic mouse models. Moreover, we discuss the shortcomings of current animal models and the need to develop reliable models for the sporadic form of the disease, which accounts for the majority of AD cases, as well as human cellular models to improve success in translating results into human treatments.
Collapse
Affiliation(s)
- Laura Trujillo-Estrada
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jose Carlos Davila
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Ines Moreno-Gonzalez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Baglietto-Vargas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
24
|
Moezzi SMI, Mozafari N, Fazel-Hoseini SM, Nadimi-Parashkoohi S, Abbasi H, Ashrafi H, Azadi A. Apolipoprotein J in Alzheimer's Disease: Shedding Light on Its Role with Cell Signaling Pathway Perspective and Possible Therapeutic Approaches. ACS Chem Neurosci 2020; 11:4060-4072. [PMID: 33251792 DOI: 10.1021/acschemneuro.0c00637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Apolipoprotein J (ApoJ), or clusterin, is one of the main apolipoproteins in the brain. It is synthesized and released from astrocytes in a healthy brain, and its expression increases in neurodegenerative disorders. Genetic evidence has suggested an association between ApoJ polymorphism and the risk of Alzheimer's disease (AD)-it is now considered the third main genetic risk factor for late-onset AD. However, the role of ApoJ overexpression in the state of disorder, toxicity, or protection is not yet clear. Since ApoJ plays different roles in AD, we review the function of ApoJ using different cell signaling pathways in AD and outline its paradoxical roles in AD. ApoJ helps in amyloid-beta (Aβ) clearance. Vice versa, ApoJ gene knock-out causes fibrillary Aβ reduction and prevents Aβ-induced neuron cell death. Understanding ApoJ, through various cellular signaling pathways, creates a new perspective on AD's cellular principles. The overall message is that ApoJ can be a valuable tool in controlling AD.
Collapse
Affiliation(s)
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sadra Nadimi-Parashkoohi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hosein Abbasi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Hong SW, Lee J, Kim MJ, Moon SJ, Kwon H, Park SE, Rhee EJ, Lee WY. Clusterin Protects Lipotoxicity-Induced Apoptosis via Upregulation of Autophagy in Insulin-Secreting Cells. Endocrinol Metab (Seoul) 2020; 35:943-953. [PMID: 33261311 PMCID: PMC7803614 DOI: 10.3803/enm.2020.768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is a great need to discover factors that could protect pancreatic β-cells from apoptosis and thus prevent diabetes mellitus. Clusterin (CLU), a chaperone protein, plays an important role in cell protection in numerous cells and is involved in various cellular mechanisms, including autophagy. In the present study, we investigated the protective role of CLU through autophagy regulation in pancreatic β-cells. METHODS To identify the protective role of CLU, mouse insulinoma 6 (MIN6) cells were incubated with CLU and/or free fatty acid (FFA) palmitate, and cellular apoptosis and autophagy were examined. RESULTS Treatment with CLU remarkably upregulated microtubule-associated protein 1-light chain 3 (LC3)-II conversion in a doseand time-dependent manner with a significant increase in the autophagy-related 3 (Atg3) gene expression level, which is a mediator of LC3-II conversion. Moreover, co-immunoprecipitation and fluorescence microscopy experiments showed that the molecular interaction of LC3 with Atg3 and p62 was markedly increased by CLU. Stimulation of LC3-II conversion by CLU persisted in lipotoxic conditions, and FFA-induced apoptosis and dysfunction were simultaneously improved by CLU treatment. Finally, inhibition of LC3-II conversion by Atg3 gene knockdown markedly attenuated the cytoprotective effect of CLU. CONCLUSION Taken together, these findings suggest that CLU protects pancreatic β-cells against lipotoxicity-induced apoptosis via autophagy stimulation mediated by facilitating LC3-II conversion. Thus, CLU has therapeutic effects on FFA-induced pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Min Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| |
Collapse
|
26
|
Wojtas AM, Sens JP, Kang SS, Baker KE, Berry TJ, Kurti A, Daughrity L, Jansen-West KR, Dickson DW, Petrucelli L, Bu G, Liu CC, Fryer JD. Astrocyte-derived clusterin suppresses amyloid formation in vivo. Mol Neurodegener 2020; 15:71. [PMID: 33246484 PMCID: PMC7694353 DOI: 10.1186/s13024-020-00416-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Accumulation of amyloid-β (Aβ) peptide in the brain is a pathological hallmark of Alzheimer's disease (AD). The clusterin (CLU) gene confers a risk for AD and CLU is highly upregulated in AD patients, with the common non-coding, protective CLU variants associated with increased expression. Although there is strong evidence implicating CLU in amyloid metabolism, the exact mechanism underlying the CLU involvement in AD is not fully understood or whether physiologic alterations of CLU levels in the brain would be protective. RESULTS We used a gene delivery approach to overexpress CLU in astrocytes, the major source of CLU expression in the brain. We found that CLU overexpression resulted in a significant reduction of total and fibrillar amyloid in both cortex and hippocampus in the APP/PS1 mouse model of AD amyloidosis. CLU overexpression also ameliorated amyloid-associated neurotoxicity and gliosis. To complement these overexpression studies, we also analyzed the effects of haploinsufficiency of Clu using heterozygous (Clu+/-) mice and control littermates in the APP/PS1 model. CLU reduction led to a substantial increase in the amyloid plaque load in both cortex and hippocampus in APP/PS1; Clu+/- mice compared to wild-type (APP/PS1; Clu+/+) littermate controls, with a concomitant increase in neuritic dystrophy and gliosis. CONCLUSIONS Thus, both physiologic ~ 30% overexpression or ~ 50% reduction in CLU have substantial impacts on amyloid load and associated pathologies. Our results demonstrate that CLU plays a major role in Aβ accumulation in the brain and suggest that efforts aimed at CLU upregulation via pharmacological or gene delivery approaches offer a promising therapeutic strategy to regulate amyloid pathology.
Collapse
Affiliation(s)
- Aleksandra M. Wojtas
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| | - Jonathon P. Sens
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| | - Silvia S. Kang
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Kelsey E. Baker
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
| | - Taylor J. Berry
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
| | - Lillian Daughrity
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Karen R. Jansen-West
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Birdsall Research Building BI235, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Collaborative Research Building CR03-010, 13400 E. Shea Blvd, Scottsdale, AZ 85259 USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ 85259 USA
| |
Collapse
|
27
|
Chen Z, Fan Z, Dou X, Zhou Q, Zeng G, Liu L, Chen W, Lan R, Liu W, Ru G, Yu L, He QY, Chen L. Inactivation of tumor suppressor gene Clusterin leads to hyperactivation of TAK1-NF-κB signaling axis in lung cancer cells and denotes a therapeutic opportunity. Am J Cancer Res 2020; 10:11520-11534. [PMID: 33052230 PMCID: PMC7545994 DOI: 10.7150/thno.44829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose: Clinical success of precision medicine is severely limited by de novo or acquired drug resistance. It remains a clinically unmet need to treat these patients. Tumor suppressor genes (TSGs) play a critical role in tumorigenesis and impact the therapeutic effect of various treatments. Experimental Design: Using clinical data, in vitro cell line data and in vivo mouse model data, we revealed the tumor suppressive role of Clusterin in lung cancer. We also delineated the signaling cascade elicited by loss of function of CLU in NSCLC cells and tested precision medicine for CLU deficient lung cancers. Results: CLU is a potent and clinically relevant TSG in lung cancer. Mechanistically, CLU inhibits TGFBR1 to recruit TRAF6/TAB2/TAK1 complex and thus inhibits activation of TAK1- NF-κB signaling axis. Lung cancer cells with loss of function of CLU show exquisite sensitivity to TAK1 inhibitors. Importantly, we show that a significant portion of Kras mutation positive NSCLC patients are concurrently deficient of CLU and that TAK1 kinase inhibitor synergizes with existing drugs to treat this portion of lung cancers patients. Conclusions: Combinational treatment with TAK1 inhibitor and MEK1/2 inhibitor effectively shrank Kras mutation positive and CLU deficient NSCLC tumors. Moreover, we put forward a concept that loss of function of a TSG rewires signaling network and thereby creates an Achilles' heel in tumor cells which could be exploited in precision medicine.
Collapse
|
28
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
29
|
Yang H, Gu S, Wu Y, Jiang Y, Zhao J, Cheng Z. Plasma Protein Panels for Mild Cognitive Impairment Among Elderly Chinese Individuals with Different Educational Backgrounds. J Mol Neurosci 2020; 70:1629-1638. [PMID: 32662047 DOI: 10.1007/s12031-020-01659-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022]
Abstract
To explore plasma protein panels as potential biomarkers to screen for mild cognitive impairment (MCI) among elderly Chinese individuals with different educational backgrounds. Forty-four illiterate, 36 lower education (1-6 years), and 55 higher education (7 years or more) elderly individuals were included in the present study. Among all subjects, 67 were healthy individuals and 68 were diagnosed with MCI. Fifty plasma proteins in blood samples collected from these subjects were analyzed via the Luminex assay. Binary logistic regression was utilized to explore diagnostic models for MCI among the three educational subgroups. Then, receiver operating characteristic (ROC) curves were conducted for the clinical validity of the MCI models. Among the analyzed proteins, clusterin was used in the model of MCI among the total sample with a sensitivity (se) of 67.6%, a specificity (sp) of 59.7%, and a classification rate of 63.68%. The MCI model for the illiterate group included cystatin C, plasminogen activator inhibitor-1, and apolipoprotein A-I (se: 71.4%, sp.: 82.6%, accuracy: 77.25%). The sensitivity, specificity, and classification rate of the diagnostic model of MCI in elderly adults with lower education (human serum albumin) were each 75.0%. Additionally, the sensitivity, specificity, and accuracy rate of the diagnostic model for MCI elderly individuals with higher education (alpha-acid glycoprotein + soluble intercellular adhesion molecule-1 + pancreatic polypeptide) were 77.8%, 89.3%, and 83.60%, respectively. The performance of diagnostic models for MCI based on different educational levels is superior to that of diagnostic models for MCI without grouping by educational level.
Collapse
Affiliation(s)
- Hongyu Yang
- Wuxi Mental Health Center, Nanjing Medical University, No.156 Qianrong Road, Wuxi, Jiangsu Province, China
| | - Shouquan Gu
- Wuxi Mental Health Center, Nanjing Medical University, No.156 Qianrong Road, Wuxi, Jiangsu Province, China
| | - Yue Wu
- Wuxi Mental Health Center, Nanjing Medical University, No.156 Qianrong Road, Wuxi, Jiangsu Province, China
| | - Yan Jiang
- Wuxi Mental Health Center, Nanjing Medical University, No.156 Qianrong Road, Wuxi, Jiangsu Province, China
| | - Jinfa Zhao
- Graduate School, Wannan Medical College, No.22 Wenchang Road, Wuhu, Anhui Province, China
| | - Zaohuo Cheng
- Wuxi Mental Health Center, Nanjing Medical University, No.156 Qianrong Road, Wuxi, Jiangsu Province, China.
| |
Collapse
|
30
|
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. Nat Rev Neurol 2020; 16:30-42. [PMID: 31827267 PMCID: PMC7268202 DOI: 10.1038/s41582-019-0281-2] [Citation(s) in RCA: 474] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Abstract
The shared role of amyloid-β (Aβ) deposition in cerebral amyloid angiopathy (CAA) and Alzheimer disease (AD) is arguably the clearest instance of crosstalk between neurodegenerative and cerebrovascular processes. The pathogenic pathways of CAA and AD intersect at the levels of Aβ generation, its circulation within the interstitial fluid and perivascular drainage pathways and its brain clearance, but diverge in their mechanisms of brain injury and disease presentation. Here, we review the evidence for and the pathogenic implications of interactions between CAA and AD. Both pathologies seem to be driven by impaired Aβ clearance, creating conditions for a self-reinforcing cycle of increased vascular Aβ, reduced perivascular clearance and further CAA and AD progression. Despite the close relationship between vascular and plaque Aβ deposition, several factors favour one or the other, such as the carboxy-terminal site of the peptide and specific co-deposited proteins. Amyloid-related imaging abnormalities that have been seen in trials of anti-Aβ immunotherapy are another probable intersection between CAA and AD, representing overload of perivascular clearance pathways and the effects of removing Aβ from CAA-positive vessels. The intersections between CAA and AD point to a crucial role for improving vascular function in the treatment of both diseases and indicate the next steps necessary for identifying therapies.
Collapse
Affiliation(s)
- Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Brian J Bacskai
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mar Hernandez-Guillamon
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeremy Pruzin
- Center for Alzheimer Research and Treatment, Brigham & Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa Sperling
- Center for Alzheimer Research and Treatment, Brigham & Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Singh S, Singh TG. Role of Nuclear Factor Kappa B (NF-κB) Signalling in Neurodegenerative Diseases: An Mechanistic Approach. Curr Neuropharmacol 2020; 18:918-935. [PMID: 32031074 PMCID: PMC7709146 DOI: 10.2174/1570159x18666200207120949] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
A transcriptional regulatory nuclear factor kappa B (NF-κB) protein is a modulator of cellular biological activity via binding to a promoter region in the nucleus and transcribing various protein genes. The recent research implicated the intensive role of nuclear factor kappa B (NF-κB) in diseases like autoimmune disorder, inflammatory, cardiovascular and neurodegenerative diseases. Therefore, targeting the nuclear factor kappa B (NF-κB) protein offers a new opportunity as a therapeutic approach. Activation of IκB kinase/NF-κB signaling pathway leads to the development of various pathological conditions in human beings, such as neurodegenerative, inflammatory disorders, autoimmune diseases, and cancer. Therefore, the transcriptional activity of IκB kinase/NF- κB is strongly regulated at various cascade pathways. The nuclear factor NF-kB pathway plays a major role in the expression of pro-inflammatory genes, including cytokines, chemokines, and adhesion molecules. In response to the diverse stimuli, the cytosolic sequestered NF-κB in an inactivated form by binding with an inhibitor molecule protein (IkB) gets phosphorylated and translocated into the nucleus further transcribing various genes necessary for modifying various cellular functions. The various researches confirmed the role of different family member proteins of NF-κB implicated in expressing various genes products and mediating various cellular cascades. MicroRNAs, as regulators of NF- κB microRNAs play important roles in the regulation of the inflammatory process. Therefore, the inhibitor of NF-κB and its family members plays a novel therapeutic target in preventing various diseases. Regulation of NF- κB signaling pathway may be a safe and effective treatment strategy for various disorders.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
32
|
Wang J, Zhang X, Zhu B, Fu P. Association of Clusterin Levels in Cerebrospinal Fluid with Synaptic Degeneration Across the Alzheimer's Disease Continuum. Neuropsychiatr Dis Treat 2020; 16:183-190. [PMID: 32021212 PMCID: PMC6980869 DOI: 10.2147/ndt.s224877] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Although emerging evidence has suggested that clusterin is involved in the pathogenesis of Alzheimer's disease (AD), the association of clusterin with synaptic degeneration in living human is unclear. In the present study, we aimed to examine the association of CSF clusterin levels with synaptic degeneration in individuals with different severities of cognitive impairment. PATIENTS AND METHODS In the present study, we compared levels of clusterin in CSF among individuals with normal cognition (NC), mild cognitive impairment (MCI), and AD. Further, linear regression models were performed to examine the association of CSF clusterin with neurogranin (NG, reflecting synaptic degeneration) with adjustment of several potential confounders. RESULTS We found that CSF clusterin levels were positively correlated with NG in the NC and MCI groups, but not the AD group. In all subjects, linear regression models suggested that clusterin levels were positively associated with NG levels independent of age, gender, apolipoprotein E4 (APOE4) genotype, clinical diagnosis, and CSF Aβ42 levels. CONCLUSION Our data indicated that clusterin was associated with CSF NG levels among older individuals with different severities of cognitive impairment.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, Taizhou First People's Hospital, Zhejiang, People's Republic of China
| | - Xin Zhang
- Department of Neurology, Taizhou First People's Hospital, Zhejiang, People's Republic of China
| | - Bihong Zhu
- Department of Neurology, Taizhou First People's Hospital, Zhejiang, People's Republic of China
| | - Pan Fu
- Department of Neurology, Taizhou First People's Hospital, Zhejiang, People's Republic of China
| | | |
Collapse
|
33
|
Dynamics of clusterin protein expression in the brain and plasma following experimental traumatic brain injury. Sci Rep 2019; 9:20208. [PMID: 31882899 PMCID: PMC6934775 DOI: 10.1038/s41598-019-56683-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
Progress in the preclinical and clinical development of neuroprotective and antiepileptogenic treatments for traumatic brain injury (TBI) necessitates the discovery of prognostic biomarkers for post-injury outcome. Our previous mRNA-seq data revealed a 1.8–2.5 fold increase in clusterin mRNA expression in lesioned brain areas in rats with lateral fluid-percussion injury (FPI)-induced TBI. On this basis, we hypothesized that TBI leads to increases in the brain levels of clusterin protein, and consequently, increased plasma clusterin levels. For evaluation, we induced TBI in adult male Sprague-Dawley rats (n = 80) by lateral FPI. We validated our mRNA-seq findings with RT-qPCR, confirming increased clusterin mRNA levels in the perilesional cortex (FC 3.3, p < 0.01) and ipsilateral thalamus (FC 2.4, p < 0.05) at 3 months post-TBI. Immunohistochemistry revealed a marked increase in extracellular clusterin protein expression in the perilesional cortex and ipsilateral hippocampus (7d to 1 month post-TBI), and ipsilateral thalamus (14d to 12 months post-TBI). In the thalamus, punctate immunoreactivity was most intense around activated microglia and mitochondria. Enzyme-linked immunoassays indicated that an acute 15% reduction, rather than an increase in plasma clusterin levels differentiated animals with TBI from sham-operated controls (AUC 0.851, p < 0.05). Our findings suggest that plasma clusterin is a candidate biomarker for acute TBI diagnosis.
Collapse
|
34
|
de Retana SF, Marazuela P, Solé M, Colell G, Bonaterra A, Sánchez-Quesada JL, Montaner J, Maspoch D, Cano-Sarabia M, Hernández-Guillamon M. Peripheral administration of human recombinant ApoJ/clusterin modulates brain beta-amyloid levels in APP23 mice. ALZHEIMERS RESEARCH & THERAPY 2019; 11:42. [PMID: 31077261 PMCID: PMC6511153 DOI: 10.1186/s13195-019-0498-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Background ApoJ/clusterin is a multifunctional protein highly expressed in the brain. The implication of ApoJ in β-amyloid (Aβ) fibrillization and clearance in the context of Alzheimer’s disease has been widely studied, although the source and concentration of ApoJ that promotes or inhibits Aβ cerebral accumulation is not clear yet. ApoJ is abundant in plasma and approximately 20% can appear bound to HDL-particles. In this regard, the impact of plasmatic ApoJ and its lipidation status on cerebral β-amyloidosis is still not known. Hence, our main objective was to study the effect of a peripheral increase of free ApoJ or reconstituted HDL particles containing ApoJ in an experimental model of cerebral β-amyloidosis. Methods Fourteen-month-old APP23 transgenic mice were subjected to subchronic intravenous treatment with rHDL-rApoJ nanodiscs or free rApoJ for 1 month. Aβ concentration and distribution in the brain, as well as Aβ levels in plasma and CSF, were determined after treatments. Other features associated to AD pathology, such as neuronal loss and neuroinflammation, were also evaluated. Results Both ApoJ-based treatments prevented the Aβ accumulation in cerebral arteries and induced a decrease in total brain insoluble Aβ42 levels. The peripheral treatment with rApoJ also induced an increase in the Aβ40 levels in CSF, whereas the concentration remained unaltered in plasma. At all the endpoints studied, the lipidation of rApoJ did not enhance the protective properties of free rApoJ. The effects obtained after subchronic treatment with free rApoJ were accompanied by a reduction in hippocampal neuronal loss and an enhancement of the expression of a phagocytic marker in microglial cells surrounding Aβ deposits. Finally, despite the activation of this phagocytic phenotype, treatments did not induce a global neuroinflammatory status. In fact, free rApoJ treatment was able to reduce the levels of interleukin-17 (IL17) and keratinocyte chemoattractant (KC) chemokine in the brain. Conclusions Our results demonstrate that an increase in circulating human rApoJ induces a reduction of insoluble Aβ and CAA load in the brain of APP23 mice. Thus, our study suggests that peripheral interventions, based on treatments with multifunctional physiological chaperones, offer therapeutic opportunities to regulate the cerebral Aβ load. Electronic supplementary material The online version of this article (10.1186/s13195-019-0498-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofía Fernández de Retana
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Guillem Colell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Anna Bonaterra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBER of Diabetes and Metabolism (CIBERDEM), ISCIII, Madrid, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, , Campus UAB, Bellaterra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08100, Barcelona, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, , Campus UAB, Bellaterra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08100, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain.
| |
Collapse
|
35
|
Peng M, Deng J, Zhou S, Tao T, Su Q, Yang X, Yang X. The role of Clusterin in cancer metastasis. Cancer Manag Res 2019; 11:2405-2414. [PMID: 31114318 PMCID: PMC6497892 DOI: 10.2147/cmar.s196273] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Clusterin is a conserved glycoprotein that has been characterized from almost all human tissues and fluids and plays a key role in cellular stress response and survival. Recently, research efforts have been contributed to explore the function of Clusterin in cancer metastasis, which is particularly important to design the strategies for treating metastatic patients. Evidence collected has demonstrated that Clusterin is overexpressed in tumor metastatic patients and experimental metastasis models. Specifically, Clusterin has been shown to have the role in anti-apoptotic capacities, development of therapy resistance and induction of epithelial–mesenchymal transition, all associated with cancer metastasis. Inhibition of Clusterin is known to increase the cytotoxic effects of chemotherapeutic agents and improves advanced cancer patients survival in clinical trials. Our unpublished data have demonstrated that Clusterin is overexpressed in bladder cancer and metformin, a well-known metabolism modulator specifically targets Clusterin by inhibiting migration of bladder cancer cells. In this review, we provide a general view of how Clusterin modulates cancer metastasis and update current understanding of detailed molecular mechanisms underlying of Clusterin for developing cancer management in future.
Collapse
Affiliation(s)
- Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, People's Republic of China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, People's Republic of China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, People's Republic of China
| | - Ting Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, People's Republic of China
| | - Qiongli Su
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, People's Republic of China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|