1
|
Ali SR, Jordan M, Nagarajan P, Amit M. Nerve Density and Neuronal Biomarkers in Cancer. Cancers (Basel) 2022; 14:cancers14194817. [PMID: 36230740 PMCID: PMC9561962 DOI: 10.3390/cancers14194817] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Researchers have shown that tumor biomarkers and increased nerve density are important clinical tools for determining cancer prognosis and developing effective treatments. The aims of our review were to synthesize these findings by detailing the histology of peripheral nerves, discuss the use of various neuronal biomarkers in cancer, and assess the impact of increased nerve density on tumorigenesis. This review demonstrates that specific neuronal markers may have an important role in tumorigenesis and may serve as diagnostic and prognostic factors for various cancers. Moreover, increased nerve density may be associated with worse prognosis in different cancers, and cancer therapies that decrease nerve density may offer benefit to patients. Abstract Certain histologic characteristics of neurons, novel neuronal biomarkers, and nerve density are emerging as important diagnostic and prognostic tools in several cancers. The tumor microenvironment has long been known to promote tumor development via promoting angiogenesis and cellular proliferation, but new evidence has shown that neural proliferation and invasion in the tumor microenvironment may also enable tumor growth. Specific neuronal components in peripheral nerves and their localization in certain tumor sites have been identified and associated with tumor aggressiveness. In addition, dense neural innervation has been shown to promote tumorigenesis. In this review, we will summarize the histological components of a nerve, explore the neuronal biomarkers found in tumor sites, and discuss clinical correlates between tumor neurobiology and patient prognosis.
Collapse
Affiliation(s)
- Shahrukh R. Ali
- The University of Texas Medical Branch, Galveston, TX 77555, USA
- Head and Neck Surgery Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Madeleine Jordan
- The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Priyadharsini Nagarajan
- Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (P.N.); (M.A.)
| | - Moran Amit
- Head and Neck Surgery Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (P.N.); (M.A.)
| |
Collapse
|
2
|
Spatial Distribution and Long-Term Alterations of Peripheral Nerve Lesions in Schwannomatosis. Diagnostics (Basel) 2022; 12:diagnostics12040780. [PMID: 35453828 PMCID: PMC9029522 DOI: 10.3390/diagnostics12040780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose To examine the spatial distribution and long-term alterations of peripheral nerve lesions in patients with schwannomatosis by in vivo high-resolution magnetic resonance neurography (MRN). Methods In this prospective study, the lumbosacral plexus as well as the right sciatic, tibial, and peroneal nerves were examined in 15 patients diagnosed with schwannomatosis by a standardized MRN protocol at 3 Tesla. Micro-, intermediate- and macrolesions were assessed according to their number, diameter and spatial distribution. Moreover, in nine patients, peripheral nerve lesions were compared to follow-up examinations after 39 to 71 months. Results In comparison to intermediate and macrolesions, microlesions were the predominant lesion entity at the level of the proximal (p < 0.001), mid- (p < 0.001), and distal thigh (p < 0.01). Compared to the proximal calf level, the lesion number was increased at the proximal (p < 0.05), mid- (p < 0.01), and distal thigh level (p < 0.01), while between the different thigh levels, no differences in lesion numbers were found. In the follow-up examinations, the lesion number was unchanged for micro-, intermediate and macrolesions. The diameter of lesions in the follow-up examination was decreased for microlesions (p < 0.01), not different for intermediate lesions, and increased for macrolesions (p < 0.01). Conclusion Microlesions represent the predominant type of peripheral nerve lesion in schwannomatosis and show a rather consistent distribution pattern in long-term follow-up. In contrast to the accumulation of nerve lesions, primarily in the distal nerve segments in NF2, the lesion numbers in schwannomatosis peak at the mid-thigh level. Towards more distal portions, the lesion number markedly decreases, which is considered as a general feature of other types of small fiber neuropathy.
Collapse
|
3
|
Godel T, von Cossel K, Friedrich RE, Glatzel M, Canaan-Kühl S, Duning T, Kronlage M, Heiland S, Bendszus M, Muschol N, Mautner VF. Assessment of Peripheral Nervous System Alterations in Patients with the Fabry Related GLA-Variant p.A143T. Diagnostics (Basel) 2020; 10:diagnostics10121027. [PMID: 33266233 PMCID: PMC7760340 DOI: 10.3390/diagnostics10121027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study is to examine alterations of the peripheral nervous system (PNS) in oligo-symptomatic patients carrying the Fabry related GLA-gene variant p.A143T by Magnetic Resonance Neurography (MRN) and skin biopsy. This prospective study assessed dorsal root ganglia (DRG) volume L3 to S2, vascular permeability of the DRG L5, S1, and the spinal nerve L5 in five patients carrying p.A143T in comparison to patients with classical Fabry mutations and healthy controls. Moreover, skin punch biopsies above the lateral malleolus of the right foot were obtained in four patients and intraepidermal nerve fiber density (IENFD) was counted individually. Compared to controls, DRG volumes of p.A143T patients were enlarged by 30% (L3, p < 0.05), 35% (L4, p < 0.05), 29% (L5, p = 0.15), 36% (S1, p < 0.01), and 18% (S2, p < 0.05), but less pronounced compared to patients carrying a classical Fabry mutation. Compared to healthy controls, vascular permeability was decreased by 40% (L5 right), 49% (L5 left), 48% (S1 right), and 49% (S1) (p < 0.01–p < 0.001), but non-significant less than patients carrying a classical Fabry mutation. Compared to sex-matched 5% lower normative reference values per decade, IENFD was decreased in three of four patients. MRN and determination of IENFD is able to detect early alteration of the PNS segment in oligo-symptomatic patients with the disease-modifying GLA-variant p.A143T on an individual basis. This procedure might also help in further GLA-variants of uncertain significance for early identification of patients with single major organ manifestation.
Collapse
Affiliation(s)
- Tim Godel
- Department of Neuroradiology, Neurological University Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (M.K.); (S.H.); (M.B.)
- Correspondence: ; Tel.: +49-6221-5634791
| | - Katharina von Cossel
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (K.v.C.); (N.M.)
| | - Reinhard E. Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Sima Canaan-Kühl
- Division of Nephrology and Intensive Care Medicine, CCM, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Thomas Duning
- Department of Neurology, University Hospital of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany;
| | - Moritz Kronlage
- Department of Neuroradiology, Neurological University Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (M.K.); (S.H.); (M.B.)
| | - Sabine Heiland
- Department of Neuroradiology, Neurological University Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (M.K.); (S.H.); (M.B.)
| | - Martin Bendszus
- Department of Neuroradiology, Neurological University Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (M.K.); (S.H.); (M.B.)
| | - Nicole Muschol
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (K.v.C.); (N.M.)
| | - Victor-Felix Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| |
Collapse
|
4
|
Farschtschi SC, Mainka T, Glatzel M, Hannekum AL, Hauck M, Gelderblom M, Hagel C, Friedrich RE, Schuhmann MU, Schulz A, Morrison H, Kehrer-Sawatzki H, Luhmann J, Gerloff C, Bendszus M, Bäumer P, Mautner VF. C-Fiber Loss as a Possible Cause of Neuropathic Pain in Schwannomatosis. Int J Mol Sci 2020; 21:ijms21103569. [PMID: 32443592 PMCID: PMC7278954 DOI: 10.3390/ijms21103569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 01/22/2023] Open
Abstract
Schwannomatosis is the third form of neurofibromatosis and characterized by the occurrence of multiple schwannomas. The most prominent symptom is chronic pain. We aimed to test whether pain in schwannomatosis might be caused by small-fiber neuropathy. Twenty patients with schwannomatosis underwent neurological examination and nerve conduction studies. Levels of pain perception as well as anxiety and depression were assessed by established questionnaires. Quantitative sensory testing (QST) and laser-evoked potentials (LEP) were performed on patients and controls. Whole-body magnetic resonance imaging (wbMRI) and magnetic resonance neurography (MRN) were performed to quantify tumors and fascicular nerve lesions; skin biopsies were performed to determine intra-epidermal nerve fiber density (IENFD). All patients suffered from chronic pain without further neurological deficits. The questionnaires indicated neuropathic symptoms with significant impact on quality of life. Peripheral nerve tumors were detected in all patients by wbMRI. MRN showed additional multiple fascicular nerve lesions in 16/18 patients. LEP showed significant faster latencies compared to normal controls. Finally, IENFD was significantly reduced in 13/14 patients. Our study therefore indicates the presence of small-fiber neuropathy, predominantly of unmyelinated C-fibers. Fascicular nerve lesions are characteristic disease features that are associated with faster LEP latencies and decreased IENFD. Together these methods may facilitate differential diagnosis of schwannomatosis.
Collapse
Affiliation(s)
- Said C. Farschtschi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
- Correspondence: ; Tel.: +49(0)407410-53869
| | - Tina Mainka
- Department of Neurology, Charité University Medicine, 10117 Berlin, Germany;
- Berlin Institute of Health, 10178 Berlin, Germany
| | - Markus Glatzel
- Department of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.G.); (C.H.)
| | - Anna-Lena Hannekum
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
| | - Michael Hauck
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
- Department of Neurophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
| | - Christian Hagel
- Department of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.G.); (C.H.)
| | - Reinhard E. Friedrich
- Department of Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Martin U. Schuhmann
- Department of Neurosurgery, University Medical Center Tübingen, 72076 Tübingen, Germany;
| | - Alexander Schulz
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany; (A.S.); (H.M.)
- MVZ Human Genetics, 99084 Erfurt, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany; (A.S.); (H.M.)
| | | | - Jan Luhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
| | - Martin Bendszus
- Department of Neuroradiology, University Medical Center Heidelberg, 69120 Heidelberg, Germany; (M.B.); (P.B.)
| | - Philipp Bäumer
- Department of Neuroradiology, University Medical Center Heidelberg, 69120 Heidelberg, Germany; (M.B.); (P.B.)
- Department of Radiology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.-L.H.); (M.H.); (M.G.); (J.L.); (C.G.); (V.-F.M.)
| |
Collapse
|