1
|
Lo Cascio F, Park S, Sengupta U, Puangmalai N, Bhatt N, Shchankin N, Jerez C, Moreno N, Bittar A, Xavier R, Zhao Y, Wang C, Fu H, Ma Q, Montalbano M, Kayed R. Brain-derived tau oligomer polymorphs: distinct aggregations, stability profiles, and biological activities. Commun Biol 2025; 8:53. [PMID: 39809992 PMCID: PMC11733013 DOI: 10.1038/s42003-025-07499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Aggregation of microtubule-associated tau protein is a distinct hallmark of several neurodegenerative disorders such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). Tau oligomers are suggested to be the primary neurotoxic species that initiate aggregation and propagate prion-like structures. Furthermore, different diseases are shown to have distinct structural characteristics of aggregated tau, denoted as polymorphs. Here, we investigate the structural and functional differences of amplified brain-derived tau oligomers (aBDTOs) from AD, DLB, and PSP. Our results indicate that the aBDTOs possess different structural and morphological features that impact neuronal function, gene regulation, and ultimately disease progression. The distinct tau oligomeric polymorphs may thus contribute to the development of clinical phenotypes and shape the progression of diseases. Our results can provide insight into developing personalized therapy to target a specific neurotoxic tau polymorph.
Collapse
Affiliation(s)
- Filippa Lo Cascio
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Suhyeorn Park
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikita Shchankin
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Naomi Moreno
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rhea Xavier
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingxin Zhao
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Cankun Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
2
|
Schrempel S, Kottwitz AK, Piechotta A, Gnoth K, Büschgens L, Hartlage-Rübsamen M, Morawski M, Schenk M, Kleinschmidt M, Serrano GE, Beach TG, Rostagno A, Ghiso J, Heneka MT, Walter J, Wirths O, Schilling S, Roßner S. Identification of isoAsp7-Aβ as a major Aβ variant in Alzheimer's disease, dementia with Lewy bodies and vascular dementia. Acta Neuropathol 2024; 148:78. [PMID: 39625512 PMCID: PMC11615120 DOI: 10.1007/s00401-024-02824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 12/06/2024]
Abstract
The formation of amyloid-β (Aβ) aggregates in brain is a neuropathological hallmark of Alzheimer's disease (AD). However, there is mounting evidence that Aβ also plays a pathogenic role in other types of dementia and that specific post-translational Aβ modifications contribute to its pathogenic profile. The objective of this study was to test the hypothesis that distinct types of dementia are characterized by specific patterns of post-translationally modified Aβ variants. We conducted a comparative analysis and quantified Aβ as well as Aβ with pyroglutamate (pGlu3-Aβ and pGlu11-Aβ), N-truncation (Aβ(4-X)), isoaspartate racemization (isoAsp7-Aβ and isoAsp27-Aβ), phosphorylation (pSer8-Aβ and pSer26-Aβ) or nitration (3NTyr10-Aβ) modification in post mortem human brain tissue from non-demented control subjects in comparison to tissue classified as pre-symptomatic AD (Pre-AD), AD, dementia with Lewy bodies and vascular dementia. Aβ modification-specific immunohistochemical labelings of brain sections from the posterior superior temporal gyrus were examined by machine learning-based segmentation protocols and immunoassay analyses in brain tissue after sequential Aβ extraction were carried out. Our findings revealed that AD cases displayed the highest concentrations of all Aβ variants followed by dementia with Lewy bodies, Pre-AD, vascular dementia and non-demented controls. With both analytical methods, we identified the isoAsp7-Aβ variant as a highly abundant Aβ form in all clinical conditions, followed by Aβ(4-X), pGlu3-Aβ, pGlu11-Aβ and pSer8-Aβ. These Aβ variants were detected in distinct plaque types of compact, coarse-grained, cored and diffuse morphologies and, with varying frequencies, in cerebral blood vessels. The 3NTyr10-Aβ, pSer26-Aβ and isoAsp27-Aβ variants were not found to be present in Aβ plaques but were detected intraneuronally. There was a strong positive correlation between isoAsp7-Aβ and Thal phase and a moderate negative correlation between isoAsp7-Aβ and performance on the Mini Mental State Examination. Furthermore, the abundance of all Aβ variants was highest in APOE 3/4 carriers. In aggregation assays, the isoAsp7-Aβ, pGlu3-Aβ and pGlu11-Aβ variants showed instant fibril formation without lag phase, whereas Aβ(4-X), pSer26-Aβ and isoAsp27-Aβ did not form fibrils. We conclude that targeting Aβ post-translational modifications, and in particular the highly abundant isoAsp7-Aβ variant, might be considered for diagnostic and therapeutic approaches in different types of dementia. Hence, our findings might have implications for current antibody-based therapies of AD.
Collapse
Affiliation(s)
- Sarah Schrempel
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Anna Katharina Kottwitz
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Kathrin Gnoth
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Luca Büschgens
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Mathias Schenk
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Martin Kleinschmidt
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ, 85351, USA
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - Jochen Walter
- Center of Neurology, Molecular Cell Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Stephan Schilling
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Steffen Roßner
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany.
| |
Collapse
|
3
|
Bhopatkar AA, Bhatt N, Haque MA, Xavier R, Fung L, Jerez C, Kayed R. MAPT mutations associated with familial tauopathies lead to formation of conformationally distinct oligomers that have cross-seeding ability. Protein Sci 2024; 33:e5099. [PMID: 39145409 PMCID: PMC11325167 DOI: 10.1002/pro.5099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024]
Abstract
The microtubule associated protein, tau, is implicated in a multitude of neurodegenerative disorders that are collectively termed as tauopathies. These disorders are characterized by the presence of tau aggregates within the brain of afflicted individuals. Mutations within the MAPT gene that encodes the tau protein form the genetic backdrop for familial forms of tauopathies, such as frontotemporal dementia (FTD), but the molecular consequences of such alterations and their pathological effects are unclear. We sought to investigate the conformational properties of the aggregates of three tau mutants: A152T, P301L, and R406W, all implicated within FTD, and compare them to those of the native form (WT-Tau 2N4R). Our immunochemical analysis reveals that mutants and WT tau oligomers exhibit similar affinity for conformation-specific antibodies but have distinct morphology and secondary structure. Additionally, these oligomers possess different dye-binding properties and varying sensitivity to proteolytic processing. These results point to conformational variety among them. We then tested the ability of the mutant oligomers to cross-seed the aggregation of WT tau monomer. Using similar array of experiments, we found that cross-seeding with mutant aggregates leads to the formation of conformationally unique WT oligomers. The results discussed in this paper provide a novel perspective on the structural properties of oligomeric forms of WT tau 2N4R and its mutant, along with shedding some light on their cross-seeding behavior.
Collapse
Affiliation(s)
- Anukool A. Bhopatkar
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
- Present address:
Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Nemil Bhatt
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Md Anzarul Haque
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rhea Xavier
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Leiana Fung
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
- Present address:
Neuroscience Graduate Program, UT Southwestern Medical CenterDallasTexasUSA
| | - Cynthia Jerez
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
| |
Collapse
|
4
|
Plácido E, Koss DJ, Outeiro TF, Brocardo PS. Altered hippocampal doublecortin expression in Parkinson's disease. J Neurochem 2024; 168:1514-1526. [PMID: 38485468 DOI: 10.1111/jnc.16101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 07/31/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by motor and non-motor symptoms. Motor symptoms include bradykinesia, resting tremors, muscular rigidity, and postural instability, while non-motor symptoms include cognitive impairments, mood disturbances, sleep disturbances, autonomic dysfunction, and sensory abnormalities. Some of these symptoms may be influenced by the proper hippocampus functioning, including adult neurogenesis. Doublecortin (DCX) is a microtubule-associated protein that plays a pivotal role in the development and differentiation of migrating neurons. This study utilized postmortem human brain tissue of PD and age-matched control individuals to investigate DCX expression in the context of adult hippocampal neurogenesis. Our findings demonstrate a significant reduction in the number of DCX-expressing cells within the subgranular zone (SGZ), as well as a decrease in the nuclear area of these DCX-positive cells in postmortem brain tissue obtained from PD cases, suggesting an impairment in the adult hippocampal neurogenesis. Additionally, we found that the nuclear area of DCX-positive cells correlates with pH levels. In summary, we provide evidence supporting that the process of hippocampal adult neurogenesis is likely to be compromised in PD patients before cognitive dysfunction, shedding light on potential mechanisms contributing to the neuropsychiatric symptoms observed in affected individuals. Understanding these mechanisms may offer novel insights into the pathophysiology of PD and possible therapeutic avenues.
Collapse
Affiliation(s)
- Evelini Plácido
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - David J Koss
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Tiago Fleming Outeiro
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Patricia S Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Morphological Sciences Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
5
|
Gaikwad S, Puangmalai N, Sonawane M, Montalbano M, Price R, Iyer MS, Ray A, Moreno S, Kayed R. Nasal tau immunotherapy clears intracellular tau pathology and improves cognitive functions in aged tauopathy mice. Sci Transl Med 2024; 16:eadj5958. [PMID: 38959324 DOI: 10.1126/scitranslmed.adj5958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Pathological tau aggregates cause cognitive decline in neurodegenerative tauopathies, including Alzheimer's disease (AD). These aggregates are prevalent within intracellular compartments. Current tau immunotherapies have shown limited efficacy in clearing intracellular tau aggregates and improving cognition in clinical trials. In this study, we developed toxic tau conformation-specific monoclonal antibody-2 (TTCM2), which selectively recognized pathological tau aggregates in brain tissues from patients with AD, dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). TTCM2 potently inhibited tau-seeding activity, an essential mechanism underlying tauopathy progression. To effectively target intracellular tau aggregates and ensure rapid delivery to the brain, TTCM2 was loaded in micelles (TTCM2-ms) and administered through the intranasal route. We found that intranasally administered TTCM2-ms efficiently entered the brain in hTau-tauopathy mice, targeting pathological tau in intracellular compartments. Moreover, a single intranasal dose of TTCM2-ms effectively cleared pathological tau, elevated synaptic proteins, and improved cognitive functions in aged tauopathy mice. Mechanistic studies revealed that TTCM2-ms cleared intracellular, synaptic, and seed-competent tau aggregates through tripartite motif-containing 21 (TRIM21), an intracellular antibody receptor and E3 ubiquitin ligase known to facilitate proteasomal degradation of cytosolic antibody-bound proteins. TRIM21 was found to be essential for TTCM2-ms-mediated clearance of tau pathology. Our study collectively provides evidence of the effectiveness of nasal tau immunotherapy in targeting and clearing intracellular tau pathology through TRIM21 and enhancing cognition in aged tauopathy mice. This study could be valuable in designing effective tau immunotherapies for AD and other tauopathies.
Collapse
Affiliation(s)
- Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Minal Sonawane
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rachel Price
- Department of Science, University "Roma Tre," Viale G. Marconi 446 00146 Rome, Italy
| | | | | | - Sandra Moreno
- Department of Science, University "Roma Tre," Viale G. Marconi 446 00146 Rome, Italy
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Comptdaer T, Tardivel M, Schirmer C, Buée L, Galas MC. Cell redistribution of G quadruplex-structured DNA is associated with morphological changes of nuclei and nucleoli in neurons during tau pathology progression. Brain Pathol 2024:e13262. [PMID: 38649330 DOI: 10.1111/bpa.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
While the double helical structure has long been its iconic representation, DNA is structurally dynamic and can adopt alternative secondary configurations. Specifically, guanine-rich DNA sequences can fold in guanine quadruplexes (G4) structures. These G4 play pivotal roles as regulators of gene expression and genomic stability, and influence protein homeostasis. Despite their significance, the association of G4 with neurodegenerative diseases such as Alzheimer's disease (AD) has been underappreciated. Recent findings have identified DNA sequences predicted to form G4 in sarkosyl-insoluble aggregates from AD brains, questioning the involvement of G4-structured DNA (G4 DNA) in the pathology. Using immunofluorescence coupled to confocal microscopy analysis we investigated the impact of tau pathology, a hallmark of tauopathies including AD, on the distribution of G4 DNA in murine neurons and its relevance to AD brains. In healthy neurons, G4 DNA is detected in nuclei with a notable presence in nucleoli. However, in a transgenic mouse model of tau pathology (THY-Tau22), early stages of the disease exhibit an impairment in the nuclear distribution of G4 DNA. In addition, G4 DNA accumulates in the cytoplasm of neurons exhibiting oligomerized tau and oxidative DNA damage. This altered distribution persists in the later stage of the pathology when larger tau aggregates are present. Still cytoplasmic deposition of G4 DNA does not appear to be a critical factor in the tau aggregation process. Similar patterns are observed in neurons from the AD cortex. Furthermore, the disturbance in G4 DNA distribution is associated with various changes in the size of neuronal nuclei and nucleoli, indicative of responses to stress and the activation of pro-survival mechanisms. Our results shed light on a significant impact of tau pathology on the dynamics of G4 DNA and on nuclear and nucleolar mechanobiology in neurons. These findings reveal new dimensions in the etiopathogenesis of tauopathies.
Collapse
Affiliation(s)
- Thomas Comptdaer
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog-Lille Neuroscience and Cognition, Lille, France
| | - Meryem Tardivel
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, Lille, France
| | - Claire Schirmer
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog-Lille Neuroscience and Cognition, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog-Lille Neuroscience and Cognition, Lille, France
| | - Marie-Christine Galas
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog-Lille Neuroscience and Cognition, Lille, France
| |
Collapse
|
7
|
Arar S, Haque MA, Bhatt N, Zhao Y, Kayed R. Effect of Natural Osmolytes on Recombinant Tau Monomer: Propensity of Oligomerization and Aggregation. ACS Chem Neurosci 2024; 15:1366-1377. [PMID: 38503425 PMCID: PMC10995947 DOI: 10.1021/acschemneuro.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The pathological misfolding and aggregation of the microtubule associated protein tau (MAPT), a full length Tau2N4R with 441aa, is considered the principal disease relevant constituent in tauopathies including Alzheimer's disease (AD) with an imbalanced ratio in 3R/4R isoforms. The exact cellular fluid composition, properties, and changes that coincide with tau misfolding, seed formation, and propagation events remain obscure. The proteostasis network, along with the associated osmolytes, is responsible for maintaining the presence of tau in its native structure or dealing with misfolding. In this study, for the first time, the roles of natural brain osmolytes are being investigated for their potential effects on regulating the conformational stability of the tau monomer (tauM) and its propensity to aggregate or disaggregate. Herein, the effects of physiological osmolytes myo-inositol, taurine, trimethyl amine oxide (TMAO), betaine, sorbitol, glycerophosphocholine (GPC), and citrulline on tau's aggregation state were investigated. The overall results indicate the ability of sorbitol and GPC to maintain the monomeric form and prevent aggregation of tau, whereas myo-inositol, taurine, TMAO, betaine, and citrulline promote tau aggregation to different degrees, as revealed by protein morphology in atomic force microscopy images. Biochemical and biophysical methods also revealed that tau proteins adopt different conformations under the influence of these osmolytes. TauM in the presence of all osmolytes expressed no toxicity when tested by a lactate dehydrogenase assay. Investigating the conformational stability of tau in the presence of osmolytes may provide a better understanding of the complex nature of tau aggregation in AD and the protective and/or chaotropic nature of osmolytes.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department
of Chemistry, School of Science, The University
of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Nemil Bhatt
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yingxin Zhao
- Department
of Internal Medicine, University of Texas
Medical Branch, Galveston, Texas 77555, United States
- Institute
for Translational Sciences, University of
Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rakez Kayed
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
8
|
Ivraghi MS, Zamanian MY, Gupta R, Achmad H, Alsaab HO, Hjazi A, Romero‐Parra RM, Alwaily ER, Hussien BM, Hakimizadeh E. Neuroprotective effects of gemfibrozil in neurological disorders: Focus on inflammation and molecular mechanisms. CNS Neurosci Ther 2024; 30:e14473. [PMID: 37904726 PMCID: PMC10916451 DOI: 10.1111/cns.14473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Gemfibrozil (Gem) is a drug that has been shown to activate PPAR-α, a nuclear receptor that plays a key role in regulating lipid metabolism. Gem is used to lower the levels of triglycerides and reduce the risk of coronary heart disease in patients. Experimental studies in vitro and in vivo have shown that Gem can prevent or slow the progression of neurological disorders (NDs), including cerebral ischemia (CI), Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Neuroinflammation is known to play a significant role in these disorders. METHOD The literature review for this study was conducted by searching Scopus, Science Direct, PubMed, and Google Scholar databases. RESULT The results of this study show that Gem has neuroprotective effects through several cellular and molecular mechanisms such as: (1) Gem has the ability to upregulate pro-survival factors (PGC-1α and TFAM), promoting the survival and function of mitochondria in the brain, (2) Gem strongly inhibits the activation of NF-κB, AP-1, and C/EBPβ in cytokine-stimulated astroglial cells, which are known to increase the expression of iNOS and the production of NO in response to proinflammatory cytokines, (3) Gem protects dopamine neurons in the MPTP mouse model of PD by increasing the expression of PPARα, which in turn stimulates the production of GDNF in astrocytes, (4) Gem reduces amyloid plaque pathology, reduces the activity of glial cells, and improves memory, (5) Gem increases myelin genes expression (MBP and CNPase) via PPAR-β, and (6) Gem increases hippocampal BDNF to counteract depression. CONCLUSION According to the study, Gem was investigated for its potential therapeutic effect in NDs. Further research is needed to fully understand the therapeutic potential of Gem in NDs.
Collapse
Affiliation(s)
| | - Mohammad Yasin Zamanian
- Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA UniversityMathuraIndia
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of DentistryHasanuddin UniversityMakassarIndonesia
| | - Hashem O. Alsaab
- Pharmaceutics and Pharmaceutical TechnologyTaif UniversityTaifSaudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory SciencesCollege of Applied Medical Sciences, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | | | - Enas R. Alwaily
- Microbiology Research GroupCollege of Pharmacy, Al‐Ayen UniversityThi‐QarIraq
| | - Beneen M. Hussien
- Medical Laboratory Technology DepartmentCollege of Medical Technology, The Islamic UniversityNajafIraq
| | - Elham Hakimizadeh
- Physiology‐Pharmacology Research CenterResearch Institute of Basic Medical Sciences, Rafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
9
|
Puangmalai N, Bhatt N, Bittar A, Jerez C, Shchankin N, Kayed R. Traumatic brain injury derived pathological tau polymorphs induce the distinct propagation pattern and neuroinflammatory response in wild type mice. Prog Neurobiol 2024; 232:102562. [PMID: 38135105 DOI: 10.1016/j.pneurobio.2023.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
The misfolding and aggregation of the tau protein into neurofibrillary tangles constitutes a central feature of tauopathies. Traumatic brain injury (TBI) has emerged as a potential risk factor, triggering the onset and progression of tauopathies. Our previous research revealed distinct polymorphisms in soluble tau oligomers originating from single versus repetitive mild TBIs. However, the mechanisms orchestrating the dissemination of TBI brain-derived tau polymorphs (TBI-BDTPs) remain elusive. In this study, we explored whether TBI-BDTPs could initiate pathological tau formation, leading to distinct pathogenic trajectories. Wild-type mice were exposed to TBI-BDTPs from sham, single-blast (SB), or repeated-blast (RB) conditions, and their memory function was assessed through behavioral assays at 2- and 8-month post-injection. Our findings revealed that RB-BDTPs induced cognitive and motor deficits, concurrently fostering the emergence of toxic tau aggregates within the injected hippocampus. Strikingly, this tau pathology propagated to cortical layers, intensifying over time. Importantly, RB-BDTP-exposed animals displayed heightened glial cell activation, NLRP3 inflammasome formation, and increased TBI biomarkers, particularly triggering the aggregation of S100B, which is indicative of a neuroinflammatory response. Collectively, our results shed light on the intricate mechanisms underlying TBI-BDTP-induced tau pathology and its association with neuroinflammatory processes. This investigation enhances our understanding of tauopathies and their interplay with neurodegenerative and inflammatory pathways following traumatic brain injury.
Collapse
Affiliation(s)
- Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nikita Shchankin
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
10
|
Sengupta U, Kayed R. Tau Oligomers as Pathogenic Seeds: Preparation, Characterization, and Propagation In Vitro and In Vivo. Methods Mol Biol 2024; 2754:147-183. [PMID: 38512666 DOI: 10.1007/978-1-0716-3629-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Tau oligomers have been shown to be the main toxic tau species in several neurodegenerative disorders. To study tau oligomers, we have developed reagents and established methods for the reliable preparation, isolation, and detection of tau oligomers as well as their seeding and propagation both in vitro and in vivo. Detailed below are methods for isolation of tau oligomers from brain tissues and detection of tau oligomers using tau oligomer-specific antibodies by biochemical, immunohistochemical, and biophysical methods. Further, methods for evaluating the biological activity of the tau oligomers including their effects on synaptic function, seeding, and propagation in cell models and in vivo are also described.
Collapse
Affiliation(s)
- Urmi Sengupta
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rakez Kayed
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
11
|
Sun X, Ogbolu VC, Baas PW, Qiang L. Reevaluating tau reduction as a therapeutic approach for tauopathies: Insights and perspectives. Cytoskeleton (Hoboken) 2024; 81:57-62. [PMID: 37819557 PMCID: PMC10843461 DOI: 10.1002/cm.21790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Tau, one of the most abundant microtubule-associated protein in neurons plays a role in regulating microtubule dynamics in axons, as well as shaping the overall morphology of the axon. Recent studies challenge the traditional view of tau as a microtubule stabilizer and shed new light on the complexity of its role in regulating various properties of the microtubule. While reducing tau levels shows therapeutic promise for early tauopathies, efficacy wanes in later stages due to resilient toxic tau aggregates and neurofibrillary tangles. Notably, tauopathies involve factors beyond toxic tau alone, necessitating a broader therapeutic approach. Overexpression of human tau in mouse models, although useful for answering some questions, may not accurately reflect disease mechanisms in patients with tauopathies. Furthermore, the interplay between tau and MAP6, another microtubule-associated protein, adds complexity to tau's regulation of microtubule dynamics. Tau promotes the formation and elongation of labile microtubule domains, vital for cellular processes, while MAP6 stabilizes microtubules. A delicate balance between these proteins is important for neuronal function. Therefore, tau reduction therapies require a comprehensive understanding of disease progression, considering functional tau loss, toxic aggregates, and microtubule dynamics. Stage-dependent application and potential unintended consequences must be carefully evaluated. Restoring microtubule dynamics in late-stage tauopathies may necessitate alternative strategies. This knowledge is valuable for developing effective and safe treatments for tauopathies.
Collapse
Affiliation(s)
- Xiaohuan Sun
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Victor C. Ogbolu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Peter W. Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
12
|
Gaikwad S, Senapati S, Haque MA, Kayed R. Senescence, brain inflammation, and oligomeric tau drive cognitive decline in Alzheimer's disease: Evidence from clinical and preclinical studies. Alzheimers Dement 2024; 20:709-727. [PMID: 37814508 PMCID: PMC10841264 DOI: 10.1002/alz.13490] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Aging, tau pathology, and chronic inflammation in the brain play crucial roles in synaptic loss, neurodegeneration, and cognitive decline in tauopathies, including Alzheimer's disease. Senescent cells accumulate in the aging brain, accelerate the aging process, and promote tauopathy progression through their abnormal inflammatory secretome known as the senescence-associated secretory phenotype (SASP). Tau oligomers (TauO)-the most neurotoxic tau species-are known to induce senescence and the SASP, which subsequently promote neuropathology, inflammation, oxidative stress, synaptic dysfunction, neuronal death, and cognitive dysfunction. TauO, brain inflammation, and senescence are associated with heterogeneity in tauopathy progression and cognitive decline. However, the underlying mechanisms driving the disease heterogeneity remain largely unknown, impeding the development of therapies for tauopathies. Based on clinical and preclinical evidence, this review highlights the critical role of TauO and senescence in neurodegeneration. We discuss key knowledge gaps and potential strategies for targeting senescence and TauO to treat tauopathies. HIGHLIGHTS: Senescence, oligomeric Tau (TauO), and brain inflammation accelerate the aging process and promote the progression of tauopathies, including Alzheimer's disease. We discuss their role in contributing to heterogeneity in tauopathy and cognitive decline. We highlight strategies to target senescence and TauO to treat tauopathies while addressing key knowledge gaps.
Collapse
Affiliation(s)
- Sagar Gaikwad
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Sudipta Senapati
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Md. Anzarul Haque
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- The Mitchell Center for Neurodegenerative Diseasesand Department of NeurologyUniversity of Texas Medical BranchGalvestonTexasUSA
| |
Collapse
|
13
|
Mate de Gerando A, Quittot N, Frosch MP, Hyman BT. Reply: Soluble oligomers or insoluble fibrils? Acta Neuropathol 2023; 146:863-866. [PMID: 37733036 PMCID: PMC10628010 DOI: 10.1007/s00401-023-02634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Affiliation(s)
- Anastasie Mate de Gerando
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Noe Quittot
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Matthew P Frosch
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
14
|
Bivona G, Iemmolo M, Ghersi G. Cerebrospinal and Blood Biomarkers in Alzheimer's Disease: Did Mild Cognitive Impairment Definition Affect Their Clinical Usefulness? Int J Mol Sci 2023; 24:16908. [PMID: 38069230 PMCID: PMC10706963 DOI: 10.3390/ijms242316908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Despite Alzheimer's Disease (AD) being known from the times of Alois Alzheimer, who lived more than one century ago, many aspects of the disease are still obscure, including the pathogenesis, the clinical spectrum definition, and the therapeutic approach. Well-established biomarkers for AD come from the histopathological hallmarks of the disease, which are Aβ and phosphorylated Tau protein aggregates. Consistently, cerebrospinal fluid (CSF) Amyloid β (Aβ) and phosphorylated Tau level measurements are currently used to detect AD presence. However, two central biases affect these biomarkers. Firstly, incomplete knowledge of the pathogenesis of diseases legitimates the search for novel molecules that, reasonably, could be expressed by neurons and microglia and could be detected in blood simpler and earlier than the classical markers and in a higher amount. Further, studies have been performed to evaluate whether CSF biomarkers can predict AD onset in Mild Cognitive Impairment (MCI) patients. However, the MCI definition has changed over time. Hence, the studies on MCI patients seem to be biased at the beginning due to the imprecise enrollment and heterogeneous composition of the miscellaneous MCI subgroup. Plasma biomarkers and novel candidate molecules, such as microglia biomarkers, have been tentatively investigated and could represent valuable targets for diagnosing and monitoring AD. Also, novel AD markers are urgently needed to identify molecular targets for treatment strategies. This review article summarizes the main CSF and blood AD biomarkers, underpins their advantages and flaws, and mentions novel molecules that can be used as potential biomarkers for AD.
Collapse
Affiliation(s)
- Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Matilda Iemmolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
15
|
Rayman JB. Focusing on oligomeric tau as a therapeutic target in Alzheimer's disease and other tauopathies. Expert Opin Ther Targets 2023:1-11. [PMID: 37140480 DOI: 10.1080/14728222.2023.2206561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Tau has commanded much attention as a potential therapeutic target in neurodegenerative diseases. Tau pathology is a hallmark of primary tauopathies, such as progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and subtypes of frontotemporal dementia (FTD), as well as secondary tauopathies, such as Alzheimer's disease (AD). The development of tau therapeutics must reconcile with the structural complexity of the tau proteome, as well as an incomplete understanding of the role of tau in both physiology and disease. AREAS COVERED This review offers a current perspective on tau biology, discusses key barriers to the development of effective tau-based therapeutics, and promotes the idea that pathogenic (as opposed to merely pathological) tau should be at the center of drug development efforts. EXPERT OPINION An efficacious tau therapeutic will exhibit several primary features: 1) selectivity for pathogenic tau versus other tau species; 2) blood-brain barrier and cell membrane permeability, enabling access to intracellular tau in disease-relevant brain regions; and 3) minimal toxicity. Oligomeric tau is proposed as a major pathogenic form of tau and a compelling drug target in tauopathies.
Collapse
Affiliation(s)
- Joseph B Rayman
- Department of Medicine, Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Pathomechanisms of depression in progressive supranuclear palsy. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02621-w. [PMID: 36933007 DOI: 10.1007/s00702-023-02621-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Depression is one of the most frequent neuropsychiatric symptoms in progressive supranuclear palsy (PSP), a four-repeat tauopathy and most common atypical parkinsonian disorder, but its pathophysiology and pathogenesis are poorly understood. Pubmed/Medline was systematically analyzed until January 2023, with focus on the prevalence, major clinical features, neuroimaging findings and treatment options of depression in PSP. The average prevalence of depression in PSP is around 50%; it does usually not correlate with most other clinical parameters. Depression is associated with multi-regional patterns of morphometric gray matter variations, e.g., reduced thickness of temporo-parieto-occipital cortices, and altered functional orbitofrontal and medial frontal circuits with disturbances of mood-related brain networks. Unfortunately, no specific neuropathological data about depression in PSP are available. Antidepressive and electroconvulsive therapies are effective in improving symptoms; the efficacy of transcranial stimulation needs further confirmation. Depression in PSP is a common symptom, related to multi-regional patterns of cerebral disturbances and complex pathogenic mechanisms that deserve further elucidation as a basis for adequate treatment to improve the quality of life in this fatal disease.
Collapse
|
17
|
Pathomechanisms of cognitive impairment in progressive supranuclear palsy. J Neural Transm (Vienna) 2023; 130:481-493. [PMID: 36862189 DOI: 10.1007/s00702-023-02613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by early postural instability and falls, oculomotor dysfunction (vertical supranuclear gaze palsy), parkinsonism with poor response to levodopa, pseudobulbar palsy, and cognitive impairment. This four-repeat tauopathy is morphologically featured by accumulation of tau protein in neurons and glia causing neuronal loss and gliosis in the extrapyramidal system associated with cortical atrophy and white matter lesions. Cognitive impairment being frequent in PSP and more severe than in multiple system atrophy and Parkinson disease, is dominated by executive dysfunction, with milder difficulties in memory, and visuo-spatial and naming dysfunctions. Showing longitudinal decline, it has been related to a variety of pathogenic mechanisms associated with the underlying neurodegenerative process, such as involvement of cholinergic and muscarinergic dysfunctions, and striking tau pathology in frontal and temporal cortical regions associated with reduced synaptic density. Altered striatofrontal, fronto-cerebellar, parahippocampal, and multiple subcortical structures, as well as widespread white matter lesions causing extensive connectivity disruptions in cortico-subcortical and cortico-brainstem connections, support the concept that PSP is a brain network disruption disorder. The pathophysiology and pathogenesis of cognitive impairment in PSP, as in other degenerative movement disorders, are complex and deserve further elucidation as a basis for adequate treatment to improve the quality of life of patients with this fatal disease.
Collapse
|