1
|
Yamaguchi H, Nishimura Y, Matsuse D, Sekiya H, Masaki K, Tanaka T, Saiga T, Harada M, Kira YI, Dickson DW, Fujishima K, Matsuo E, Tanaka KF, Yamasaki R, Isobe N, Kira JI. A rapidly progressive multiple system atrophy-cerebellar variant model presenting marked glial reactions with inflammation and spreading of α-synuclein oligomers and phosphorylated α-synuclein aggregates. Brain Behav Immun 2024; 121:122-141. [PMID: 38986725 DOI: 10.1016/j.bbi.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/30/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
Multiple system atrophy (MSA) is a severe α-synucleinopathy facilitated by glial reactions; the cerebellar variant (MSA-C) preferentially involves olivopontocerebellar fibres with conspicuous demyelination. A lack of aggressive models that preferentially involve olivopontocerebellar tracts in adulthood has hindered our understanding of the mechanisms of demyelination and neuroaxonal loss, and thus the development of effective treatments for MSA. We therefore aimed to develop a rapidly progressive mouse model that recaptures MSA-C pathology. We crossed Plp1-tTA and tetO-SNCA*A53T mice to generate Plp1-tTA::tetO-SNCA*A53T bi-transgenic mice, in which human A53T α-synuclein-a mutant protein with enhanced aggregability-was specifically produced in the oligodendrocytes of adult mice using Tet-Off regulation. These bi-transgenic mice expressed mutant α-synuclein from 8 weeks of age, when doxycycline was removed from the diet. All bi-transgenic mice presented rapidly progressive motor deterioration, with wide-based ataxic gait around 22 weeks of age and death around 30 weeks of age. They also had prominent demyelination in the brainstem/cerebellum. Double immunostaining demonstrated that myelin basic protein was markedly decreased in areas in which SM132, an axonal marker, was relatively preserved. Demyelinating lesions exhibited marked ionised calcium-binding adaptor molecule 1-, arginase-1-, and toll-like receptor 2-positive microglial reactivity and glial fibrillary acidic protein-positive astrocytic reactivity. Microarray analysis revealed a strong inflammatory response and cytokine/chemokine production in bi-transgenic mice. Neuronal nuclei-positive neuronal loss and patchy microtubule-associated protein 2-positive dendritic loss became prominent at 30 weeks of age. However, a perceived decrease in tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta in bi-transgenic mice compared with wild-type mice was not significant, even at 30 weeks of age. Wild-type, Plp1-tTA, and tetO-SNCA*A53T mice developed neither motor deficits nor demyelination. In bi-transgenic mice, double immunostaining revealed human α-synuclein accumulation in neurite outgrowth inhibitor A (Nogo-A)-positive oligodendrocytes beginning at 9 weeks of age; its expression was further increased at 10 to 12 weeks, and these increased levels were maintained at 12, 24, and 30 weeks. In an α-synuclein-proximity ligation assay, α-synuclein oligomers first appeared in brainstem oligodendrocytes as early as 9 weeks of age; they then spread to astrocytes, neuropil, and neurons at 12 and 16 weeks of age. α-Synuclein oligomers in the brainstem neuropil were most abundant at 16 weeks of age and decreased thereafter; however, those in Purkinje cells successively increased until 30 weeks of age. Double immunostaining revealed the presence of phosphorylated α-synuclein in Nogo-A-positive oligodendrocytes in the brainstem/cerebellum as early as 9 weeks of age. In quantitative assessments, phosphorylated α-synuclein gradually and successively accumulated at 12, 24, and 30 weeks in bi-transgenic mice. By contrast, no phosphorylated α-synuclein was detected in wild-type, tetO-SNCA*A53T, or Plp1-tTA mice at any age examined. Pronounced demyelination and tubulin polymerisation, promoting protein-positive oligodendrocytic loss, was closely associated with phosphorylated α-synuclein aggregates at 24 and 30 weeks of age. Early inhibition of mutant α-synuclein expression by doxycycline diet at 23 weeks led to fully recovered demyelination; inhibition at 27 weeks led to persistent demyelination with glial reactions, despite resolving phosphorylated α-synuclein aggregates. In conclusion, our bi-transgenic mice exhibited progressively increasing demyelination and neuroaxonal loss in the brainstem/cerebellum, with rapidly progressive motor deterioration in adulthood. These mice showed marked microglial and astrocytic reactions with inflammation that was closely associated with phosphorylated α-synuclein aggregates. These features closely mimic human MSA-C pathology. Notably, our model is the first to suggest that α-synuclein oligomers may spread from oligodendrocytes to neurons in transgenic mice with human α-synuclein expression in oligodendrocytes. This model of MSA is therefore particularly useful for elucidating the in vivo mechanisms of α-synuclein spreading from glia to neurons, and for developing therapies that target glial reactions and/or α-synuclein oligomer spreading and aggregate formation in MSA.
Collapse
Affiliation(s)
- Hiroo Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; School of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Sciences University, Fukuoka, Japan.
| | - Yuji Nishimura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Dai Matsuse
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tatsunori Tanaka
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Sumitomo Pharma Co., Ltd., Osaka, Japan.
| | - Toru Saiga
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masaya Harada
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yuu-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | - Kei Fujishima
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Eriko Matsuo
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Translational Neuroscience Research Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan; Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, Fukuoka, Japan.
| |
Collapse
|
2
|
Oláh J, Norris V, Lehotzky A, Ovádi J. Perspective Strategies for Interventions in Parkinsonism: Remedying the Neglected Role of TPPP. Cells 2024; 13:338. [PMID: 38391951 PMCID: PMC10886726 DOI: 10.3390/cells13040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Neurological disorders such as Parkinsonism cause serious socio-economic problems as there are, at present, only therapies that treat their symptoms. The well-established hallmark alpha-synuclein (SYN) is enriched in the inclusion bodies characteristic of Parkinsonism. We discovered a prominent partner of SYN, termed Tubulin Polymerization Promoting Protein (TPPP), which has important physiological and pathological activities such as the regulation of the microtubule network and the promotion of SYN aggregation. The role of TPPP in Parkinsonism is often neglected in research, which we here attempt to remedy. In the normal brain, SYN and TPPP are expressed endogenously in neurons and oligodendrocytes, respectively, whilst, at an early stage of Parkinsonism, soluble hetero-associations of these proteins are found in both cell types. The cell-to-cell transmission of these proteins, which is central to disease progression, provides a unique situation for specific drug targeting. Different strategies for intervention and for the discovery of biomarkers include (i) interface targeting of the SYN-TPPP hetero-complex; (ii) proteolytic degradation of SYN and/or TPPP using the PROTAC technology; and (iii) depletion of the proteins by miRNA technology. We also discuss the potential roles of SYN and TPPP in the phenotype stabilization of neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76821 Mont Saint Aignan, France;
| | - Attila Lehotzky
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Judit Ovádi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| |
Collapse
|
3
|
Norris V, Oláh J, Krylov SN, Uversky VN, Ovádi J. The Sherpa hypothesis: Phenotype-Preserving Disordered Proteins stabilize the phenotypes of neurons and oligodendrocytes. NPJ Syst Biol Appl 2023; 9:31. [PMID: 37433867 DOI: 10.1038/s41540-023-00291-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
Intrinsically disordered proteins (IDPs), which can interact with many partner proteins, are central to many physiological functions and to various pathologies that include neurodegeneration. Here, we introduce the Sherpa hypothesis, according to which a subset of stable IDPs that we term Phenotype-Preserving Disordered Proteins (PPDP) play a central role in protecting cell phenotypes from perturbations. To illustrate and test this hypothesis, we computer-simulate some salient features of how cells evolve and differentiate in the presence of either a single PPDP or two incompatible PPDPs. We relate this virtual experiment to the pathological interactions between two PPDPs, α-synuclein and Tubulin Polymerization Promoting Protein/p25, in neurodegenerative disorders. Finally, we discuss the implications of the Sherpa hypothesis for aptamer-based therapies of such disorders.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821, Mont Saint Aignan, France.
| | - Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Sergey N Krylov
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J1P3, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| |
Collapse
|