1
|
Yehya M, Boulghobra D, Grillet PE, Fleitas-Paniagua PR, Bideaux P, Gayrard S, Sicard P, Thireau J, Reboul C, Cazorla O. Natural Extracts Mitigate the Deleterious Effects of Prolonged Intense Physical Exercise on the Cardiovascular and Muscular Systems. Antioxidants (Basel) 2023; 12:1474. [PMID: 37508012 PMCID: PMC10376415 DOI: 10.3390/antiox12071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Muscle fatigue is a common symptom induced by exercise. A reversible loss of muscle force is observed with variable rates of recovery depending on the causes or underlying mechanisms. It can not only affect locomotion muscles, but can also affect the heart, in particular after intense prolonged exercise such as marathons and ultra-triathlons. The goal of our study was to explore the effect of four different natural extracts with recognized antioxidant properties on the contractile function of skeletal (locomotion) and cardiac muscles after a prolonged exhausting exercise. Male Wistar rats performed a bout of exhausting exercise on a treadmill for about 2.5 h and were compared to sedentary animals. Some rats received oral treatment of a natural extract (rosemary, buckwheat, Powergrape®, or rapeseed) or the placebo 24 h and 1 h before exercise. Experiments were performed 30 min after the race and after 7 days of recovery. All natural extracts had protective effects both in cardiac and skeletal muscles. The extent of protection was different depending on muscle type and the duration post-exercise (just after and after one-week recovery), including antiarrhythmic effect and anti-diastolic dysfunction for the heart, and faster recovery of contractility for the skeletal muscles. Moreover, the muscular protective effect varied between natural extracts. Our study shows that an acute antioxidant supplementation can protect against acute abnormal endogenous ROS toxicity, induced here by prolonged exhausting exercise.
Collapse
Affiliation(s)
- Marc Yehya
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Doria Boulghobra
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Pierre-Edouard Grillet
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
- Département de Biochimie et d'Hormonologie, CHU Montpellier, 34295 Montpellier, France
| | | | - Patrice Bideaux
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Sandrine Gayrard
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Pierre Sicard
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Jérome Thireau
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Cyril Reboul
- UPR-4278, Laboratoire de Physiologie Expérimentale Cardiovasculaire, Avignon University, 84029 Avignon, France
| | - Olivier Cazorla
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| |
Collapse
|
2
|
Fares R, Champéroux P. Simultaneous assessment of central nervous and respiratory systems using jacketed telemetry in socially-housed rats: Application of the "3Rs" principles in core battery safety pharmacology studies. J Pharmacol Toxicol Methods 2023; 121:107268. [PMID: 37146838 DOI: 10.1016/j.vascn.2023.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Central nervous (CNS) and respiratory systems are routinely investigated in safety pharmacology core battery studies. For small molecules, the assessment of both vital organ systems is frequently done in rats in two distinct studies. With the advent of a miniaturized technology of jacketed external telemetry for rats (DECRO system), the simultaneous assessment of modified Irwin's or functional observational battery (FOB) test and respiratory (Resp) studies has become possible within a single study. Therefore, the objectives of this study were to perform the FOB and the Resp studies simultaneously in pair-housed rats fitted with jacketed telemetry, and to assess the feasibility and the outcome of this combination in control, baclofen, caffeine, and clonidine treated groups, i.e., with three agents having both respiratory and CNS effects. Our results provided evidence that performing both Resp and FOB assessment simultaneously in the same rat was feasible and the outcome was successful. The expected CNS and respiratory effects of the 3 reference compounds were accurately captured in each assay confirming the results' relevance. In addition, heart rate and activity level were recorded as additional parameters making this design as an enhanced approach for nonclinical safety assessment in rats. This work provides clear evidence that the "3Rs" principles can be effectively applied in core battery safety pharmacology studies while remaining in compliance with worldwide regulatory guidelines. Both reduction in animal use and refinements in procedures are demonstrated with this model.
Collapse
|
3
|
van Weperen VYH, ter Horst I, Dunnink A, Bossu A, Salden OA, Beekman HDM, Oros A, Bourgonje V, Stams T, Meine M, Vos MA. Chronically altered ventricular activation causes pro-arrhythmic cardiac electrical remodelling in the chronic AV block dog model. Europace 2022; 25:707-715. [PMID: 36125234 PMCID: PMC9934998 DOI: 10.1093/europace/euac164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/31/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Altered ventricular activation (AVA) causes intraventricular mechanical dyssynchrony (MD) and impedes contraction, promoting pro-arrhythmic electrical remodelling in the chronic atrioventricular block (CAVB) dog. We aimed to study arrhythmogenic and electromechanical outcomes of different degrees of AVA. METHODS AND RESULTS Following atrioventricular block, AVA was established through idioventricular rhythm (IVR; n = 29), right ventricular apex (RVA; n = 12) pacing or biventricular pacing [cardiac resynchronization therapy (CRT); n = 10]. After ≥3 weeks of bradycardic remodelling, Torsade de Pointes arrhythmia (TdP) inducibility, defined as ≥3 TdP/10 min, was tested with specific IKr-blocker dofetilide (25 μg/kg/5 min). Mechanical dyssynchrony was assessed by echocardiography as time-to-peak (TTP) of left ventricular (LV) free-wall minus septum (ΔTTP). Electrical intraventricular dyssynchrony was assessed as slope of regression line correlating intraventricular LV activation time (AT) and activation recovery interval (ARI). Under sinus rhythm, contraction occurred synchronous (ΔTTP: -8.6 ± 28.9 ms), and latest activated regions seemingly had slightly longer repolarization (AT-ARI slope: -0.4). Acute AV block increased MD in all groups, but following ≥3 weeks of remodelling IVR animals became significantly more TdP inducible (19/29 IVR vs. 5/12 RVA and 2/10 CRT, both P < 0.05 vs. IVR). After chronic AVA, intraventricular MD was lowest in CRT animals (ΔTTP: -8.5 ± 31.2 vs. 55.80 ± 20.0 and 82.7 ± 106.2 ms in CRT, IVR, and RVA, respectively, P < 0.05 RVA vs. CRT). Although dofetilide steepened negative AT-ARI slope in all groups, this heterogeneity in dofetilide-induced ARI prolongation seemed least pronounced in CRT animals (slope to -0.8, -3.2 and -4.5 in CRT, IVR and RVA, respectively). CONCLUSION Severity of intraventricular MD affects the extent of electrical remodelling and pro-arrhythmic outcome in the CAVB dog model.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Iris ter Horst
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Albert Dunnink
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Alexandre Bossu
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Odette A Salden
- Department of Cardiology, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Henriette D M Beekman
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Avram Oros
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Vincent Bourgonje
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Thom Stams
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Mathias Meine
- Department of Cardiology, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Marc A Vos
- Corresponding author. Tel: +31 30 2538900, fax: +31 30 2539036. E-mail address:
| |
Collapse
|
4
|
Champéroux P, Fares R, Bastogne T, Richard S, Le Guennec JY, Thireau J. Contribution of hemodynamic side effects and associated autonomic reflexes to ventricular arrhythmias triggering by torsadogenic hERG blocking drugs. Br J Pharmacol 2022; 179:4549-4562. [PMID: 35751378 PMCID: PMC9543494 DOI: 10.1111/bph.15905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSES Several hERG blocking drugs known for their propensity to trigger Torsades de Pointes (TdP) were reported to induce a sympatho-vagal coactivation and to enhance High Frequency heart rate (HFHR) and QT oscillations (HFQT) from telemetric data. The present work aims to characterise the underlying mechanism(s) leading to these autonomic changes. EXPERIMENTAL APPROACH Effects of 15 torsadogenic hERG blocking drugs (astemizole, chlorpromazine, cisapride, droperidol, ibutilide, dofetilide, haloperidol, moxifloxacin, pimozide, quinidine, risperidone, sotalol, sertindole, terfenadine, thioridazine) were assessed by telemetry in beagle dogs. Hemodynamic effects on diastolic and systolic arterial pressure were analysed from the first doses causing QTc prolongation and/or HFQT oscillations enhancement. Autonomic control changes were analysed with the High Frequency Autonomic Modulation (HFAM) model. KEY RESULTS Except moxifloxacin and quinidine, all torsadogenic hERG blockers induced parasympathetic activation or sympatho-vagal coactivation combined with enhancement of HFQT oscillations. These autonomic effects result from reflex compensatory mechanisms in response to mild hemodynamic side effects. These hemodynamic mechanisms were characterised by transient HR acceleration during HF oscillations. A phenomenon of concealed QT prolongation was unmasked for several torsadogenic hERG blockers under β-adrenoceptors blockade by atenolol. Resulting enhancement of HFQT oscillations was shown to contribute directly to triggering of dofetilide induced ventricular arrhythmias. CONCLUSIONS AND IMPLICATIONS This work supports for the first time a contribution of hemodynamic side properties to ventricular arrhythmias triggering by torsadogenic hERG blocking drugs. These hemodynamic side effects may constitute a second component of their arrhythmic profile acting as a trigger alongside their intrinsic arrhythmogenic electrophysiological properties.
Collapse
Affiliation(s)
| | - Raafat Fares
- ERBC France, Chemin de Montifault, Baugy, France
| | - Thierry Bastogne
- CRAN CNRS UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Jean-Yves Le Guennec
- Laboratoire PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier cedex, France
| | - Jérôme Thireau
- Laboratoire PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier cedex, France
| |
Collapse
|
5
|
Improving corrected QT; Why individual correction is not enough. J Pharmacol Toxicol Methods 2021; 113:107126. [PMID: 34655760 DOI: 10.1016/j.vascn.2021.107126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
The use of QT-prolongation as a biomarker for arrhythmia risk requires that researchers correct the QT-interval (QT) to control for the influence of heart rate (HR). QT correction methods can vary but most used are the universal correction methods, such as Bazett's or Van de Water's, which use a single correction formula to correct QT-intervals in all the subjects of a study. Such methods fail to account for differences in the QT/HR relationship between subjects or over time, instead relying on the assumption that this relationship is consistent. To address these changes in rate relationships, we test the effectiveness of linear and non-linear individual correction methods. We hypothesize that individual correction methods that account for additional influences on the rate relationship will result in more effective and consistent correction. To increase the scope of this study we use bootstrap sampling on ECG recordings from non-human primates and beagle canines dosed with vehicle control. We then compare linear and non-linear individual correction methods through their ability to reduce HR correlation and standard deviation of corrected QT values. From these results, we conclude that individual correction methods based on post-treatment data are most effective with the linear methods being the best option for most cases in both primates and canines. We also conclude that the non-linear methods are more effective in canines than primates and that accounting for light status can improve correction while examining the data from the light periods separately. Individual correction requires careful consideration of inter-subject and intra-subject variabilities.
Collapse
|
6
|
Dridi H, Liu X, Yuan Q, Reiken S, Yehia M, Sittenfeld L, Apostolou P, Buron J, Sicard P, Matecki S, Thireau J, Menuet C, Lacampagne A, Marks AR. Role of defective calcium regulation in cardiorespiratory dysfunction in Huntington's disease. JCI Insight 2020; 5:140614. [PMID: 32897880 PMCID: PMC7566717 DOI: 10.1172/jci.insight.140614] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Huntington’s disease (HD) is a progressive, autosomal dominant neurodegenerative disorder affecting striatal neurons beginning in young adults with loss of muscle coordination and cognitive decline. Less appreciated is the fact that patients with HD also exhibit cardiac and respiratory dysfunction, including pulmonary insufficiency and cardiac arrhythmias. The underlying mechanism for these symptoms is poorly understood. In the present study we provide insight into the cause of cardiorespiratory dysfunction in HD and identify a potentially novel therapeutic target. We now show that intracellular calcium (Ca2+) leak via posttranslationally modified ryanodine receptor/intracellular calcium release (RyR) channels plays an important role in HD pathology. RyR channels were oxidized, PKA phosphorylated, and leaky in brain, heart, and diaphragm both in patients with HD and in a murine model of HD (Q175). HD mice (Q175) with endoplasmic reticulum Ca2+ leak exhibited cognitive dysfunction, decreased parasympathetic tone associated with cardiac arrhythmias, and reduced diaphragmatic contractile function resulting in impaired respiratory function. Defects in cognitive, motor, and respiratory functions were ameliorated by treatment with a novel Rycal small-molecule drug (S107) that fixes leaky RyR. Thus, leaky RyRs likely play a role in neuronal, cardiac, and diaphragmatic pathophysiology in HD, and RyRs are a potential novel therapeutic target. This study explores the role of ryanodine receptor calcium channels in the brain, the heart, and the diaphragm and central versus peripheral pathophysiological mechanisms in Huntington’s disease.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Xiaoping Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Steve Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Mohamad Yehia
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Panagiota Apostolou
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Julie Buron
- Institut de Neurobiologie de la Méditerranée, INMED UMR1249, INSERM, Aix-Marseille Université, Marseille, France
| | - Pierre Sicard
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France
| | - Stefan Matecki
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France
| | - Jérome Thireau
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France.,LIA MusCaRyR, CNRS, Montpellier, France
| | - Clement Menuet
- Institut de Neurobiologie de la Méditerranée, INMED UMR1249, INSERM, Aix-Marseille Université, Marseille, France
| | - Alain Lacampagne
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France.,LIA MusCaRyR, CNRS, Montpellier, France
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
7
|
Champéroux P, Fesler P, Judé S, Richard S, Le Guennec JY, Thireau J. High-frequency autonomic modulation: a new model for analysis of autonomic cardiac control. Br J Pharmacol 2018; 175:3131-3143. [PMID: 29723392 PMCID: PMC6031873 DOI: 10.1111/bph.14354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Increase in high‐frequency beat‐to‐beat heart rate oscillations by torsadogenic hERG blockers appears to be associated with signs of parasympathetic and sympathetic co‐activation which cannot be assessed directly using classic methods of heart rate variability analysis. The present work aimed to find a translational model that would allow this particular state of the autonomic control of heart rate to be assessed. Experimental Approach High‐frequency heart rate and heart period oscillations were analysed within discrete 10 s intervals in a cohort of 200 healthy human subjects. Results were compared to data collected in non‐human primates and beagle dogs during pharmacological challenges and torsadogenic hERG blockers exposure, in 127 genotyped LQT1 patients on/off β‐blocker treatment and in subgroups of smoking and non‐smoking subjects. Key Results Three states of autonomic modulation, S1 (parasympathetic predominance) to S3 (reciprocal parasympathetic withdrawal/sympathetic activation), were differentiated to build a new model of heart rate variability referred to as high‐frequency autonomic modulation. The S2 state corresponded to a specific state during which both parasympathetic and sympathetic systems were coexisting or co‐activated. S2 oscillations were proportionally increased by torsadogenic hERG‐blocking drugs, whereas smoking caused an increase in S3 oscillations. Conclusions and Implications The combined analysis of the magnitude of high‐frequency heart rate and high‐frequency heart period oscillations allows a refined assessment of heart rate autonomic modulation applicable to long‐term ECG recordings and offers new approaches to assessment of the risk of sudden death both in terms of underlying mechanisms and sensitivity.
Collapse
Affiliation(s)
| | - Pierre Fesler
- Department of Internal Medicine, Hopital Lapeyronie, Montpellier, France.,Laboratoire PHYMEDEXP,INSERM U1046, CNRS UMR 9214, Université de Montpellier, CHU Arnaud de Villeneuve, Montpellier Cedex 05, 34295, France
| | - Sebastien Judé
- Centre de Recherches Biologiques, CERB, Baugy, 18800, France
| | - Serge Richard
- Centre de Recherches Biologiques, CERB, Baugy, 18800, France
| | - Jean-Yves Le Guennec
- Laboratoire PHYMEDEXP,INSERM U1046, CNRS UMR 9214, Université de Montpellier, CHU Arnaud de Villeneuve, Montpellier Cedex 05, 34295, France
| | - Jérôme Thireau
- Laboratoire PHYMEDEXP,INSERM U1046, CNRS UMR 9214, Université de Montpellier, CHU Arnaud de Villeneuve, Montpellier Cedex 05, 34295, France
| |
Collapse
|
8
|
Galano JM, Roy J, Durand T, Lee JCY, Le Guennec JY, Oger C, Demion M. Biological activities of non-enzymatic oxygenated metabolites of polyunsaturated fatty acids (NEO-PUFAs) derived from EPA and DHA: New anti-arrhythmic compounds? Mol Aspects Med 2018; 64:161-168. [PMID: 29572110 DOI: 10.1016/j.mam.2018.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022]
Abstract
ω3 Polyunsaturated fatty acids (ω3 PUFAs) have several biological properties including anti-arrhythmic effects. However, there are some evidences that it is not solely ω3 PUFAs per se that are biologically active but the non-enzymatic oxygenated metabolites of polyunsaturated fatty acids (NEO-PUFAs) like isoprostanes and neuroprostanes. Recent question arises how these molecules take part in physiological homeostasis, show biological bioactivities and anti-inflammatory properties. Furthermore, they are involved in the circulations of childbirth, by inducing the closure of the ductus arteriosus. In addition, oxidative stress which can be beneficial for the heart in given environmental conditions such as the presence of ω3 PUFAs on the site of the stress and the signaling pathways involved are also explained in this review.
Collapse
Affiliation(s)
| | - Jérôme Roy
- Université de Montpellier, CNRS, Inserm, PhyMedExp, Montpellier, France
| | - Thierry Durand
- Université de Montpellier, CNRS, IBMM, Montpellier, France
| | | | | | - Camille Oger
- Université de Montpellier, CNRS, IBMM, Montpellier, France
| | - Marie Demion
- Université de Montpellier, CNRS, Inserm, PhyMedExp, Montpellier, France
| |
Collapse
|
9
|
Lane JD, Tinker A. Have the Findings from Clinical Risk Prediction and Trials Any Key Messages for Safety Pharmacology? Front Physiol 2017; 8:890. [PMID: 29163223 PMCID: PMC5681497 DOI: 10.3389/fphys.2017.00890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/20/2017] [Indexed: 01/28/2023] Open
Abstract
Anti-arrhythmic drugs are a mainstay in the management of symptoms related to arrhythmias, and are adjuncts in prevention and treatment of life-threatening ventricular arrhythmias. However, they also have the potential for pro-arrhythmia and thus the prediction of arrhythmia predisposition and drug response are critical issues. Clinical trials are the latter stages in the safety testing and efficacy process prior to market release, and as such serve as a critical safeguard. In this review, we look at some of the lessons to be learned from approaches to arrhythmia prediction in patients, clinical trials of drugs used in the treatment of arrhythmias, and the implications for the design of pre-clinical safety pharmacology testing.
Collapse
Affiliation(s)
- Jem D. Lane
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, London, United Kingdom
- Department of Cardiac Electrophysiology, Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Andrew Tinker
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
10
|
Osadchii OE. Role of abnormal repolarization in the mechanism of cardiac arrhythmia. Acta Physiol (Oxf) 2017; 220 Suppl 712:1-71. [PMID: 28707396 DOI: 10.1111/apha.12902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In cardiac patients, life-threatening tachyarrhythmia is often precipitated by abnormal changes in ventricular repolarization and refractoriness. Repolarization abnormalities typically evolve as a consequence of impaired function of outward K+ currents in cardiac myocytes, which may be caused by genetic defects or result from various acquired pathophysiological conditions, including electrical remodelling in cardiac disease, ion channel modulation by clinically used pharmacological agents, and systemic electrolyte disorders seen in heart failure, such as hypokalaemia. Cardiac electrical instability attributed to abnormal repolarization relies on the complex interplay between a provocative arrhythmic trigger and vulnerable arrhythmic substrate, with a central role played by the excessive prolongation of ventricular action potential duration, impaired intracellular Ca2+ handling, and slowed impulse conduction. This review outlines the electrical activity of ventricular myocytes in normal conditions and cardiac disease, describes classical electrophysiological mechanisms of cardiac arrhythmia, and provides an update on repolarization-related surrogates currently used to assess arrhythmic propensity, including spatial dispersion of repolarization, activation-repolarization coupling, electrical restitution, TRIaD (triangulation, reverse use dependence, instability, and dispersion), and the electromechanical window. This is followed by a discussion of the mechanisms that account for the dependence of arrhythmic vulnerability on the location of the ventricular pacing site. Finally, the review clarifies the electrophysiological basis for cardiac arrhythmia produced by hypokalaemia, and gives insight into the clinical importance and pathophysiology of drug-induced arrhythmia, with particular focus on class Ia (quinidine, procainamide) and Ic (flecainide) Na+ channel blockers, and class III antiarrhythmic agents that block the delayed rectifier K+ channel (dofetilide).
Collapse
Affiliation(s)
- O. E. Osadchii
- Department of Health Science and Technology; University of Aalborg; Aalborg Denmark
| |
Collapse
|
11
|
Rubi L, Kovar M, Zebedin-Brandl E, Koenig X, Dominguez-Rodriguez M, Todt H, Kubista H, Boehm S, Hilber K. Modulation of the heart's electrical properties by the anticonvulsant drug retigabine. Toxicol Appl Pharmacol 2017. [PMID: 28641963 DOI: 10.1016/j.taap.2017.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Retigabine, currently used as antiepileptic drug, has a wide range of potential medical uses. Administration of the drug in patients can lead to QT interval prolongation in the electrocardiogram and to cardiac arrhythmias in rare cases. This suggests that the drug may perturb the electrical properties of the heart, and the underlying mechanisms were investigated here. Effects of retigabine on currents through human cardiac ion channels, heterologously expressed in tsA-201 cells, were studied in whole-cell patch-clamp experiments. In addition, the drug's impact on the cardiac action potential was tested. This was done using ventricular cardiomyocytes isolated from Langendorff-perfused guinea pig hearts and cardiomyocytes derived from human induced pluripotent stem cells. Further, to unravel potential indirect effects of retigabine on the heart which might involve the autonomic nervous system, membrane potential and noradrenaline release from sympathetic ganglionic neurons were measured in the absence and presence of the drug. Retigabine significantly inhibited currents through hKv11.1 potassium, hNav1.5 sodium, as well as hCav1.2 calcium channels, but only in supra-therapeutic concentrations. In a similar concentration range, the drug shortened the action potential in both guinea pig and human cardiomyocytes. Therapeutic concentrations of retigabine, on the other hand, were sufficient to inhibit the activity of sympathetic ganglionic neurons. We conclude that retigabine- induced QT interval prolongation, and the reported cases of cardiac arrhythmias after application of the drug in a typical daily dose range, cannot be explained by a direct modulatory effect on cardiac ion channels. They are rather mediated by indirect actions at the level of the autonomic nervous system.
Collapse
Affiliation(s)
- Lena Rubi
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Kovar
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eva Zebedin-Brandl
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Dominguez-Rodriguez
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Boehm
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Karlheinz Hilber
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Inter-individual variability and modeling of electrical activity: a possible new approach to explore cardiac safety? Sci Rep 2016; 6:37948. [PMID: 27901061 PMCID: PMC5128803 DOI: 10.1038/srep37948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/02/2016] [Indexed: 11/08/2022] Open
Abstract
Safety pharmacology aims to predict rare side effects of new drugs. We explored whether rare pro-arrhythmic effects could be linked to the variability of the effects of these drugs on ion currents and whether taking into consideration this variability in computational models could help to better detect and predict cardiac side effects. For this purpose, we evaluated how intra- and inter-individual variability influences the effect of hERG inhibition on both the action potential duration and the occurrence of arrhythmias. Using two computer simulation models of human action potentials (endocardial and Purkinje cells), we analyzed the contribution of two biological parameters on the pro-arrhythmic effects of several hERG channel blockers: (i) spermine concentration, which varies with metabolic status, and (ii) L-type calcium conductance, which varies due to single nucleotide polymorphisms or mutations. By varying these parameters, we were able to induce arrhythmias in 1 out of 16 simulations although conventional modeling methods to detect pro-arrhythmic molecules failed. On the basis of our results, taking into consideration only 2 parameters subjected to intra- and inter-individual variability, we propose that in silico computer modeling may help to better define the risks of new drug candidates at early stages of pre-clinical development.
Collapse
|
13
|
Abstract
The QT interval reflects the time between the depolarization of ventricles until their repolarization and is usually used as a predictive marker for the occurrence of arrhythmias. This parameter varies with the heart rate, expressed as the RR interval (time between two successive ventricular depolarizations). To calculate the QT independently of the RR, correction formulae are currently used. In mice, the QT-RR relationship as such has never been studied in conscious animals, and correction formulas are mainly empirical. In the present paper we studied how QT varies when the RR changes physiologically (comparison of nocturnal and diurnal periods) or after dosing mice with tachycardic agents (norepinephrine or nitroprusside). Our results show that there is significant variability of QT and RR in a given condition, resulting in the need to average at least 200 consecutive complexes to accurately compare the QT. Even following this method, no obvious shortening of the QT was observed with increased heart rate, regardless of whether or not this change occurs abruptly. In conclusion, the relationship between QT and RR in mice is weak, which renders the use of correction formulae inappropriate and misleading in this species.
Collapse
|
14
|
Champeroux P, Le Guennec JY, Jude S, Laigot C, Maurin A, Sola ML, Fowler JSL, Richard S, Thireau J. The high frequency relationship: implications for torsadogenic hERG blockers. Br J Pharmacol 2016; 173:601-12. [PMID: 26589499 DOI: 10.1111/bph.13391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 11/11/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Ventricular arrhythmias induced by human ether-a-go-go related gene (hERG; Kv 11.1 channel) blockers are a consequence of alterations in ventricular repolarisation in association with high-frequency (HF) oscillations, which act as a primary trigger; the autonomic nervous system plays a modulatory role. In the present study, we investigated the role of β1 -adrenoceptors in the HF relationship between magnitude of heart rate and QT interval changes within discrete 10 s intervals (sorted into 5 bpm heart rate increments) and its implications for torsadogenic hERG blockers. EXPERIMENTAL APPROACH The HF relationship was studied under conditions of autonomic blockade with atenolol (β1 -adrenoceptor blocker) in the absence or presence of five hERG blockers in beagle dogs. In total, the effects of 14 hERG blockers on the HF relationship were investigated. KEY RESULTS All the torsadogenic hERG blockers tested caused a vertical shift in the HF relationship, while hERG blockers associated with a low risk of Torsades de Pointes did not cause any vertical shift. Atenolol completely prevented the effects four torsadogenic agents (quinidine, thioridazine, risperidone and terfenadine) on the HF relationship, but only partially reduced those of dofetilide, leading to the characterization of two types of torsadogenic agent. CONCLUSIONS AND IMPLICATIONS Analysis of the vertical shift in the HF relationship demonstrated that signs of transient sympathetic activation during HF oscillations in the presence of torsadogenic hERG blockers are mediated by β1 -adrenoceptors. We suggest the HF relationship as a new biomarker for assessing Torsades de pointes liability, with potential implications in both preclinical studies and the clinic.
Collapse
Affiliation(s)
- P Champeroux
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - J Y Le Guennec
- Laboratoire PHYMEDEXP, Physiologie et Médecine Expérimentale, Cœur et Muscles, INSERM U1046, CNRS UMR 9214, Université de Montpellier, CHU Arnaud de Villeneuve, 371 Avenue du doyen G. Giraud, 34295, Montpellier cedex 05, France
| | - S Jude
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - C Laigot
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - A Maurin
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - M L Sola
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - J S L Fowler
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - S Richard
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - J Thireau
- Laboratoire PHYMEDEXP, Physiologie et Médecine Expérimentale, Cœur et Muscles, INSERM U1046, CNRS UMR 9214, Université de Montpellier, CHU Arnaud de Villeneuve, 371 Avenue du doyen G. Giraud, 34295, Montpellier cedex 05, France
| |
Collapse
|
15
|
Frommeyer G, Eckardt L. Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms. Nat Rev Cardiol 2015; 13:36-47. [PMID: 26194552 DOI: 10.1038/nrcardio.2015.110] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug-induced ventricular tachyarrhythmias can be caused by cardiovascular drugs, noncardiovascular drugs, and even nonprescription agents. They can result in arrhythmic emergencies and sudden cardiac death. If a new arrhythmia or aggravation of an existing arrhythmia develops during therapy with a drug at a concentration usually considered not to be toxic, the situation can be defined as proarrhythmia. Various cardiovascular and noncardiovascular drugs can increase the occurrence of polymorphic ventricular tachycardia of the 'torsade de pointes' type. Antiarrhythmic drugs, antimicrobial agents, and antipsychotic and antidepressant drugs are the most important groups. Age, female sex, and structural heart disease are important risk factors for the occurrence of torsade de pointes. Genetic predisposition and individual pharmacodynamic and pharmacokinetic sensitivity also have important roles in the generation of arrhythmias. An increase in spatial or temporal dispersion of repolarization and a triangular action-potential configuration have been identified as crucial predictors of proarrhythmia in experimental models. These studies emphasized that sole consideration of the QT interval is not sufficient to assess the proarrhythmic risk. In this Review, we focus on important triggers of proarrhythmia and the underlying electrophysiological mechanisms that can enhance or prevent the development of torsade de pointes.
Collapse
Affiliation(s)
- Gerrit Frommeyer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Strasse 33, D-48149 Münster, Germany
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Strasse 33, D-48149 Münster, Germany
| |
Collapse
|