1
|
尹 晓, 徐 桂, 朱 海, 付 蕊, 李 洋, 丁 冲. [Effects of magnetic stimulation at different frequencies on neuronal excitability and voltage-gated potassium channels in vitro brain slices]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:224-231. [PMID: 33913281 PMCID: PMC9927691 DOI: 10.7507/1001-5515.202009047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/14/2021] [Indexed: 11/03/2022]
Abstract
As a noninvasive neuromodulation technique, transcranial magnetic stimulation (TMS) is widely used in the clinical treatment of neurological and psychiatric diseases, but the mechanism of its action is still unclear. The purpose of this paper is to investigate the effects of different frequencies of magnetic stimulation (MS) on neuronal excitability and voltage-gated potassium channels in the in vitro brain slices from the electrophysiological perspective of neurons. The experiment was divided into stimulus groups and control group, and acute isolated mice brain slices were applied to MS with the same intensity (0.3 T) at different frequencies (20 Hz and 0.5 Hz, 500 pulses) respectively in the stimulus groups. The whole-cell patch clamp technique was used to record the resting membrane potential (RMP), action potential (AP), voltage-gated potassium channels current of hippocampal dentate gyrus (DG) granule cells. The results showed that 20 Hz MS significantly increased the number of APs released and the maximum slope of a single AP, reduced the threshold of AP, half width and time to AP peak amplitude, and improved the excitability of hippocampal neurons. The peak currents of potassium channels were decreased, the inactivation curve of transient outward potassium channels shifted to the left significantly, and the time constant of recovery after inactivation increased significantly. 0.5 Hz MS significantly inhibited neuronal excitability and increased the peak currents of potassium channels, but the dynamic characteristics of potassium channels had little change. The results suggest that the dynamic characteristics of voltage-gated potassium channels and the excitability of hippocampal DG granule neurons may be one of the potential mechanisms of neuromodulation by MS.
Collapse
Affiliation(s)
- 晓楠 尹
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P.R.China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P.R.China
| | - 桂芝 徐
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P.R.China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P.R.China
| | - 海军 朱
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P.R.China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P.R.China
| | - 蕊 付
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P.R.China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P.R.China
| | - 洋 李
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P.R.China
| | - 冲 丁
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P.R.China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P.R.China
| |
Collapse
|
2
|
Tian F, Qiu Y, Lan X, Li M, Yang H, Gao Z. A Small-Molecule Compound Selectively Activates K2P Channel TASK-3 by Acting at Two Distant Clusters of Residues. Mol Pharmacol 2019; 96:26-35. [DOI: 10.1124/mol.118.115303] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
|
3
|
Zoeller RA, Geoghegan-Barek K. A cell-based high-throughput screen identifies tyrphostin AG 879 as an inhibitor of animal cell phospholipid and fatty acid biosynthesis. Biochem Biophys Rep 2019; 18:100621. [PMID: 30899803 PMCID: PMC6406593 DOI: 10.1016/j.bbrep.2019.100621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/18/2019] [Indexed: 01/02/2023] Open
Abstract
Inhibition of animal cell phospholipid biosynthesis has been proposed for anticancer and antiviral therapies. Using CHO—K1 derived cell lines, we have developed and used a cell-based high-throughput procedure to screen a 1280 compound, small molecule library for inhibitors of phospholipid biosynthesis. We identified tyrphostin AG 879 (AG879), which inhibited phospholipid biosynthesis by 85–90% at a concentration of 10 μM, displaying an IC50 of 1–3 μM. The synthesis of all phospholipid head group classes was heavily affected. Fatty acid biosynthesis was also dramatically inhibited (90%). AG879 inhibited phospholipid biosynthesis in all additional cell lines tested, including MDCK, HUH7, Vero, and HeLa cell lines. In CHO cells, AG879 was cytostatic; cells survived for at least four days during exposure and were able to divide following its removal. AG879 is an inhibitor of receptor tyrosine kinases (RTK) and inhibitors of signaling pathways known to be activated by RTK's also inhibited phospholipid biosynthesis. We speculate that inhibition of RTK by AG879 results in an inhibition of fatty acid biosynthesis with a resulting decrease in phospholipid biosynthesis and that AG879's effect on fatty acid synthesis and/or phospholipid biosynthesis may contribute to its known capacity as an effective antiviral/anticancer agent.
Collapse
Key Words
- 32Pi, [32P]orthophosphate
- AFU, Arbitrary fluorescence units
- AG879, Tyrphostin AG 879
- Anticancer
- Antiviral
- CE, Cholesterol ester
- CL, Cardiolipin
- Drug screening
- EGFR, Epidermal growth factor receptor
- Fatty acid biosynthesis
- HER2, Human epidermal growth factor receptor 2
- HTS, High-throughput screen
- P12, 12-(1′-pyrene) dodecanoic acid
- PA, Phosphatidic acid
- PC, Phosphatidylcholine
- PE, Phosphatidylethanolamine
- PI, Phosphatidylinositol
- PL, Phospholipid
- Phospholipid biosynthesis
- RTK, Receptor tyrosine kinase
- TG, Triacylglycerol
- Tyrphostin AG 879
- trkA, Tropomyosin analogue receptor kinase
Collapse
Affiliation(s)
- Raphael A Zoeller
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Room W302, Boston, MA, 02118, USA
| | - Kathleen Geoghegan-Barek
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Room W302, Boston, MA, 02118, USA
| |
Collapse
|