1
|
Duan K, Liu J, Zhang J, Chu T, Liu H, Lou F, Liu Z, Gao B, Wei S, Wei F. Advancements in innate immune regulation strategies in islet transplantation. Front Immunol 2024; 14:1341314. [PMID: 38288129 PMCID: PMC10823010 DOI: 10.3389/fimmu.2023.1341314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
As a newly emerging organ transplantation technique, islet transplantation has shown the advantages of minimal trauma and high safety since it was first carried out. The proposal of the Edmonton protocol, which has been widely applied, was a breakthrough in this method. However, direct contact between islets and portal vein blood will cause a robust innate immune response leading to massive apoptosis of the graft, and macrophages play an essential role in the innate immune response. Therefore, therapeutic strategies targeting macrophages in the innate immune response have become a popular research topic in recent years. This paper will summarize and analyze recent research on strategies for regulating innate immunity, primarily focusing on macrophages, in the field of islet transplantation, including drug therapy, optimization of islet preparation process, islet engineering and Mesenchymal stem cells cotransplantation. We also expounded the heterogeneity, plasticity and activation mechanism of macrophages in islet transplantation, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Kehang Duan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiao Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tongjia Chu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengxiang Lou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bing Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shixiong Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Pruller J, Pham TT, Blower JE, Charoenphun P, Volpe A, Sunassee K, Mullen GED, Blower PJ, Smith RAG, Ma MT. An indium-111-labelled membrane-targeted peptide for cell tracking with radionuclide imaging. RSC Chem Biol 2023; 4:65-73. [PMID: 36685254 PMCID: PMC9811519 DOI: 10.1039/d2cb00164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Cell labelling agents that enable longitudinal in vivo tracking of administered cells will support the clinical development of cell-based therapies. Radionuclide imaging with gamma and positron-emitting radioisotopes can provide quantitative and longitudinal mapping of cells in vivo. To make this widely accessible and adaptable to a range of cell types, new, versatile and simple methods for directly radiolabelling cells are required. We have developed [111In]In-DTPA-CTP, the first example of a radiolabelled peptide that binds to the extracellular membrane of cells, for tracking cell distribution in vivo using Single Photon Emission Computed Tomography (SPECT). [111In]In-DTPA-CTP consists of (i) myristoyl groups for insertion into the phospholipid bilayer, (ii) positively charged lysine residues for electrostatic association with negatively charged phospholipid groups at the cell surface and (iii) a diethylenetriamine pentaacetate derivative that coordinates the γ-emitting radiometal, [111In]In3+. [111In]In-DTPA-CTP binds to 5T33 murine myeloma cells, enabling qualitative SPECT tracking of myeloma cells' accumulation in lungs immediately after intravenous administration. This is the first report of a radiolabelled cell-membrane binding peptide for use in cell tracking.
Collapse
Affiliation(s)
- Johanna Pruller
- Randall Division of Cell and Molecular Biophysics, King's College London UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Truc Thuy Pham
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Julia E Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Putthiporn Charoenphun
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University Bangkok Thailand
| | - Alessia Volpe
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Kavitha Sunassee
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Gregory E D Mullen
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| | - Richard A G Smith
- MRC Centre for Transplantation, King's College London, Guy's Hospital London UK
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital London UK
| |
Collapse
|
3
|
Kielar M, Gala-Błądzińska A, Dumnicka P, Ceranowicz P, Kapusta M, Naumnik B, Kubiak G, Kuźniewski M, Kuśnierz-Cabala B. Complement Components in the Diagnosis and Treatment after Kidney Transplantation-Is There a Missing Link? Biomolecules 2021; 11:biom11060773. [PMID: 34064132 PMCID: PMC8224281 DOI: 10.3390/biom11060773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Currently, kidney transplantation is widely accepted as the renal replacement therapy allowing for the best quality of life and longest survival of patients developing end-stage renal disease. However, chronic transplant rejection, recurrence of previous kidney disease or newly acquired conditions, or immunosuppressive drug toxicity often lead to a deterioration of kidney allograft function over time. Complement components play an important role in the pathogenesis of kidney allograft impairment. Most studies on the role of complement in kidney graft function focus on humoral rejection; however, complement has also been associated with cell mediated rejection, post-transplant thrombotic microangiopathy, the recurrence of several glomerulopathies in the transplanted kidney, and transplant tolerance. Better understanding of the complement involvement in the transplanted kidney damage has led to the development of novel therapies that inhibit complement components and improve graft survival. The analysis of functional complotypes, based on the genotype of both graft recipient and donor, may become a valuable tool for assessing the risk of acute transplant rejection. The review summarizes current knowledge on the pathomechanisms of complement activation following kidney transplantation and the resulting diagnostic and therapeutic possibilities.
Collapse
Affiliation(s)
- Małgorzata Kielar
- St. Louis Regional Children’s Hospital, Medical Diagnostic Laboratory with a Bacteriology Laboratory, Strzelecka 2 St., 31-503 Kraków, Poland;
| | - Agnieszka Gala-Błądzińska
- Medical College of Rzeszów University, Institute of Medical Sciences, Kopisto 2A Avn., 35-310 Rzeszów, Poland;
| | - Paulina Dumnicka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medical Diagnostics, Medyczna 9 St., 30-688 Kraków, Poland;
| | - Piotr Ceranowicz
- Jagiellonian University Medical College, Faculty of Medicine, Department of Physiology, Grzegórzecka 16 St., 31-531 Kraków, Poland;
| | - Maria Kapusta
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Clinical Biochemistry, Department of Diagnostics, Kopernika 15A St., 31-501 Kraków, Poland;
| | - Beata Naumnik
- Medical University of Białystok, Faculty of Medicine, 1st Department of Nephrology and Transplantation with Dialysis Unit, Żurawia 14 St., 15-540 Białystok, Poland;
| | - Grzegorz Kubiak
- Catholic University of Leuven, Department of Cardiovascular Diseases, 3000 Leuven, Belgium;
| | - Marek Kuźniewski
- Jagiellonian University Medical College, Faculty of Medicine, Chair and Department of Nephrology, Jakubowskiego 2 St., 30-688 Kraków, Poland;
| | - Beata Kuśnierz-Cabala
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Clinical Biochemistry, Department of Diagnostics, Kopernika 15A St., 31-501 Kraków, Poland;
- Correspondence: ; Tel.: +48-12-424-83-65
| |
Collapse
|
4
|
Ram Kumar Pandian S, Arunachalam S, Deepak V, Kunjiappan S, Sundar K. Targeting complement cascade: an alternative strategy for COVID-19. 3 Biotech 2020; 10:479. [PMID: 33088671 PMCID: PMC7571295 DOI: 10.1007/s13205-020-02464-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/03/2020] [Indexed: 12/27/2022] Open
Abstract
The complement system is a stakeholder of the innate and adaptive immune system and has evolved as a crucial player of defense with multifaceted biological effects. Activation of three complement pathways leads to consecutive enzyme reactions resulting in complement components (C3 and C5), activation of mast cells and neutrophils by anaphylatoxins (C3a and C5a), the formation of membrane attack complex (MAC) and end up with opsonization. However, the dysregulation of complement cascade leads to unsolicited cytokine storm, inflammation, deterioration of alveolar lining cells, culminating in acquired respiratory destructive syndrome (ARDS). Similar pathogenesis is observed with the middle east respiratory syndrome (MERS), severe acquired respiratory syndrome (SARS), and SARS-CoV-2. Activation of the lectin pathway via mannose-binding lectin associated serine protease 2 (MASP2) is witnessed under discrete viral infections including COVID-19. Consequently, the spontaneous activation and deposits of complement components were traced in animal models and autopsy of COVID-19 patients. Pre-clinical and clinical studies evidence that the inhibition of complement components results in reduced complement deposits on target and non-target tissues, and aid in recovery from the pathological conditions of ARDS. Complement inhibitors (monoclonal antibody, protein, peptide, small molecules, etc.) exhibit great promise in blocking the activity of complement components and its downstream effects under various pathological conditions including SARS-CoV. Therefore, we hypothesize that targeting the potential complement inhibitors and complement cascade to counteract lung inflammation would be a better strategy to treat COVID-19.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Sankarganesh Arunachalam
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Venkataraman Deepak
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
- Department of Human Sciences, University of Derby, London, United Kingdom
| | - Selvaraj Kunjiappan
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Krishnan Sundar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| |
Collapse
|
5
|
Franzin R, Stasi A, Fiorentino M, Stallone G, Cantaluppi V, Gesualdo L, Castellano G. Inflammaging and Complement System: A Link Between Acute Kidney Injury and Chronic Graft Damage. Front Immunol 2020; 11:734. [PMID: 32457738 PMCID: PMC7221190 DOI: 10.3389/fimmu.2020.00734] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The aberrant activation of complement system in several kidney diseases suggests that this pillar of innate immunity has a critical role in the pathophysiology of renal damage of different etiologies. A growing body of experimental evidence indicates that complement activation contributes to the pathogenesis of acute kidney injury (AKI) such as delayed graft function (DGF) in transplant patients. AKI is characterized by the rapid loss of the kidney's excretory function and is a complex syndrome currently lacking a specific medical treatment to arrest or attenuate progression in chronic kidney disease (CKD). Recent evidence suggests that independently from the initial trigger (i.e., sepsis or ischemia/reperfusions injury), an episode of AKI is strongly associated with an increased risk of subsequent CKD. The AKI-to-CKD transition may involve a wide range of mechanisms including scar-forming myofibroblasts generated from different sources, microvascular rarefaction, mitochondrial dysfunction, or cell cycle arrest by the involvement of epigenetic, gene, and protein alterations leading to common final signaling pathways [i.e., transforming growth factor beta (TGF-β), p16 ink4a , Wnt/β-catenin pathway] involved in renal aging. Research in recent years has revealed that several stressors or complications such as rejection after renal transplantation can lead to accelerated renal aging with detrimental effects with the establishment of chronic proinflammatory cellular phenotypes within the kidney. Despite a greater understanding of these mechanisms, the role of complement system in the context of the AKI-to-CKD transition and renal inflammaging is still poorly explored. The purpose of this review is to summarize recent findings describing the role of complement in AKI-to-CKD transition. We will also address how and when complement inhibitors might be used to prevent AKI and CKD progression, therefore improving graft function.
Collapse
Affiliation(s)
- Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
- Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Pancreas transplantation enables complete patient independence from exogenous insulin administration and increases both patient survival and quality of life. Despite this, there has been a decline in pancreas transplantation for the past 20 years, influenced by changing donor demographics with more high-risk extended criteria (ECD) and donation after cardiac death (DCD) donors. This review discusses whether the advent of machine perfusion (MP), if extended to the pancreas, can increase the pool of suitable donor organs. RECENT FINDINGS Hypothermic and normothermic MP, as forms of preservation deemed superior to cold storage for high-risk kidney and liver donor organs, have opened the avenue for translation of this work into the pancreas. Recent experimental models of porcine and human ex-vivo pancreatic MP are promising. Applications of MP to the pancreas however need refinement-focusing on perfusion protocols and viability assessment tools. Emerging research shows pancreatic MP can potentially offer superior preservation capacity, the ability to both resuscitate and manipulate organs, and assess functional and metabolic organ viability. The future of MP will lie in organ assessment and resuscitation after retrieval, where ultimately organs initially considered high risk and unsuitable for transplantation will be optimised and transformed, making them then available for clinical use, thus increasing the pool of suitably viable pancreata for transplantation.
Collapse
Affiliation(s)
- Karim Hamaoui
- 0000 0001 2113 8111grid.7445.2Department of Surgery, Imperial College London, London, UK
| | - Vassilios Papalois
- 0000 0001 2113 8111grid.7445.2Department of Surgery, Imperial College London, London, UK
| |
Collapse
|
7
|
Chun N, Horwitz J, Heeger PS. Role of Complement Activation in Allograft Inflammation. CURRENT TRANSPLANTATION REPORTS 2019; 6:52-59. [PMID: 31673484 PMCID: PMC6822566 DOI: 10.1007/s40472-019-0224-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Novel paradigms have broadened our understanding of mechanisms through which complement mediates allograft inflammation/injury. Herein we review advances in the field and highlight therapeutic implications. RECENT FINDINGS Pre-clinical and translational human trials have elucidated complement-dependent mechanisms of post-transplant ischemia-reperfusion (I/R) injury. Immune cell-derived, and intracellular, complement activation are newly linked to proinflammatory T cell immunity relevant to allograft rejection. Complement-induced immune regulation, including C5a ligation of C5a receptor 2 on T cells, C5a/C5a receptor 1 interactions on regulatory myeloid cells, and C1q binding to CD8+ T cells can inhibit proinflammatory T cells and/or prolong murine allograft survival. Pilot trials of complement inhibition to treat/prevent human I/R- or antibody-initiated allograft injury show promise. SUMMARY The complement system participates in allograft injury through multiple context- dependent mechanisms involving various components and receptors. These new insights along with development and implementation of individualized complement inhibitory strategies have potential to improve transplant outcomes.
Collapse
Affiliation(s)
- Nicholas Chun
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai
- Division of Nephrology in the Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Julian Horwitz
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai
- The Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai
| | - Peter S Heeger
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai
- Division of Nephrology in the Department of Medicine, Icahn School of Medicine at Mount Sinai
- The Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
8
|
Horwitz JK, Chun NH, Heeger PS. Complement and Transplantation: From New Mechanisms to Potential Biomarkers and Novel Treatment Strategies. Clin Lab Med 2018; 39:31-43. [PMID: 30709507 DOI: 10.1016/j.cll.2018.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complement system, traditionally considered a component of innate immunity, is now recognized as a crucial mediator of the adaptive immune response in solid organ transplantation. Preclinical and early human trials have demonstrated the importance of complement effector mechanisms in driving allograft injury during specific antigraft immune responses, including ischemia-reperfusion injury, T-cell-mediated rejection, and antibody-mediated rejection, as well as a potential role for complement-derived risk stratification biomarkers. These data support the need for further testing of complement inhibitors in solid organ transplant recipients.
Collapse
Affiliation(s)
- Julian K Horwitz
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA; Department of Surgery, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA
| | - Nicholas H Chun
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA
| | - Peter S Heeger
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA; The Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA.
| |
Collapse
|
9
|
Zhang XR, Zhou WX, Zhang YX. Improvements in SOD mimic AEOL-10150, a potent broad-spectrum antioxidant. Mil Med Res 2018; 5:30. [PMID: 30185231 PMCID: PMC6125955 DOI: 10.1186/s40779-018-0176-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/06/2018] [Indexed: 01/07/2023] Open
Abstract
AEOL-10150 is a broad-spectrum metalloporphyrin superoxidase dismutase (SOD) mimic specifically designed to neutralize reactive oxygen and nitrogen species. Research has shown that AEOL-10150 is a potent medical countermeasure against national security threats including sulfur mustard (SM), nerve agent exposure and radiation pneumonitis following a radiological/nuclear incident sufficient to cause acute radiation syndrome (ARS). AEOL-10150 performed well in animal safety studies, and two completed phase 1 safety studies in patients demonstrated that the drug was safe and well tolerated, indicating that AEOL-10150 has potential as a new catalytic antioxidant drug. In this article, we review improvements in AEOL-10150 in preclinical pharmacodynamic studies, especially regarding anti-SM, chlorine gas and radiation exposure studies.
Collapse
Affiliation(s)
- Xiao-Rui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wen-Xia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Yong-Xiang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
10
|
He Y, Zhang D, Zeng Y, Ma J, Wang J, Guo H, Zhang J, Wang M, Zhang W, Gong N. Bone Marrow-Derived Mesenchymal Stem Cells Protect Islet Grafts Against Endoplasmic Reticulum Stress-Induced Apoptosis During the Early Stage After Transplantation. Stem Cells 2018; 36:1045-1061. [PMID: 29569832 DOI: 10.1002/stem.2823] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/13/2018] [Accepted: 02/18/2018] [Indexed: 12/16/2022]
Abstract
Early loss of grafted islets is the main obstacle to achieve favorable outcomes of islet transplantation. Mesenchymal stem cells are known to have a protective effect; however, its mechanism remains unclear. We hypothesized that bone marrow-derived mesenchymal stem cells (BMSCs) can protect grafted islets against endoplasmic reticulum stress (ERS)-induced apoptosis. In syngeneic streptozocin-induced diabetic BALB/c mice, islet grafts decreased blood glucose levels; however, the effect was not fully functional from the immediate post-transplant phase. β-Cell apoptosis was proven on days 1 and 3 after transplantation. Ultra-structural evidence of ERS was observed along with increased expressions of marker protein BIP and apoptosis-related protein CHOP. In contrast, BMSC co-transplantation maintained glucose hemostasis, inhibited apoptosis and alleviated ERS. In ex vivo culture, BMSCs improved viability of islets and decreased apoptosis. Increased ERS were observed in cultured islets exposed to hypoxia, but not in the islets cocultured with BMSCs. Furthermore, cocultured BMSCs protected islets against ERS-induced apoptosis as well as improved their insulin secretion, and BMSCs alleviated ERS by improving Myc expression through both stromal cell-derived factor 1 signal and contact effect. In conclusion, BMSCs protected the grafted islets against ERS-induced apoptosis during the early stage after transplantation. This study opens a new arena for ERS-targeted therapy to improve outcomes of islet transplantation. Stem Cells 2018;36:1045-1061.
Collapse
Affiliation(s)
- Ying He
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Zeng
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junlei Ma
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Guo
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Zhang
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengqin Wang
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Zhang
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
3D artificial round section micro-vessels to investigate endothelial cells under physiological flow conditions. Sci Rep 2018; 8:5898. [PMID: 29651108 PMCID: PMC5897395 DOI: 10.1038/s41598-018-24273-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
In the context of xenotransplantation, in ischemia/reperfusion injury as well as in cardiovascular research, the study of the fascinating interplay between endothelial cells (EC) and the plasma cascade systems often requires in vitro models. Blood vessels are hardly reproducible with standard flat-bed culture systems and flow-plate assays are limited in their low surface-to-volume ratio which impedes the study of the anticoagulant properties of the endothelial cells. According to the 3R regulations (reduce, replace and refine animal experimentation) we developed a closed circuit microfluidic in vitro system in which endothelial cells are cultured in 3D round section microchannels and subjected to physiological, pulsatile flow. In this study, a 3D monolayer of porcine aortic EC was perfused with human serum to mimic a xenotransplantation setting. Complement as well as EC activation was assessed in the presence or absence of complement inhibitors showing the versatility of the model for drug testing. Complement activation products as well as E-selectin expression were detected and visualized in situ by high resolution confocal microscopy. Furthermore, porcine pro-inflammatory cytokines as well as soluble complement components in the recirculating fluid phase were detected after human serum perfusion providing a better overview of the artificial vascular environment.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Mesenchymal stromal cells (MSCs) are adult stromal cells with therapeutic potential in allogeneic islet transplantation for type 1 diabetes patients. The process of islet isolation alone has been shown to negatively impact islet survival and function in vivo. In addition, insults mediated by the instant blood-mediated inflammatory reaction, hypoxia, ischemia and immune response significantly impact the islet allograft post transplantation. MSCs are known to exert cytoprotective and immune modulatory properties and thus are an attractive therapeutic in this context. Herein, the recent progress in the field of MSC therapy in islet transplantation is discussed. RECENT FINDINGS MSC can promote islet survival and function in vivo. Importantly, studies have shown that human MSC donors have differential abilities in promoting islet regeneration/survival. Recently, several biomarkers associated with MSC islet regenerative capacity have been identified. Expressions of Annexin A1, Elastin microfibril interface 1 and integrin-linked protein kinase are upregulated in MSC displaying protective effects on islet survival and function in vivo. SUMMARY The discovery of biomarkers associated with MSC therapeutic efficacy represents an important step forward for the utilization of MSC therapy in islet transplantation; however, much remains to be elucidated about the mechanisms utilized by MSC in protection against transplanted islet loss, autoimmune-mediated and alloimmune-mediated rejection.
Collapse
|
13
|
Organ Pretreatment With Cytotopic Endothelial Localizing Peptides to Ameliorate Microvascular Thrombosis and Perfusion Deficits in Ex Vivo Renal Hemoreperfusion Models. Transplantation 2016; 100:e128-e139. [DOI: 10.1097/tp.0000000000001437] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Ricklin D, Lambris JD. New milestones ahead in complement-targeted therapy. Semin Immunol 2016; 28:208-22. [PMID: 27321574 PMCID: PMC5404743 DOI: 10.1016/j.smim.2016.06.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 02/08/2023]
Abstract
The complement system is a powerful effector arm of innate immunity that typically confers protection from microbial intruders and accumulating debris. In many clinical situations, however, the defensive functions of complement can turn against host cells and induce or exacerbate immune, inflammatory, and degenerative conditions. Although the value of inhibiting complement in a therapeutic context has long been recognized, bringing complement-targeted drugs into clinical use has proved challenging. This important milestone was finally reached a decade ago, yet the clinical availability of complement inhibitors has remained limited. Still, the positive long-term experience with complement drugs and their proven effectiveness in various diseases has reinvigorated interest and confidence in this approach. Indeed, a broad variety of clinical candidates that act at almost any level of the complement activation cascade are currently in clinical development, with several of them being evaluated in phase 2 and phase 3 trials. With antibody-related drugs dominating the panel of clinical candidates, the emergence of novel small-molecule, peptide, protein, and oligonucleotide-based inhibitors offers new options for drug targeting and administration. Whereas all the currently approved and many of the proposed indications for complement-targeted inhibitors belong to the rare disease spectrum, these drugs are increasingly being evaluated for more prevalent conditions. Fortunately, the growing experience from preclinical and clinical use of therapeutic complement inhibitors has enabled a more evidence-based assessment of suitable targets and rewarding indications as well as related technical and safety considerations. This review highlights recent concepts and developments in complement-targeted drug discovery, provides an overview of current and emerging treatment options, and discusses the new milestones ahead on the way to the next generation of clinically available complement therapeutics.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
15
|
Lee CA, Dhawan A, Smith RA, Mitry RR, Fitzpatrick E. Instant Blood-Mediated Inflammatory Reaction in Hepatocyte Transplantation: Current Status and Future Perspectives. Cell Transplant 2016; 25:1227-36. [PMID: 26996786 DOI: 10.3727/096368916x691286] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatocyte transplantation (HT) is emerging as a promising alternative to orthotopic liver transplantation (OLT) in patients with certain liver-based metabolic disease and acute liver failure. Hepatocytes are generally infused into the portal venous system, from which they migrate into the liver cell plates of the native organ. One of the major hurdles to the sustained success of this therapy is early cell loss, with up to 70% of hepatocytes lost immediately following infusion. This is largely thought to be due to the instant blood-mediated inflammatory reaction (IBMIR), resulting in the activation of complement and coagulation pathways. Transplanted hepatocytes produce and release tissue factor (TF), which activates the coagulation pathway, leading to the formation of thrombin and fibrin clots. Thrombin can further activate a number of complement proteins, leading to the activation of the membrane attack complex (MAC) and subsequent hepatocyte cell death. Inflammatory cells including granulocytes, monocytes, Kupffer cells, and natural killer (NK) cells have been shown to cluster around transplanted hepatocytes, leading to their rapid clearance shortly after transplantation. Current research aims to improve cell engraftment and prevent early cell loss. This has been proven successful in vitro using pharmacological interventions such as melagatran, low-molecular-weight dextran sulphate, and N-acetylcysteine (NAC). Effective inhibition of IBMIR would significantly improve hepatocyte engraftment, proliferation, and function, providing successful treatment for patients with liver-based metabolic diseases.
Collapse
Affiliation(s)
- Charlotte A Lee
- Institute of Liver Studies, King's College London, School of Life Sciences and Medicine, King's College Hospital, London, UK
| | | | | | | | | |
Collapse
|
16
|
Xiao F, Ma L, Zhao M, Smith RA, Huang G, Jones PM, Persaud S, Pingitore A, Dorling A, Lechler R, Lombardi G. APT070 (mirococept), a membrane-localizing C3 convertase inhibitor, attenuates early human islet allograft damage in vitro and in vivo in a humanized mouse model. Br J Pharmacol 2016; 173:575-87. [PMID: 26565566 PMCID: PMC4728428 DOI: 10.1111/bph.13388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/03/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose A major obstacle to islet cell transplantation is the early loss of transplanted islets resulting from the instant blood‐mediated inflammation reaction (IBMIR). The activation of complement pathways plays a central role in IBMIR. The aim of this study was to test the inhibitory effect of “painting” human islets with APT070, a membrane‐localizing C3 convertase inhibitor, on inflammation evoked by exposure to human serum in vitro and by transplantation in vivo in a humanized diabetic mouse model. Experimental Approach In vitro, human islets pre‐incubated with APT070 were exposed to allogeneic whole blood. In vivo, similarly treated islets were transplanted underneath the kidney capsule of streptozotocin‐induced diabetic NOD‐SCID IL2rγ−/− mice that had been reconstituted with human CD34+ stem cells. Complement activation and islet hormone content were assayed using enzyme‐linked immunosorbent assays. Supernatants and sera were assayed for cytokines using cytometric beads array. Morphology of the islets incubated with human serum in vitro and in graft‐bearing kidney were evaluated using immunofluorescence staining. Key Results Pre‐incubation with APT070 decreased C‐peptide release and iC3b production in vitro, with diminished deposition of C4d and C5b‐9 in islets embedded in blood clots. In vivo, the APT070‐treated islets maintained intact structure and showed less infiltration of inflammatory cells than untreated islets. The pretreatments also significantly reduced pro‐inflammatory cytokines in supernatants and sera. Conclusions and Implications Pre‐treatment of islets with APT070 could reduce intra‐islet inflammation with accompanying preservation of insulin secretion by beta cells. APT070 could be as a potential therapeutic tool in islet transplantation.
Collapse
Affiliation(s)
- Fang Xiao
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, 5th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Liang Ma
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, 5th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Min Zhao
- Department of Diabetes & Endocrinology, King's College London, 2nd Floor, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU, UK
| | - Richard A Smith
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, 5th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Guocai Huang
- Department of Diabetes & Endocrinology, King's College London, 2nd Floor, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU, UK
| | - Peter M Jones
- Division of Diabetes & Nutritional Sciences, School of Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Shanta Persaud
- Division of Diabetes & Nutritional Sciences, School of Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Attilio Pingitore
- Division of Diabetes & Nutritional Sciences, School of Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Anthony Dorling
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, 5th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Robert Lechler
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, 5th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Giovanna Lombardi
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, 5th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|