1
|
Wang J, Wang D, Setrerrahmane S, Martinez J, Xu HM. The peptide Acein promotes dopamine secretion through clec-126 to extend the lifespan of elderly C. elegans. Aging (Albany NY) 2023; 15:14651-14665. [PMID: 38154108 PMCID: PMC10781461 DOI: 10.18632/aging.205150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 12/30/2023]
Abstract
Dopamine plays a crucial role in regulating brain activity and movement and modulating human behavior, cognition and mood. Regulating dopamine signaling may improve cognitive abilities and physical functions during aging. Acein, a nonapeptide of sequence H-Pro-Pro-Thr-Thr-Thr-Lys-Phe-Ala-Ala-OH is able to stimulate dopamine secretion in the brain. By using genetic editing and lifespan investigation in C. elegans, we showed that the lack of the C-type lectin domain-containing protein clec-126 significantly suppressed the aging phenotype and prolonged lifespan, while overexpression of clec-126 promoted aging-related phenotypes and accelerated the aging process. We examined the aging phenotype of C. elegans and showed that Acein could induce a decrease in clec-126 expression, prolonging the lifespan of aged C. elegans. The mechanism proceeds through the Acein-induced stimulation of dopamine secretion that ameliorates motor function decline and extends the healthy lifespan of aged C. elegans. In addition, we also observed an increase in brood number. Our study has shown that Acein regulates dopamine secretion and has good antiaging activity by decreasing clec-126 expression.
Collapse
Affiliation(s)
- Jiaqi Wang
- Synthetic Peptide Drug Discovery and Evaluation Engineering Research Center, China Pharmaceutical University, Nanjing 211198, China
| | - Dong Wang
- Synthetic Peptide Drug Discovery and Evaluation Engineering Research Center, China Pharmaceutical University, Nanjing 211198, China
| | | | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, Montpellier cedex 5 34293, France
| | - Han-Mei Xu
- Synthetic Peptide Drug Discovery and Evaluation Engineering Research Center, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, Noh JY. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol 2023; 14:1192907. [PMID: 37539051 PMCID: PMC10395517 DOI: 10.3389/fimmu.2023.1192907] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jin Woo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Suk-Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Bai Z, Yang P, Yu F, Li Z, Yao Z, Martinez J, Li M, Xu H. Combining adoptive NK cell infusion with a dopamine-releasing peptide reduces senescent cells in aged mice. Cell Death Dis 2022; 13:305. [PMID: 35383143 PMCID: PMC8983684 DOI: 10.1038/s41419-022-04562-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022]
Abstract
Aging inducing the development of senescent cells (SNCs) in various tissues is considered as the main cause of the age-related diseases. Senotherapy has become a promising anti-aging therapy. However, the effectivity and side-effect of senolytic agents are still concern. Here, we observed the downregulation of senescence-related genes by adoptive infusion of natural killer (NK) cells in 26 cases in peripheral blood CD3+ T cells. NK cell treatment also significantly decreased levels of senescence markers and senescence-associated secretory phenotypes (SASPs) in three senescent adipose tissues when culturing them together. Interestingly, cytotoxic activity of mouse NK cells against SNCs was significantly enhanced by dopamine in vitro through D1-like receptors. Acein, dopamine-releasing peptide, promoted the adoptive infusion of NK cells in effectively eliminating SNCs in a variety of tissues and reduced local and systemic SASPs in aging mice but Acein alone did not have the senolytic effect. These data demonstrated that adoptive infusion of NK cells is an effective means in removing SNCs, and peptide Acein combined with NK cells further enhances this effect in aging mice.
Collapse
|
4
|
Toubal S, Oiry C, Bayle M, Cros G, Neasta J. Urolithin C increases glucose-induced ERK activation which contributes to insulin secretion. Fundam Clin Pharmacol 2020; 34:571-580. [PMID: 32083757 DOI: 10.1111/fcp.12551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/31/2022]
Abstract
Polyphenols exert pharmacological actions through protein-mediated mechanisms and by modulating intracellular signalling pathways. We recently showed that a gut-microbial metabolite of ellagic acid named urolithin C is a glucose-dependent activator of insulin secretion acting by facilitating L-type Ca2+ channel opening and Ca2+ influx into pancreatic β-cells. However, it is still unknown whether urolithin C regulates key intracellular signalling proteins in β-cells. Here, we report that urolithin C enhanced glucose-induced extracellular signal-regulated kinases 1/2 (ERK1/2) activation as shown by higher phosphorylation levels in INS-1 β-cells. Interestingly, inhibition of ERK1/2 with two structurally distinct inhibitors led to a reduction in urolithin C effect on insulin secretion. Finally, we provide data to suggest that urolithin C-mediated ERK1/2 phosphorylation involved insulin signalling in INS-1 cells. Together, these data indicate that the pharmacological action of urolithin C on insulin secretion relies, in part, on its capacity to enhance glucose-induced ERK1/2 activation. Therefore, our study extends our understanding of the pharmacological action of urolithin C in β-cells. More generally, our findings revealed that urolithin C modulated the activation of key multifunctional intracellular signalling kinases which participate in the regulation of numerous biological processes.
Collapse
Affiliation(s)
- Slimane Toubal
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Catherine Oiry
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Morgane Bayle
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gérard Cros
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jérémie Neasta
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
5
|
Su M, Zhou J, Duan Z, Zhang J. Transcriptional analysis of renal dopamine-mediated Na + homeostasis response to environmental salinity stress in Scatophagus argus. BMC Genomics 2019; 20:418. [PMID: 31126236 PMCID: PMC6534869 DOI: 10.1186/s12864-019-5795-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background To control the osmotic pressure in the body, physiological adjustments to salinity fluctuations require the fish to regulate body fluid homeostasis in relation to environmental change via osmoregulation. Previous studies related to osmoregulation were focused primarily on the gill; however, little is known about another organ involved in osmoregulation, the kidney. The salinity adaptation of marine fish involves complex physiological traits, metabolic pathways and molecular and gene networks in osmoregulatory organs. To further explore of the salinity adaptation of marine fish with regard to the role of the kidney, the euryhaline fish Scatophagus argus was employed in the present study. Renal expression profiles of S. argus at different salinity levels were characterized using RNA-sequencing, and an integrated approach of combining molecular tools with physiological and biochemical techniques was utilized to reveal renal osmoregulatory mechanisms in vivo and in vitro. Results S. argus renal transcriptomes from the hyposaline stress (0‰, freshwater [FW]), hypersaline stress (50‰, hypersaline water [HW]) and control groups (25‰) were compared to elucidate potential osmoregulatory mechanisms. In total, 19,012 and 36,253 differentially expressed genes (DEGs) were obtained from the FW and HW groups, respectively. Based on the functional classification of DEGs, the renal dopamine system-induced Na+ transport was demonstrated to play a fundamental role in osmoregulation. In addition, for the first time in fish, many candidate genes associated with the dopamine system were identified. Furthermore, changes in environmental salinity affected renal dopamine release/reuptake by regulating the expression of genes related to dopamine reuptake (dat and nkaα1), vesicular traffic-mediated dopamine release (pink1, lrrk2, ace and apn), DAT phosphorylation (CaMKIIα and pkcβ) and internalization (akt1). The associated transcriptional regulation ensured appropriate extracellular dopamine abundance in the S. argus kidney, and fluctuations in extracellular dopamine produced a direct influence on Na+/K+-ATPase (NKA) expression and activity, which is associated with Na+ homeostasis. Conclusions These transcriptomic data provided insight into the molecular basis of renal osmoregulation in S. argus. Significantly, the results of this study revealed the mechanism of renal dopamine system-induced Na+ transport is essential in fish osmoregulation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5795-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianan Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhengyu Duan
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China. .,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
6
|
Martinez J. Joseph Rudinger memorial lecture: Unexpected functions of angiotensin converting enzyme, beyond its enzymatic activity. J Pept Sci 2017. [DOI: 10.1002/psc.3022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jean Martinez
- Institut des Biomolécules Max Mousseron; UMR 5247 CNRS-Université de Montpellier-ENSCM; Faculté de Pharmacie, 15 Avenue Charles Flahault 34093 Montpellier Cedex 5 France
| |
Collapse
|
7
|
Souza RB, Frota AF, Sousa RS, Cezario NA, Santos TB, Souza LMF, Coura CO, Monteiro VS, Cristino Filho G, Vasconcelos SMM, da Cunha RMS, Aguiar LMV, Benevides NMB. Neuroprotective Effects of Sulphated Agaran from Marine Alga Gracilaria cornea in Rat 6-Hydroxydopamine Parkinson's Disease Model: Behavioural, Neurochemical and Transcriptional Alterations. Basic Clin Pharmacol Toxicol 2016; 120:159-170. [PMID: 27612165 DOI: 10.1111/bcpt.12669] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a multifactorial disease associated with the degeneration of dopaminergic neurons and behavioural alterations. Natural bioactive compounds may provide new therapeutic alternatives for neurodegenerative disorders, such as PD. The sulphated polysaccharides isolated from marine algae are heterogenic molecules that show different biological activities. The red marine alga Gracilaria cornea has a sulphated polysaccharide (SA-Gc) with structure and anti-inflammatory and antinociceptive activities reported in the literature. Therefore, this study aimed to evaluate the neuroprotective effects of SA-Gc in rat model PD induced by 6-hydroxydopamine (6-OHDA). Firstly, we established the PD model in rats, induced by an intrastriatal injection (int.) of 6-OHDA, followed by a single administration of SA-Gc (15, 30 or 60 μg; int.). On the 14th day, behavioural tests were performed. After killing, brain areas were dissected and used for neurochemical and/or transcriptional analyses. The results showed that SA-Gc (60 μg, int.) promoted neuroprotective effects in vivo through reducing the oxidative/nitroactive stress and through alterations in the monoamine contents induced by 6-OHDA. Furthermore, SA-Gc modulated the transcription of neuroprotective and inflammatory genes, as well as returning behavioural activities and weight gain to normal conditions. Thus, this study reports the neuroprotective effects of SA-Gc against 6-OHDA in rats.
Collapse
Affiliation(s)
- Ricardo Basto Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | - Chistiane Oliveira Coura
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Valdécio Silvano Monteiro
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Neasta J, Valmalle C, Coyne A, Carnazzi E, Subra G, Galleyrand J, Gagne D, M'Kadmi C, Bernad N, Bergé G, Cantel S, Marin P, Marie J, Banères J, Kemel M, Daugé V, Puget K, Martinez J. The novel nonapeptide acein targets angiotensin converting enzyme in the brain and induces dopamine release. Br J Pharmacol 2016; 173:1314-28. [PMID: 27027724 PMCID: PMC4940823 DOI: 10.1111/bph.13424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/20/2016] [Accepted: 01/08/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND PURPOSE Using an in-house bioinformatics programme, we identified and synthesized a novel nonapeptide, H-Pro-Pro-Thr-Thr-Thr-Lys-Phe-Ala-Ala-OH. Here, we have studied its biological activity, in vitro and in vivo, and have identified its target in the brain. EXPERIMENTAL APPROACH The affinity of the peptide was characterized using purified whole brain and striatal membranes from guinea pigs and rats . Its effect on behaviour in rats following intra-striatal injection of the peptide was investigated. A photoaffinity UV cross-linking approach combined with subsequent affinity purification of the ligand covalently bound to its receptor allowed identification of its target. KEY RESULTS The peptide bound with high affinity to a single class of binding sites, specifically localized in the striatum and substantia nigra of brains from guinea pigs and rats. When injected within the striatum of rats, the peptide stimulated in vitro and in vivo dopamine release and induced dopamine-like motor effects. We purified the target of the peptide, a ~151 kDa protein that was identified by MS/MS as angiotensin converting enzyme (ACE I). Therefore, we decided to name the peptide acein. CONCLUSION AND IMPLICATIONS The synthetic nonapeptide acein interacted with high affinity with brain membrane-bound ACE. This interaction occurs at a different site from the active site involved in the well-known peptidase activity, without modifying the peptidase activity. Acein, in vitro and in vivo, significantly increased stimulated release of dopamine from the brain. These results suggest a more important role for brain ACE than initially suspected.
Collapse
Affiliation(s)
- Jérémie Neasta
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Charlène Valmalle
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Anne‐Claire Coyne
- INSERM UMR 952, Physiopathologie des Maladies du Système Nerveux CentralParisFrance
| | - Eric Carnazzi
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Gilles Subra
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean‐Claude Galleyrand
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Didier Gagne
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Céline M'Kadmi
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Nicole Bernad
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Gilbert Bergé
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Sonia Cantel
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, UMR5203, INSERM U661, Rue de la CardonilleUniversité de MontpellierMontpellierFrance
| | - Jacky Marie
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean‐Louis Banères
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Marie‐Lou Kemel
- CIRB, Collège de France, 11, Place Marcelin BerthelotParisFrance
| | - Valérie Daugé
- INSERM UMR 952, Physiopathologie des Maladies du Système Nerveux CentralParisFrance
| | - Karine Puget
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean Martinez
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| |
Collapse
|