1
|
Liu X, Huang S, Zheng J, Wan C, Hu T, Cai Y, Wang Q, Zhang S. Melatonin attenuates scopolamine-induced cognitive dysfunction through SIRT1/IRE1α/XBP1 pathway. CNS Neurosci Ther 2024; 30:e14891. [PMID: 39056330 PMCID: PMC11273216 DOI: 10.1111/cns.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The prevalence of dementia around the world is increasing, and these patients are more likely to have cognitive impairments, mood and anxiety disorders (depression, anxiety, and panic disorder), and attention deficit disorders over their lifetime. Previous studies have proven that melatonin could improve memory loss, but its specific mechanism is still confused. METHODS In this study, we used in vivo and in vitro models to examine the neuroprotective effect of melatonin on scopolamine (SCOP)-induced cognitive dysfunction. The behavioral tests were performed. 18F-FDG PET imaging was used to assess the metabolism of the brain. Protein expressions were determined through kit detection, Western blot, and immunofluorescence. Nissl staining was conducted to reflect neurodegeneration. MTT assay and RNAi transfection were applied to perform the in vitro experiments. RESULTS We found that melatonin could ameliorate SCOP-induced cognitive dysfunction and relieve anxious-like behaviors or HT22 cell damage. 18F-FDG PET-CT results showed that melatonin could improve cerebral glucose uptake in SCOP-treated mice. Melatonin restored the cholinergic function, increased the expressions of neurotrophic factors, and ameliorated oxidative stress in the brain of SCOP-treated mice. In addition, melatonin upregulated the expression of silent information regulator 1 (SIRT1), which further relieved endoplasmic reticulum (ER) stress by decreasing the expression of phosphorylate inositol-requiring enzyme (p-IRE1α) and its downstream, X-box binding protein 1 (XBP1). CONCLUSIONS These results indicated that melatonin could ameliorate SCOP-induced cognitive dysfunction through the SIRT1/IRE1α/XBP1 pathway. SIRT1 might be the critical target of melatonin in the treatment of dementia.
Collapse
Affiliation(s)
- Xiao‐Qi Liu
- State Key Laboratory of Traditional Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM GuangzhouGuangzhouChina
| | - Shun Huang
- Department of Nuclear Medicine, The Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanChina
- Nanfang PET Center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jia‐Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM GuangzhouGuangzhouChina
| | - Can Wan
- State Key Laboratory of Traditional Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM GuangzhouGuangzhouChina
| | - Tian Hu
- State Key Laboratory of Traditional Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM GuangzhouGuangzhouChina
| | - Ye‐Feng Cai
- State Key Laboratory of Traditional Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM GuangzhouGuangzhouChina
| | - Qi Wang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Shi‐Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of NeurologyGuangdong Provincial Hospital of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM GuangzhouGuangzhouChina
| |
Collapse
|
2
|
Li HY, Huang LF, Huang XR, Wu D, Chen XC, Tang JX, An N, Liu HF, Yang C. Endoplasmic Reticulum Stress in Systemic Lupus Erythematosus and Lupus Nephritis: Potential Therapeutic Target. J Immunol Res 2023; 2023:7625817. [PMID: 37692838 PMCID: PMC10484658 DOI: 10.1155/2023/7625817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Approximately one-third to two-thirds of the patients with SLE progress to lupus nephritis (LN). The pathogenesis of SLE and LN has not yet been fully elucidated, and effective treatment for both conditions is lacking. The endoplasmic reticulum (ER) is the largest intracellular organelle and is a site of protein synthesis, lipid metabolism, and calcium storage. Under stress, the function of ER is disrupted, and the accumulation of unfolded or misfolded proteins occurs in ER, resulting in an ER stress (ERS) response. ERS is involved in the dysfunction of B cells, macrophages, T cells, dendritic cells, neutrophils, and other immune cells, causing immune system disorders, such as SLE. In addition, ERS is also involved in renal resident cell injury and contributes to the progression of LN. The molecular chaperones, autophagy, and proteasome degradation pathways inhibit ERS and restore ER homeostasis to improve the dysfunction of immune cells and renal resident cell injury. This may be a therapeutic strategy for SLE and LN. In this review, we summarize advances in this field.
Collapse
Affiliation(s)
- Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
3
|
Zhao Y, Feng Y, Ye Q, Hu J, Feng Y, Ouyang Z, Zhao J, Chen Y, Tan L, Chen N, Dusenge MA, Su X, Guo Y. The oral microbiome in young women at different stages of periodontitis: Prevotella dominant in stage III periodontitis. Front Cell Infect Microbiol 2022; 12:1047607. [PMID: 36530443 PMCID: PMC9753221 DOI: 10.3389/fcimb.2022.1047607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Objective Periodontitis progression is related to the dynamic dysbiosis of oral microbiome. We identified the dominant bacteria and the potential pathway in young women with stage-III periodontitis. Materials and methods Samples of subgingival plaque were collected from 26 young women with periodontitis (20 with stage-I and 6 with stage-III). Using 16S rRNA-sequencing, we determined the variation in oral bacterial communities of the two groups, and identified the dominant bacteria of each group. We used the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to evaluate the signaling pathways related to the difference in oral bacterial composition. The role of the dominant bacteria of stage-III periodontitis was investigated in vivo and in vitro using an endoplasmic reticulum stress inhibitor. Results Young women with stage-I periodontitis had higher values for the Chao1 Index, Observed Species and Phylogenetic Diversity Whole Tree Index than those for women with stage-III periodontitis. β-diversity analyses revealed that samples could be divided into different groups according to the periodontitis stage. The most representative biomarkers of stage-III periodontitis in young women were bacteria of the phylum Bacteroidetes, its order, family and genera Bacteroidales, Prevotellaceae and Prevotella. The KEGG database revealed that the change in oral bacterial composition of young women with stage-III periodontitis may be related to protein processing in an endoplasmic reticulum pathway. Salubrinal (an endoplasmic reticulum stress regulator) controlled expression of Runx2, Col1a1, Ocn in mouse bone-marrow mesenchymal cells. Salubrinal administration showed that moderate endoplasmic reticulum stress inhibited alveolar bone loss in periodontitis induced by Prevotella intermedia lipopolysaccharide. Conclusion Differences between periodontitis stages were noted and bacteria of Prevotella species were abundant in young women with stage-III periodontitis. This phenomenon was related to protein processing in an endoplasmic reticulum pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Tatar M, Eren Ü. Protective and therapeutic role of melatonin against tunicamycin-induced ER stress in testicular tissue of rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:214-222. [PMID: 35655603 PMCID: PMC9124527 DOI: 10.22038/ijbms.2022.58719.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES This study aimed to investigate the possible consequences of administering exogenous melatonin as prevention or treatment against tunicamycin-induced endoplasmic reticulum (ER) stress in the testicular tissue of rats. MATERIALS AND METHODS In this study, 42 adult Sprague Dawley rats, randomly divided into seven equal groups, were administered intraperitoneal tunicamycin to induce ER stress. Both prophylactic (PMel) and therapeutic melatonin (TMel) groups were administered melatonin for seven days. ER stress in the cell was detected through immunohistochemical and molecular analyses using GPR78 expression. RESULTS Increased oxidant levels and apoptosis rates were shown in testicular tissue because of ER stress. The sections in the melatonin-administered and control groups were similar, with melatonin-administered groups showing an increase in the antioxidant ratio. Histometric examinations revealed both TMel and melatonin applications reduced the diameter of the tubules. However, immunohistochemical and molecular analyses showed that PMel administration decreased the concentration of GRP78 more effectively than TMel. CONCLUSION Applying melatonin prior to cell damage occurrence can be recommended for its effectiveness in protecting from tunicamycin-induced ER stress.
Collapse
Affiliation(s)
- Musa Tatar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey,Corresponding author: Musa Tatar. Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey. Tel: +9005364985280;
| | - Ülker Eren
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
5
|
The proteomic landscape of ovarian cancer cells in response to melatonin. Life Sci 2022; 294:120352. [PMID: 35074409 DOI: 10.1016/j.lfs.2022.120352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy with a highly negative prognosis. Melatonin is an indoleamine secreted by the pineal gland during darkness and has shown antitumor activity in both in vitro and in vivo experiments. Herein, we investigated the influence of melatonin on the proteome of human ovarian carcinoma cells (SKOV-3 cell line) using the Ultimate 3000 LC Liquid NanoChromatography equipment coupled to a Q-Exactive mass spectrometry. After 48 h of treatment, melatonin induced a significant cytotoxicity especially with the highest melatonin concentration. The proteomic profile revealed 639 proteins in the control group, and 98, 110, and 128 proteins were altered by melatonin at the doses of 0.8, 1.6, and 2.4 mM, respectively. Proteins associated with the immune system and tricarboxylic acid cycle were increased in the three melatonin-exposed groups of cells. Specifically, the dose of 2.4 mM led to a reduction in molecules associated with protein synthesis, especially those of the ribosomal protein family. We also identified 28 potential genes shared between normal ovarian tissue and OC in all experimental groups, and melatonin was predicted to alter genes encoding ribosomal proteins. Notably, the set of proteins changed by melatonin was linked to a better prognosis for OC patients. We conclude that melatonin significantly alters the proteome of SKOV-3 cells by changing proteins involved with the immune response and mitochondrial metabolism. The concentration of 2.4 mM of melatonin promoted the largest number of protein changes. The evidence suggests that melatonin may be an effective therapeutic strategy against OC.
Collapse
|
6
|
Li Y, Fu Y, Sun J, Shen J, Liu F, Ning B, Lu Z, Wei L, Jiang X. Tanshinone IIA alleviates NLRP3 inflammasome-mediated pyroptosis in Mycobacterium tuberculosis-(H37Ra-) infected macrophages by inhibiting endoplasmic reticulum stress. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114595. [PMID: 34517060 DOI: 10.1016/j.jep.2021.114595] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tanshinone IIA (Tan), extracted from Salvia miltiorrhiza Bunge, is a perennial herbal plant widely used as a folk remedy in Asian countries. Several studies have proved that Tanshinone IIA possesses many biological activities, such as anti-inflammatory, free-radical scavenging abilities, antioxidant properties, liver protection, and anti-cancer properties. AIM OF THE STUDY The objective of the present study was to examine the anti-inflammatory effects of Tan. MATERIALS AND METHODS The in vitro infection model of Mycobacterium tuberculosis-infected macrophages with the H37Ra strain was established. Murine macrophage Raw 264.7 and human monocyte THP-1 were used for the experiments. Cell viability was determined by the MTT assay. Western blot and lactate dehydrogenase (LDH) activity assays were used to detect the effects of Tan on cell pyroptosis and the level of NLRP3 inflammasome activation. Western blot, Co-immunoprecipitation and Immunofluorescence assays were used to observe the effect of Tan on the expression level of TXNIP. Immunofluorescence assays were applied to explore the effect of Tan on mtROS. Western blot and agarose gel electrophoresis were adopted to observe the effect of Tan on endoplasmic reticulum stress. The siRNA technique was applied to knockdown the expression levels of PERK/peIF2α, IRE1α and ATF6, and Western blot assay was employed to explore the NLRP3 inflammasome activation and possible molecular regulation mechanism of Tan. RESULTS This study demonstrated that Tan decreased Mtb-induced cell pyroptosis by measuring GSDMD-N and LDH release provoked by NLRP3 inflammasome activation. Additionally, Tan inhibited endoplasmic reticulum stress (ERS), mitochondrial damage, and TXNIP protein expression, all of which acted as upstream signals of NLRP3 inflammasome activation in Mtb-infected macrophages. Significantly, NLRP3 inflammasome activation was suppressed by knocking down ERS pathway proteins, which further clarified that Tan partly targeted ERS to exert anti-inflammatory and immunoregulatory actions. CONCLUSION This research confirms Tan's anti-inflammatory and immunoregulatory mechanisms in Mtb-infected macrophages by downregulating NLRP3 inflammasome activation-mediated pyroptosis provoked by ERS. Tan may function as an adjuvant drug to treat TB by adjusting host immune responses.
Collapse
Affiliation(s)
- Yinhong Li
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Yan Fu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Jinxia Sun
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Jingjing Shen
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Fanglin Liu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Bangzuo Ning
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Zhenhui Lu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Luyao Wei
- The Academy of Integrative Medicine, Shanghai Key Laboratory of Health Identification and Assessment, Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Xin Jiang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
7
|
Fu B, Ma H, Zhang DJ, Wang L, Li ZQ, Guo ZH, Liu ZG, Wu SH, Meng XR, Wang F, Chen WG, Liu D. Porcine oviductal extracellular vesicles facilitate early embryonic development via relief of endoplasmic reticulum stress. Cell Biol Int 2021; 46:300-310. [PMID: 34854517 DOI: 10.1002/cbin.11730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/02/2021] [Accepted: 11/28/2021] [Indexed: 11/06/2022]
Abstract
The key to successful in vitro embryo production (IVEP) is to mimic the natural in vivo oviductal microenvironment. Although the chemically defined media in extensive use for the in vitro culture of mammalian embryos is based on the composition of oviductal fluid, the IVEP systems in current use must still bypass the oviduct to produce embryos in vitro. Extracellular vesicles (EVs) in the oviduct are versatile intercellular delivery vehicles for maternal-embryo communication, and a lack of them can be associated with failed early embryonic development under in vitro culture conditions. Herein, we isolated EVs from porcine oviduct fluid and confirmed that oviductal EV supplementation improves the embryonic development of parthenogenetically activated (PA) embryos in terms of blastocyst formation rates and total cell numbers. Our experiments also revealed that a beneficial effect of oviductal EVs on PA embryos was achievable, at least in part, by relieving endoplasmic reticulum stress. These results suggest that the maternal-embryo communication mediated by oviductal EVs benefits early embryonic development. Given the contribution of oviductal EVs to early embryonic development, these findings offer novel insights for the optimization of current IVEP systems.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Dong-Jie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zhong-Qiu Li
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zhen-Hua Guo
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zi-Guang Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Sai-Hui Wu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xiang-Ren Meng
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Fang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Wen-Gui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
8
|
Cao Y, Li Q, Zhou A, Ke Z, Chen S, Li M, Gong Z, Wang Z, Wu X. Notoginsenoside R1 Reverses Abnormal Autophagy in Hippocampal Neurons of Mice With Sleep Deprivation Through Melatonin Receptor 1A. Front Pharmacol 2021; 12:719313. [PMID: 34603030 PMCID: PMC8481657 DOI: 10.3389/fphar.2021.719313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Sleep deprivation (SD) may cause serious neural injury in the central nervous system, leading to impairment of learning and memory. Melatonin receptor 1A (MTNR1A) plays an important role in the sleep regulation upon activation by melatonin. The present study aimed to investigate if notoginsenoside R1 (NGR1), an active compound isolated from Panax notoginseng, could alleviate neural injury, thus improve impaired learning and memory of SD mice, as well as to explore its underlying action mechanism through modulating MTNR1A. Our results showed that NGR1 administration improved the impaired learning and memory of SD mice. NGR1 prevented the morphological damage and the accumulation of autophagosomes in the hippocampus of SD mice. At the molecular level, NGR1 reversed the expressions of proteins involved in autophagy and apoptosis, such as beclin-1, LC3B, p62, Bcl-2, Bax, and cleaved-caspase 3. Furthermore, the effect of NGR1 was found to be closely related with the MTNR1A-mediated PI3K/Akt/mTOR signaling pathway. On HT-22 cells induced by autophagy inducer rapamycin, NGR1 markedly attenuated excessive autophagy and apoptosis, and the alleviative effect was abolished by the MTNR1A inhibitor. Taken together, NGR1 was shown to alleviate the impaired learning and memory of SD mice, and its function might be exerted through reduction of excessive autophagy and apoptosis of hippocampal neurons by regulating the MTNR1A-mediated PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yin Cao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China.,Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengqi Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Mingrui Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Unraveling the Molecular Nexus between GPCRs, ERS, and EMT. Mediators Inflamm 2021; 2021:6655417. [PMID: 33746610 PMCID: PMC7943314 DOI: 10.1155/2021/6655417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large family of transmembrane proteins that transduce an external stimulus into a variety of cellular responses. They play a critical role in various pathological conditions in humans, including cancer, by regulating a number of key processes involved in tumor formation and progression. The epithelial-mesenchymal transition (EMT) is a fundamental process in promoting cancer cell invasion and tumor dissemination leading to metastasis, an often intractable state of the disease. Uncontrolled proliferation and persistent metabolism of cancer cells also induce oxidative stress, hypoxia, and depletion of growth factors and nutrients. These disturbances lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and induce a cellular condition called ER stress (ERS) which is counteracted by activation of the unfolded protein response (UPR). Many GPCRs modulate ERS and UPR signaling via ERS sensors, IRE1α, PERK, and ATF6, to support cancer cell survival and inhibit cell death. By regulating downstream signaling pathways such as NF-κB, MAPK/ERK, PI3K/AKT, TGF-β, and Wnt/β-catenin, GPCRs also upregulate mesenchymal transcription factors including Snail, ZEB, and Twist superfamilies which regulate cell polarity, cytoskeleton remodeling, migration, and invasion. Likewise, ERS-induced UPR upregulates gene transcription and expression of proteins related to EMT enhancing tumor aggressiveness. Though GPCRs are attractive therapeutic targets in cancer biology, much less is known about their roles in regulating ERS and EMT. Here, we will discuss the interplay in GPCR-ERS linked to the EMT process of cancer cells, with a particular focus on oncogenes and molecular signaling pathways.
Collapse
|
10
|
Maternal Melatonin Deficiency Leads to Endocrine Pathologies in Children in Early Ontogenesis. Int J Mol Sci 2021; 22:ijms22042058. [PMID: 33669686 PMCID: PMC7922827 DOI: 10.3390/ijms22042058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
The review summarizes the results of experimental and clinical studies aimed at elucidating the causes and pathophysiological mechanisms of the development of endocrine pathology in children. The modern data on the role of epigenetic influences in the early ontogenesis of unfavorable factors that violate the patterns of the formation of regulatory mechanisms during periods of critical development of fetal organs and systems and contribute to the delayed development of pathological conditions are considered. The mechanisms of the participation of melatonin in the regulation of metabolic processes and the key role of maternal melatonin in the formation of the circadian system of regulation in the fetus and in the protection of the genetic program of its morphofunctional development during pregnancy complications are presented. Melatonin, by controlling DNA methylation and histone modification, prevents changes in gene expression that are directly related to the programming of endocrine pathology in offspring. Deficiency and absence of the circadian rhythm of maternal melatonin underlies violations of the genetic program for the development of hormonal and metabolic regulatory mechanisms of the functional systems of the child, which determines the programming and implementation of endocrine pathology in early ontogenesis, contributing to its development in later life. The significance of this factor in the pathophysiological mechanisms of endocrine disorders determines a new approach to risk assessment and timely prevention of offspring diseases even at the stage of family planning.
Collapse
|
11
|
Ji T, Zhang X, Xin Z, Xu B, Jin Z, Wu J, Hu W, Yang Y. Does perturbation in the mitochondrial protein folding pave the way for neurodegeneration diseases? Ageing Res Rev 2020; 57:100997. [PMID: 31816444 DOI: 10.1016/j.arr.2019.100997] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/03/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria, which are cell compartments that are widely present in eukaryotic cells, have been shown to be involved in a variety of synthetic, metabolic, and signaling processes, thereby playing a vital role in cells. The mitochondrial unfolded protein response (mtUPR) is a response in which mitochondria reverse the signal to the nucleus and maintain mitochondrial protein homeostasis when unfolded and misfolded proteins continue to accumulate. Multiple neurodegeneration diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and familial amyotrophic lateral sclerosis (fALS), are public health challenges. Every year, countless efforts are expended trying to clarify the pathogenesis and treatment of neurological disorders, which are associated with mitochondrial dysfunction to some extent. Numerous studies have shown that mtUPR is involved in and plays an important role in the pathogenesis of neurological disorders, but the exact mechanism of the disorders is still unclear. Further study of the process of mtUPR in neurological disorders can help us more accurately understand their pathogenesis in order to provide new therapeutic targets. In this paper, we briefly review mtUPR signaling in Caenorhabditis elegans (C. elegans) and mammals and summarize the role of mtUPR in neurodegeneration diseases, including AD, PD and fALS.
Collapse
|
12
|
Di S, Wang Z, Hu W, Yan X, Ma Z, Li X, Li W, Gao J. The Protective Effects of Melatonin Against LPS-Induced Septic Myocardial Injury: A Potential Role of AMPK-Mediated Autophagy. Front Endocrinol (Lausanne) 2020; 11:162. [PMID: 32373063 PMCID: PMC7176935 DOI: 10.3389/fendo.2020.00162] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Aim: Melatonin is an indolamine secreted by the pineal gland, as well as most of the organs and tissues. In addition to regulating circadian biology, studies have confirmed the multiple pharmacological effects of melatonin. Melatonin provides a strong defense against septic myocardial injury. However, the underlying mechanism has not been fully described. In this study, we investigated the protective effects of melatonin against lipopolysaccharide (LPS)-induced myocardial injury as well as the mechanisms involved. Methods: Mice were intraperitoneally injected with LPS to induce a septic myocardial injury model or an LPS shock model, depending on the dose of LPS. Melatonin was given (20 mg/kg/day, via intraperitoneal injection) for a week prior to LPS insult. 6 h after LPS injection, echocardiographic analysis, TUNEL staining, transmission electron microscopy (TEM), western blot, quantitative real-time PCR and ELISA were used to investigate the protective effects of melatonin against LPS induced myocardial injury. AMPK inhibitor, autophagy activator and inhibitor, siRNAs were used for further validation. Results: Survival test showed that melatonin significantly increased the survival rate after LPS-induced shock. In the sepsis model, melatonin markedly ameliorated myocardial dysfunction, decreased the release of inflammatory cytokines, activated AMP-activated protein kinase (AMPK), improved mitochondrial function, and activated autophagy. To confirm whether the protection of melatonin was mediated by AMPK and autophagy, Compound C, an AMPK inhibitor; 3-MA, an autophagy inhibitor; and Rapamycin (Rapa), an autophagy activator, were used in this study. AMPK inhibition down-regulated autophagy, abolished protection of melatonin, as indicated by significantly decreased cardiac function, increased inflammation and damaged mitochondrial function. Furthermore, autophagy inhibition by 3-MA significantly impaired the protective effects of melatonin, whereas autophagy activation by Rapa reversed LPS + Compound C induced myocardial injury. In addition, in vitro studies further confirmed the protection of melatonin against LPS-induced myocardial injury and the mechanisms involving AMPK-mediated autophagy signaling. Conclusions: In summary, our results demonstrated that melatonin protects against LPS-induced septic myocardial injury by activating AMPK mediated autophagy pathway.
Collapse
Affiliation(s)
- Shouyin Di
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- Department of Thoracic Surgery, Sixth Medical Center of PLA General Hospital, Beijing, China
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weimiao Li
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Weimiao Li
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- Jianyuan Gao
| |
Collapse
|
13
|
Ji T, Han Y, Yang W, Xu B, Sun M, Jiang S, Yu Y, Jin Z, Ma Z, Yang Y, Hu W. Endoplasmic reticulum stress and NLRP3 inflammasome: Crosstalk in cardiovascular and metabolic disorders. J Cell Physiol 2019; 234:14773-14782. [PMID: 30746697 DOI: 10.1002/jcp.28275] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
When endoplasmic reticulum (ER) homeostasis is disrupted, known as ER stress (ERS), the ER generates an adaptive signaling pathway called the unfolded protein response to maintain the homeostasis of this organelle. However, if homeostasis is not restored, the ER initiates death signaling pathways, which contribute to the pathogenesis of various disorders. The activation of inflammatory mechanisms is also emerging as a crucial component of cardiovascular and metabolic disorders. Furthermore, the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome has attracted more attention than others and is the best-characterized member of the NLR family of inflammasomes to date. ERS intersects with many different inflammatory pathways, particularly the NLRP3 inflammasome. In this review, we focus on the interactions between ERS and the NLRP3 inflammasome. The pharmacologic and nonpharmaceutical manipulation of these two processes may offer novel opportunities for the treatment of cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yuan Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Wei Hu
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Di S, Fan C, Ma Z, Li M, Guo K, Han D, Li X, Mu D, Yan X. PERK/eIF-2α/CHOP Pathway Dependent ROS Generation Mediates Butein-induced Non-small-cell Lung Cancer Apoptosis and G2/M Phase Arrest. Int J Biol Sci 2019; 15:1637-1653. [PMID: 31360107 PMCID: PMC6643215 DOI: 10.7150/ijbs.33790] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/04/2019] [Indexed: 12/12/2022] Open
Abstract
Butein, a member of the chalcone family, is a potent anticarcinogen against multiple cancers, but its specific anti-NSCLC mechanism remains unknown. The present study examined the effects of butein treatment on NSCLC cell lines and NSCLC xenografts. Butein markedly decreased NSCLC cell viability; inhibited cell adhesion, migration, invasion, and colony forming ability; and induced cell apoptosis and G2/M phase arrest in NSCLC cells. Moreover, butein significantly inhibited PC-9 xenograft growth. Both in vivo and in vitro studies verified that butein exerted anti-NSCLC effect through activating endoplasmic reticulum (ER) stress-dependent reactive oxygen species (ROS) generation. These pro-apoptotic effects were reversed by the use of 4- phenylbutyric acid (4-PBA), CHOP siRNA, N-acetyl-L-cysteine (NAC) and Z-VAD-FMK (z-VAD) in vitro. Moreover, inhibition of ER stress markedly reduced ROS generation. In addition, in vivo studies further confirmed that inhibition of ER stress or oxidative stress partially abolished the butein-induced inhibition of tumor growth. Therefore, butein is a potential therapeutic agent for NSCLC, and its anticarcinogenic action might be mediated by ER stress-dependent ROS generation and the apoptosis pathway.
Collapse
Affiliation(s)
- Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Chongxi Fan
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Mingyang Li
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Kai Guo
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Deguang Mu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou Medicine College, 158 Shangtang Road, Hangzhou 310014, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| |
Collapse
|
15
|
Wang Z, Hu W, Lu C, Ma Z, Jiang S, Gu C, Acuña-Castroviejo D, Yang Y. Targeting NLRP3 (Nucleotide-Binding Domain, Leucine-Rich–Containing Family, Pyrin Domain–Containing-3) Inflammasome in Cardiovascular Disorders. Arterioscler Thromb Vasc Biol 2018; 38:2765-2779. [PMID: 30571177 DOI: 10.1161/atvbaha.118.311916] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammation is an important innate immune response to infection or tissue damage. Inflammasomes are involved in the onset and development of inflammation. The NLRP3 (nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3) inflammasome is the best-characterized inflammasome. Recent evidence has indicated the importance of the NLRP3 inflammasome in the pathophysiology of cardiovascular disorders. To further understand the roles of the NLRP3 inflammasome in the cardiovascular system, we provide a comprehensive overview and discuss the remaining questions. First, a summary of NLRP3 inflammasome in the cardiovascular system is introduced. Then, the associations between NLRP3 inflammasome and cardiovascular disorders are presented. Finally, we discuss existing problems and potential directions with this issue. The information compiled here summarizes recent progress, thus potentially aiding in the understanding of the NLRP3 inflammasome in cardiovascular disorders, designing experimental and clinical research about the NLRP3 inflammasome, and promoting therapeutics for cardiovascular disorders.
Collapse
Affiliation(s)
- Zheng Wang
- From the Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Taibai, Xi’an, China (Z.W., C.L., Y.Y.)
- Department of Cardiothoracic Surgery, Wuhan General Hospital of The People’s Liberation Army, China (Z.W.)
| | - Wei Hu
- Department of Immunology (W.H.), The Fourth Military Medical University, Xi’an, China
| | - Chenxi Lu
- From the Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Taibai, Xi’an, China (Z.W., C.L., Y.Y.)
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital (Z.M.), The Fourth Military Medical University, Xi’an, China
| | - Shuai Jiang
- Department of Aerospace Medicine (S.J.), The Fourth Military Medical University, Xi’an, China
| | - Chunhu Gu
- Department of Cardiovascular Surgery, Xijing Hospital (C.G.), The Fourth Military Medical University, Xi’an, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Spain (D.A.-C.)
| | - Yang Yang
- From the Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Taibai, Xi’an, China (Z.W., C.L., Y.Y.)
| |
Collapse
|
16
|
Favero G, Moretti E, Bonomini F, Reiter RJ, Rodella LF, Rezzani R. Promising Antineoplastic Actions of Melatonin. Front Pharmacol 2018; 9:1086. [PMID: 30386235 PMCID: PMC6198052 DOI: 10.3389/fphar.2018.01086] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022] Open
Abstract
Melatonin is an endogenous indoleamine with an incredible variety of properties and activities. In recent years, an increasing number of studies have investigated this indoleamine’s interaction with cancerous cells. In particular, it seems that melatonin not only has the ability to improve the efficacy of many drugs used in chemotherapy but also has a direct inhibitory action on neoplastic cells. Many publications underlined the ability of melatonin to suppress the proliferation of various cancer cells or to modulate the expression of membrane receptors on these cells, thereby reducing tumor aggressiveness to metastasize. In addition, while melatonin has antiapoptotic actions in normal cells, in many cancer cells it has proapoptotic effects; these dichotomous actions have gained the interest of researchers. The increasing focus on melatonin in the field of oncology and the growing number of studies on this topic require a deep understanding of what we already know about the antineoplastic actions of melatonin. This information would be of value for potential use of melatonin against neoplastic diseases.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enrico Moretti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health Science Center, San Antonio, TX, United States
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs," University of Brescia, Brescia, Italy
| |
Collapse
|
17
|
Robinson S, Conteh FS, Oppong AY, Yellowhair TR, Newville JC, Demerdash NE, Shrock CL, Maxwell JR, Jett S, Northington FJ, Jantzie LL. Extended Combined Neonatal Treatment With Erythropoietin Plus Melatonin Prevents Posthemorrhagic Hydrocephalus of Prematurity in Rats. Front Cell Neurosci 2018; 12:322. [PMID: 30319361 PMCID: PMC6167494 DOI: 10.3389/fncel.2018.00322] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Posthemorrhagic hydrocephalus of prematurity (PHHP) remains a global challenge. Early preterm infants (<32 weeks gestation), particularly those exposed to chorioamnionitis (CAM), are prone to intraventricular hemorrhage (IVH) and PHHP. We established an age-appropriate, preclinical model of PHHP with progressive macrocephaly and ventriculomegaly to test whether non-surgical neonatal treatment could modulate PHHP. We combined prenatal CAM and postnatal day 1 (P1, equivalent to 30 weeks human gestation) IVH in rats, and administered systemic erythropoietin (EPO) plus melatonin (MLT), or vehicle, from P2 to P10. CAM-IVH rats developed progressive macrocephaly through P21. Macrocephaly was accompanied by ventriculomegaly at P5 (histology), and P21 (ex vivo MRI). CAM-IVH rats showed impaired performance of cliff aversion, a neonatal neurodevelopmental test. Neonatal EPO+MLT treatment prevented macrocephaly and cliff aversion impairment, and significantly reduced ventriculomegaly. EPO+MLT treatment prevented matted or missing ependymal motile cilia observed in vehicle-treated CAM-IVH rats. EPO+MLT treatment also normalized ependymal yes-associated protein (YAP) mRNA levels, and reduced ependymal GFAP-immunolabeling. Vehicle-treated CAM-IVH rats exhibited loss of microstructural integrity on diffusion tensor imaging, which was normalized in EPO+MLT-treated CAM-IVH rats. In summary, combined prenatal systemic inflammation plus early postnatal IVH caused progressive macrocephaly, ventriculomegaly and delayed development of cliff aversion reminiscent of PHHP. Neonatal systemic EPO+MLT treatment prevented multiple hallmarks of PHHP, consistent with a clinically viable, non-surgical treatment strategy.
Collapse
Affiliation(s)
- Shenandoah Robinson
- Division of Pediatric Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Fatu S Conteh
- Division of Pediatric Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Akosua Y Oppong
- Division of Pediatric Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Tracylyn R Yellowhair
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jessie C Newville
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Nagat El Demerdash
- Division of Pediatric Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Christine L Shrock
- Division of Pediatric Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jessie R Maxwell
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Stephen Jett
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Frances J Northington
- Division of Neonatology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Lauren L Jantzie
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
18
|
Zhang H, Liu X, Chen T, Ji Y, Shi K, Wang L, Zheng X, Kong J. Melatonin in Apples and Juice: Inhibition of Browning and Microorganism Growth in Apple Juice. Molecules 2018; 23:E521. [PMID: 29495435 PMCID: PMC6017754 DOI: 10.3390/molecules23030521] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/08/2023] Open
Abstract
Synthetic melatonin (N-acetyl-5-methoxytryptamine, MT) is popular in the US and Asian markets as a health supplement. Here, we identified a naturally occurring melatonin source in apple juice. Melatonin was present in all 18 apple cultivars tested. The highest melatonin level of the edible part of apple was detected in the apple peel. The melatonin content in 'Fuji' apple juice is comparable to the level of its flesh. Melatonin was consumed during the process of juicing due to its interaction with the oxidants. Melatonin addition significantly reduced the juice color change to brown (browning). The mechanism is that melatonin scavenges the free radicals, which was indicated by the ASBT analysis; therefore, inhibiting the conversion of o-diphenolic compounds into quinones. Most importantly, melatonin exhibited powerful anti-microorganism activity in juice. The exact mechanisms of this action are currently unknown. These effects of melatonin can preserve the quality and prolong the shelf life of apple juice. The results provide valuable information regarding commerciall apple juice processing and storage.
Collapse
Affiliation(s)
- Haixia Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xuan Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ting Chen
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Yazhen Ji
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Ma Z, Xin Z, Di W, Yan X, Li X, Reiter RJ, Yang Y. Melatonin and mitochondrial function during ischemia/reperfusion injury. Cell Mol Life Sci 2017; 74:3989-3998. [PMID: 28795196 PMCID: PMC11107672 DOI: 10.1007/s00018-017-2618-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Abstract
Ischemia/reperfusion (IR) injury occurs in many organs and tissues, and contributes to morbidity and mortality worldwide. Melatonin, an endogenously produced indolamine, provides a strong defense against IR injury. Mitochondrion, an organelle for ATP production and a decider for cell fate, has been validated to be a crucial target for melatonin to exert its protection against IR injury. In this review, we first clarify the mechanisms underlying mitochondrial dysfunction during IR and melatonin's protection of mitochondria under this condition. Thereafter, special focus is placed on the protective actions of melatonin against IR injury in brain, heart, liver, and others. Finally, we explore several potential future directions of research in this area. Collectively, the information compiled here will serve as a comprehensive reference for the actions of melatonin in IR injury identified to date and will hopefully aid in the design of future research and increase the potential of melatonin as a therapeutic agent.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, UT Health San Antonio, 229 Taibai North Road, Xi'an, 710069, China
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Russel J Reiter
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, UT Health San Antonio, 229 Taibai North Road, Xi'an, 710069, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, UT Health San Antonio, 229 Taibai North Road, Xi'an, 710069, China.
- Department of Cellular and Structural Biology, UT Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
20
|
Zhu C, Xu Y, Duan Y, Li W, Zhang L, Huang Y, Zhao W, Wang Y, Li J, Feng T, Li X, Hu X, Yin W. Exogenous melatonin in the treatment of pain: a systematic review and meta-analysis. Oncotarget 2017; 8:100582-100592. [PMID: 29246003 PMCID: PMC5725045 DOI: 10.18632/oncotarget.21504] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022] Open
Abstract
Melatonin is an important hormone for regulating mammalian circadian biology and cellular homeostasis. Recent evidence has shown that melatonin exerts anti-nociception effects in both animals and humans. However, according to clinical trials, the anti-nociception effects of melatonin are still controversial. The aim of this meta-analysis was to investigate the anti-nociception effects of melatonin premedication. The primary outcome was the effects of melatonin on pain intensity. The secondary outcomes included the number of patients with analgesic requirements, total analgesic consumption, and brain-derived neurotrophic factor (BDNF) levels. In total, 19 studies were included in the current meta-analysis. The pooling data show that melatonin significantly decreased the pain intensity, as evidenced by the pain scores. Moreover, melatonin administration also reduced the proportion of patients with analgesic requirements and BDNF levels. However, the effects of melatonin on total analgesic consumption still require further confirmation. Collectively, the current meta-analysis supports the use of melatonin for anti-nociception.
Collapse
Affiliation(s)
- Chaojuan Zhu
- Department of Emergency Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.,Department of Nursing, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yunyun Xu
- Department of Emergency Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yonghong Duan
- Department of Emergency Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Wei Li
- Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, China
| | - Li Zhang
- Department of Emergency Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yang Huang
- Department of Emergency Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhao
- Department of Emergency Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yutong Wang
- Department of Emergency Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Junjie Li
- Department of Emergency Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Ting Feng
- Department of Emergency Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaomei Li
- Faculty of Nursing, College of Medicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuehui Hu
- Department of Nursing, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.,Department of Dermatology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Wen Yin
- Department of Emergency Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
21
|
Hu W, Deng C, Ma Z, Wang D, Fan C, Li T, Di S, Gong B, Reiter RJ, Yang Y. Utilizing melatonin to combat bacterial infections and septic injury. Br J Pharmacol 2017; 174:754-768. [PMID: 28213968 PMCID: PMC5387000 DOI: 10.1111/bph.13751] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 12/11/2022] Open
Abstract
Melatonin, also known as N-acetyl-5-methoxytryptamine, is a ubiquitously acting molecule that is produced by the pineal gland and other organs of animals, including humans. As melatonin and its metabolites are potent antioxidants and free radical scavengers, they are protective against a variety of disorders. Moreover, multiple molecular targets of melatonin have been identified, and its actions are both receptor-mediated and receptor-independent. Recent studies have shown that melatonin may be useful in fighting against sepsis and septic injury due to its antioxidative and anti-inflammatory actions; the results generally indicate a promising therapeutic application for melatonin in the treatment of sepsis. To provide a comprehensive understanding regarding the protective effects of melatonin against septic injury, in the present review we have evaluated the published literature in which melatonin has been used to treat experimental and clinical sepsis. Firstly, we present the evidence from studies that have used melatonin to resist bacterial pathogens. Secondly, we illustrate the protective effect of melatonin against septic injury and discuss the possible mechanisms. Finally, the potential directions for future melatonin research against sepsis are summarized.
Collapse
Affiliation(s)
- Wei Hu
- Department of Thoracic and Cardiovascular SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing HospitalThe Fourth Military Medical UniversityXi'anChina
- Department of Thoracic Surgery, Tangdu HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Zhiqiang Ma
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Chongxi Fan
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Tian Li
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Shouyin Di
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Bing Gong
- Department of Thoracic and Cardiovascular SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Russel J Reiter
- Department of Cellular and Structural BiologyUT Health Science Center at San AntonioSan AntonioTXUSA
| | - Yang Yang
- Department of Thoracic and Cardiovascular SurgeryNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
22
|
Feng D, Wang B, Wang L, Abraham N, Tao K, Huang L, Shi W, Dong Y, Qu Y. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J Pineal Res 2017; 62. [PMID: 28178380 DOI: 10.1111/jpi.12395] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Melatonin has demonstrated a potential protective effect in central nervous system. Thus, it is interesting to determine whether pre-ischemia melatonin administration could protect against cerebral ischemia/reperfusion (IR)-related injury and the underlying molecular mechanisms. In this study, we revealed that IR injury significantly activated endoplasmic reticulum (ER) stress and autophagy in a middle cerebral artery occlusion mouse model. Pre-ischemia melatonin treatment was able to attenuate IR-induced ER stress and autophagy. In addition, with tandem RFP-GFP-LC3 adeno-associated virus, we demonstrated pre-ischemic melatonin significantly alleviated IR-induced autophagic flux. Furthermore, we showed that IR induced neuronal apoptosis through ER stress related signalings. Moreover, IR-induced autophagy was significantly blocked by ER stress inhibitor (4-PBA), as well as ER-related signaling inhibitors (PERK inhibitor, GSK; IRE1 inhibitor, 3,5-dibromosalicylaldehyde). Finally, we revealed that melatonin significantly alleviated cerebral infarction, brain edema, neuronal apoptosis, and neurological deficiency, which were remarkably abolished by tunicamycin (ER stress activator) and rapamycin (autophagy activator), respectively. In summary, our study provides strong evidence that pre-ischemia melatonin administration significantly protects against cerebral IR injury through inhibiting ER stress-dependent autophagy. Our findings shed light on the novel preventive and therapeutic strategy of daily administration of melatonin, especially among the population with high risk of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard medical school, Boston, MA, USA
| | - Lei Wang
- Department of Neurosurgery, The 463rd Hospital of PLA, Shenyang, China
| | - Neeta Abraham
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard medical school, Boston, MA, USA
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lu Huang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Shi
- Department of Urology surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
23
|
Xue F, Shi C, Chen Q, Hang W, Xia L, Wu Y, Tao SZ, Zhou J, Shi A, Chen J. Melatonin Mediates Protective Effects against Kainic Acid-Induced Neuronal Death through Safeguarding ER Stress and Mitochondrial Disturbance. Front Mol Neurosci 2017; 10:49. [PMID: 28293167 PMCID: PMC5329003 DOI: 10.3389/fnmol.2017.00049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Kainic acid (KA)-induced neuronal death is linked to mitochondrial dysfunction and ER stress. Melatonin is known to protect hippocampal neurons from KA-induced apoptosis, but the exact mechanisms underlying melatonin protective effects against neuronal mitochondria disorder and ER stress remain uncertain. In this study, we investigated the sheltering roles of melatonin during KA-induced apoptosis by focusing on mitochondrial dysfunction and ER stress mediated signal pathways. KA causes mitochondrial dynamic disorder and dysfunction through calpain activation, leading to neuronal apoptosis. Ca2+ chelator BAPTA-AM and calpain inhibitor calpeptin can significantly restore mitochondrial morphology and function. ER stress can also be induced by KA treatment. ER stress inhibitor 4-phenylbutyric acid (PBA) attenuates ER stress-mediated apoptosis and mitochondrial disorder. It is worth noting that calpain activation was also inhibited under PBA administration. Thus, we concluded that melatonin effectively inhibits KA-induced calpain upregulation/activation and mitochondrial deterioration by alleviating Ca2+ overload and ER stress.
Collapse
Affiliation(s)
- Feixiao Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China; Department of Clinical Laboratory, Xi'an Third HospitalXi'an, China
| | - Cai Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Qingjie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Liangtao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Sophia Z Tao
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara CA, USA
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China; Institute for Brain Research, Huazhong University of Science and TechnologyWuhan, China; Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China; Institute for Brain Research, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
24
|
Hu W, Ma Z, Di S, Jiang S, Li Y, Fan C, Yang Y, Wang D. Snapshot: implications for melatonin in endoplasmic reticulum homeostasis. Br J Pharmacol 2016; 173:3431-3442. [PMID: 27759160 PMCID: PMC5120159 DOI: 10.1111/bph.13651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important intracellular membranous organelle. Previous studies have demonstrated that the ER is responsible for protein folding and trafficking, lipid synthesis and the maintenance of calcium homeostasis. Interestingly, the morphology and structure of the ER were recently found to be important. Melatonin is a hormone that anticipates the daily onset of darkness in mammals, and it is well known that melatonin acts as an antioxidant by scavenging free radicals and increasing the activity of antioxidant enzymes in the body. Notably, the existing evidence demonstrates that melatonin is involved in ER homeostasis, particularly in the morphology of the ER, indicating a potential protective role of melatonin. This review discusses the existing knowledge regarding the implications for the involvement of melatonin in ER homeostasis.
Collapse
Affiliation(s)
- Wei Hu
- Department of Thoracic and Cardiovascular SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Zhiqiang Ma
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Shouyin Di
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Shuai Jiang
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Yue Li
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Chongxi Fan
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Yang Yang
- Department of Thoracic and Cardiovascular SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|