1
|
Han JY, Seo YE, Kwon JH, Kim JH, Kim MG. Cardioprotective Effects of PARP Inhibitors: A Re-Analysis of a Meta-Analysis and a Real-Word Data Analysis Using the FAERS Database. J Clin Med 2024; 13:1218. [PMID: 38592677 PMCID: PMC10932277 DOI: 10.3390/jcm13051218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 04/10/2024] Open
Abstract
Objective: This study aimed to assess the potential of PARP inhibitors to prevent cardiotoxicity. Methods: First, a re-analysis and update of a previously published study was conducted. Additional searches were conducted of the PubMed and Cochrane Central Register of Controlled Trials databases on 2 June 2023. After the selection process, the pooled odds ratio (OR) for cardiac adverse events (AEs) was calculated. Second, the FAERS database was examined for 10 frequently co-administered anticancer agents. The reporting odds ratio (ROR) was calculated based on the occurrence of cardiac AEs depending on the co-administration of PARP inhibitors. Results: Seven studies were selected for the meta-analysis. Although not statistically significant, co-administration of PARP inhibitors with chemotherapy/bevacizumab decreased the risk of cardiac AEs (Peto OR = 0.61; p = 0.36), while co-administration with antiandrogens increased the risk of cardiac AEs (Peto OR = 1.83; p = 0.18). A total of 19 cases of cardiac AEs were reported with co-administration of PARP inhibitors in the FAERS database. Co-administration of PARP inhibitors with chemotherapy/bevacizumab significantly decreased the risk of cardiac AEs (ROR = 0.352; 95% confidence interval (CI), 0.194-0.637). On the other hand, for antiandrogens co-administered with PARP inhibitors, the ROR was 3.496 (95% CI, 1.539-7.942). The ROR for immune checkpoint inhibitors co-administered with PARP inhibitors was 0.606 (95% CI, 0.151-2.432), indicating a non-significant effect on cardiac AEs. Conclusion: This study reports that PARP inhibitors show cardioprotective effects when used with conventional anticancer agents.
Collapse
Affiliation(s)
- Ja-Young Han
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Young-Eun Seo
- Graduate School of Clinical Biohealth, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Jae-Hee Kwon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jae Hyun Kim
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Myeong Gyu Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Soltani M, Sokoloff LJ, Fradley MG. Cardiotoxicities of Non-Chemotherapeutic Metastatic Breast Cancer Treatments. Curr Oncol Rep 2023; 25:923-935. [PMID: 37249834 DOI: 10.1007/s11912-023-01427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE OF REVIEW Although mortality rates have declined significantly in recent years, breast cancer remains the second most common cause of cancer death in women, with rates significantly higher among women with metastatic disease. New therapeutic agents have improved the prognosis of patients with metastatic breast cancer but raise concerns around the risk of cardiovascular disease. This review aims to discuss the oncologic treatment of the different subtypes of breast cancer along with the cardiac complications associated with each therapy. RECENT FINDINGS This article emphasizes human epidermal growth factor receptor targeted therapies with a focus on incidence of cardiotoxicity, reversibility, long-term outcomes, and management in high-risk patients. This review will address the use of cardiac biomarkers to monitor for toxicity, as well as the utility of cardiac imaging, including global longitudinal strain as a prognostic factor. We will also include recent findings on tyrosine kinase inhibitors, cyclin dependent kinase 4/6, and immune checkpoint inhibitors. Cardiotoxicity may lead to premature discontinuation of novel cancer therapies; optimizing cardiovascular risk factors and close monitoring for cardiotoxicity allow patients to maximize their oncologic and cardiovascular outcomes.
Collapse
Affiliation(s)
- Marwa Soltani
- Division of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Perelman Center for Advanced Medicine East Pavilion 2nd Floor, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Lara J Sokoloff
- Division of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, Hospital of the University of Pennsylvania, 3400 Spruce Street, 100 Centrex, Philadelphia, PA, 19104, USA
| | - Michael G Fradley
- Division of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Perelman Center for Advanced Medicine East Pavilion 2nd Floor, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Palazzo A, Ciccarese C, Iacovelli R, Cannizzaro MC, Stefani A, Salvatore L, Bria E, Tortora G. Major adverse cardiac events and cardiovascular toxicity with PARP inhibitors-based therapy for solid tumors: a systematic review and safety meta-analysis. ESMO Open 2023; 8:101154. [PMID: 36893518 PMCID: PMC10163166 DOI: 10.1016/j.esmoop.2023.101154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) provided significant antitumor activity in various tumors, mainly carrying deleterious mutations of BRCA1/BRCA2 genes. Only few data are available regarding the cardiac and vascular safety profile of this drug class. We carried out a meta-analysis for assessing the incidence and relative risk (RR) of major adverse cardiovascular events (MACEs), hypertension, and thromboembolic events in patients with solid tumors treated with PARPi-based therapy. METHODS Prospective studies were identified by searching the Medline/PubMed, Cochrane Library, and ASCO Meeting abstracts. Data extraction was conducted according to the Preferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) statement. Combined odds ratios (ORs), RRs, and 95% confidence intervals (CIs) were calculated using fixed- or random-effects methods, depending on studies heterogeneity. RevMan software for meta-analysis (v.5.2.3) was used to carry out statistical analyses. RESULTS Thirty-two studies were selected for the final analysis. The incidence of PARPi-related MACEs of any and high grade was 5.0% and 0.9%, respectively, compared with 3.6% and 0.9% in the control arms, corresponding to a significant increased risk of MACEs of any grade (Peto OR 1.62; P = 0.0009) but not of high grade (P = 0.49). The incidence of hypertension of any grade and high grade was 17.5% and 6.0% with PARPi, respectively, compared with 12.6% and 4.4% in the controls. Treatment with PARPi significantly increased the risk of hypertension of any grade (random-effects, RR = 1.53; P = 0.03) but not of high grade (random-effects, RR = 1.47; P = 0.09) compared with controls. Finally, PARPi-based therapies significantly increased the risk of thromboembolic events of any grade (Peto OR = 1.49, P = 0.004) and not of high grade (Peto OR = 1.31; P = 0.13) compared with controls. CONCLUSIONS PARPi-based therapy is associated with a significantly increased risk of MACEs, hypertension, and thromboembolic events of any grade compared with controls. The lack of a significant increased risk of high-grade events together with the absolute low incidence of these adverse events led not to consider routine cardiovascular monitoring as recommended in asymptomatic patients.
Collapse
Affiliation(s)
- A Palazzo
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - C Ciccarese
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - R Iacovelli
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - M C Cannizzaro
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Stefani
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - L Salvatore
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - E Bria
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Tortora
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
4
|
Fu Z, Lin Z, Yang M, Li C. Cardiac Toxicity From Adjuvant Targeting Treatment for Breast Cancer Post-Surgery. Front Oncol 2022; 12:706861. [PMID: 35402243 PMCID: PMC8988147 DOI: 10.3389/fonc.2022.706861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most prevalent types of cancers worldwide, especially for females. Surgery is the preferred treatment for breast cancer, and various postoperative adjuvant therapies can be reasonably used according to different pathological characteristics, especially traditional radiotherapy, chemotherapy, and endocrine therapy. In recent years, targeting agent therapy has also become one of the selective breast cancer treatment strategies, including anti-HER-2 drugs, CDK4/6 inhibitor, poly ADP-ribose polymerase inhibitor, PI3K/AKT/mTOR pathway inhibitor, ER targeting drugs, and aromatase inhibitor. Because of the different pathologic mechanisms of these adjuvant therapies, each of the strategies may cause cardiotoxicity in clinic. The cardiac adverse events of traditional endocrine therapy, radiotherapy, and chemotherapy for breast cancer have been widely detected in clinic; however, the targeting therapy agents have been paid more attention with the extension of application. This review will summarize the cardiac toxicity of various adjuvant therapies for breast cancer, especially for targeting drug therapy.
Collapse
Affiliation(s)
- Zhenkun Fu
- Department of Immunology & Wu Lien-Teh Institute & Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, Harbin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Basic Medical College, Harbin Medical University, Harbin, China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Mao Yang
- Basic Medical College, Harbin Medical University, Harbin, China
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Santos SS, Brunialti MKC, Soriano FG, Szabo C, Salomão R. Repurposing of Clinically Approved Poly-(ADP-Ribose) Polymerase Inhibitors for the Therapy of Sepsis. Shock 2021; 56:901-909. [PMID: 34115723 DOI: 10.1097/shk.0000000000001820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Sepsis' pathogenesis involves multiple mechanisms that lead to a dysregulation of the host's response. Significant efforts have been made in search of interventions that can reverse this situation and increase patient survival. Poly (ADP-polymerase) (PARP) is a constitutive nuclear and mitochondrial enzyme, which functions as a co-activator and co-repressor of gene transcription, thus regulating the production of inflammatory mediators. Several studies have already demonstrated an overactivation of PARP1 in various human pathophysiological conditions and that its inhibition has benefits in regulating intracellular processes. The PARP inhibitor olaparib, originally developed for cancer therapy, paved the way for the expansion of its clinical use for nononcological indications. In this review we discuss sepsis as one of the possible indications for the use of olaparib and other clinically approved PARP inhibitors as modulators of the inflammatory response and cellular dysfunction. The benefit of olaparib and other clinically approved PARP inhibitors has already been demonstrated in several experimental models of human diseases, such as neurodegeneration and neuroinflammation, acute hepatitis, skeletal muscle disorders, aging and acute ischemic stroke, protecting, for example, from the deterioration of the blood-brain barrier, restoring the cellular levels of NAD+, improving mitochondrial function and biogenesis and, among other effects, reducing oxidative stress and pro-inflammatory mediators, such as TNF-α, IL1-β, IL-6, and VCAM1. These data demonstrated that repositioning of clinically approved PARP inhibitors may be effective in protecting against hemodynamic dysfunction, metabolic dysfunction, and multiple organ failure in patients with sepsis. Age and gender affect the response to PARP inhibitors, the mechanisms underlying the lack of many protective effects in females and aged animals should be further investigated and be cautiously considered in designing clinical trials.
Collapse
Affiliation(s)
- Sidnéia Sousa Santos
- Division of Infectious Diseasses, Paulista School of Medicine, Federal University of Sao Paulo, Brazil
| | | | - Francisco Garcia Soriano
- Laboratory of Medical Research, Faculty of Medicine of the University of São Paulo-USP, São Paulo, Brazil
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reinaldo Salomão
- Division of Infectious Diseasses, Paulista School of Medicine, Federal University of Sao Paulo, Brazil
| |
Collapse
|
6
|
Abstract
OBJECTIVE Activation of the constitutive nuclear and mitochondrial enzyme poly (ADP-ribose) polymerase (PARP) has been implicated in the pathogenesis of cell dysfunction, inflammation, and organ failure in various forms of critical illness. The objective of our study was to evaluate the efficacy and safety of the clinically approved PARP inhibitor olaparib in an experimental model of pancreatitis in vivo and in a pancreatic cell line subjected to oxidative stress in vitro. The preclinical studies were complemented with analysis of clinical samples to detect PARP activation in pancreatitis. METHODS Mice were subjected to cerulein-induced pancreatitis; circulating mediators and circulating organ injury markers; pancreatic myeloperoxidase and malondialdehyde levels were measured and histology of the pancreas was assessed. In human pancreatic duct epithelial cells (HPDE) subjected to oxidative stress, PARP activation was measured by PAR Western blotting and cell viability and DNA integrity were quantified. In clinical samples, PARP activation was assessed by PAR (the enzymatic product of PARP) immunohistochemistry. RESULTS In male mice subjected to pancreatitis, olaparib (3 mg/kg i.p.) improved pancreatic function: it reduced pancreatic myeloperoxidase and malondialdehyde levels, attenuated the plasma amylase levels, and improved the histological picture of the pancreas. It also attenuated the plasma levels of pro-inflammatory mediators (TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-12, IP-10, KC) but not MCP-1, RANTES, or the anti-inflammatory cytokine IL-10. Finally, it prevented the slight, but significant increase in plasma blood urea nitrogen level, suggesting improved renal function. The protective effect of olaparib was also confirmed in female mice. In HPDE cells subjected to oxidative stress olaparib (1 μM) inhibited PARP activity, protected against the loss of cell viability, and prevented the loss of cellular NAD levels. Olaparib, at 1μM to 30 μM did not have any adverse effects on DNA integrity. In human pancreatic samples from patients who died of pancreatitis, increased accumulation of PAR was demonstrated. CONCLUSION Olaparib improves organ function and tempers the hyperinflammatory response in pancreatitis. It also protects against pancreatic cell injury in vitro without adversely affecting DNA integrity. Repurposing and eventual clinical introduction of this clinically approved PARP inhibitor may be warranted for the experimental therapy of pancreatitis.
Collapse
|
7
|
Mondrinos MJ, Alisafaei F, Yi AY, Ahmadzadeh H, Lee I, Blundell C, Seo J, Osborn M, Jeon TJ, Kim SM, Shenoy VB, Huh D. Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. SCIENCE ADVANCES 2021; 7:7/11/eabe9446. [PMID: 33712463 PMCID: PMC7954445 DOI: 10.1126/sciadv.abe9446] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/27/2021] [Indexed: 05/11/2023]
Abstract
Here, we present an approach to model and adapt the mechanical regulation of morphogenesis that uses contractile cells as sculptors of engineered tissue anisotropy in vitro. Our method uses heterobifunctional cross-linkers to create mechanical boundary constraints that guide surface-directed sculpting of cell-laden extracellular matrix hydrogel constructs. Using this approach, we engineered linearly aligned tissues with structural and mechanical anisotropy. A multiscale in silico model of the sculpting process was developed to reveal that cell contractility increases as a function of principal stress polarization in anisotropic tissues. We also show that the anisotropic biophysical microenvironment of linearly aligned tissues potentiates soluble factor-mediated tenogenic and myogenic differentiation of mesenchymal stem cells. The application of our method is demonstrated by (i) skeletal muscle arrays to screen therapeutic modulators of acute oxidative injury and (ii) a 3D microphysiological model of lung cancer cachexia to study inflammatory and oxidative muscle injury induced by tumor-derived signals.
Collapse
Affiliation(s)
- Mark J Mondrinos
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Farid Alisafaei
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Y Yi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hossein Ahmadzadeh
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Insu Lee
- Department of Mechanical Engineering, Inha University, Incheon, Korea
| | - Cassidy Blundell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeongyun Seo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Osborn
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tae-Joon Jeon
- Department of Biological Engineering, Inha University, Incheon, Korea
| | - Sun Min Kim
- Department of Mechanical Engineering, Inha University, Incheon, Korea
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Cañedo EC, Totten S, Ahn R, Savage P, MacNeil D, Hudson J, Autexier C, Deblois G, Park M, Witcher M, Ursini-Siegel J. p66ShcA potentiates the cytotoxic response of triple-negative breast cancers to PARP inhibitors. JCI Insight 2021; 6:138382. [PMID: 33470989 PMCID: PMC7934920 DOI: 10.1172/jci.insight.138382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) lack effective targeted therapies, and cytotoxic chemotherapies remain the standard of care for this subtype. Owing to their increased genomic instability, poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) are being tested against TNBCs. In particular, clinical trials are now interrogating the efficacy of PARPi combined with chemotherapies. Intriguingly, while response rates are low, cohort of patients do respond to PARPi in combination with chemotherapies. Moreover, recent studies suggest that an increase in levels of ROS may sensitize cells to PARPi. This represents a therapeutic opportunity, as several chemotherapies, including doxorubicin, function in part by producing ROS. We previously demonstrated that the p66ShcA adaptor protein is variably expressed in TNBCs. We now show that, in response to therapy-induced stress, p66ShcA stimulated ROS production, which, in turn, potentiated the synergy of PARPi in combination with doxorubicin in TNBCs. This p66ShcA-induced sensitivity relied on the accumulation of oxidative damage in TNBCs, rather than genomic instability, to potentiate cell death. These findings suggest that increasing the expression of p66ShcA protein levels in TNBCs represents a rational approach to bolster the synergy between PARPi and doxorubicin.
Collapse
Affiliation(s)
- Eduardo Cepeda Cañedo
- Lady Davis Institute for Medical Research, Montreal, Québec, Canada.,Division of Experimental Medicine
| | - Stephanie Totten
- Lady Davis Institute for Medical Research, Montreal, Québec, Canada.,Division of Experimental Medicine
| | - Ryuhjin Ahn
- Lady Davis Institute for Medical Research, Montreal, Québec, Canada.,Division of Experimental Medicine
| | - Paul Savage
- Goodman Cancer Research Centre.,Department of Biochemistry, and
| | - Deanna MacNeil
- Lady Davis Institute for Medical Research, Montreal, Québec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Jesse Hudson
- Lady Davis Institute for Medical Research, Montreal, Québec, Canada.,Division of Experimental Medicine
| | - Chantal Autexier
- Lady Davis Institute for Medical Research, Montreal, Québec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Genevieve Deblois
- Institute for Research in Immunology and Cancer, Montreal, Québec, Canada
| | - Morag Park
- Goodman Cancer Research Centre.,Department of Biochemistry, and
| | - Michael Witcher
- Lady Davis Institute for Medical Research, Montreal, Québec, Canada.,Division of Experimental Medicine.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Québec, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Montreal, Québec, Canada.,Division of Experimental Medicine.,Department of Biochemistry, and.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
9
|
Zhou P, Liu H, Liu X, Ling X, Xiao Z, Zhu P, Zhu Y, Lu J, Zheng S. Donor heart preservation with hypoxic-conditioned medium-derived from bone marrow mesenchymal stem cells improves cardiac function in a heart transplantation model. Stem Cell Res Ther 2021; 12:56. [PMID: 33435991 PMCID: PMC7805188 DOI: 10.1186/s13287-020-02114-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background In heart transplantation, donor hearts inevitably suffer from ischemia/reperfusion (I/R) injury, which leads to primary graft dysfunction and affects patients’ survival rate. Bone marrow mesenchymal stem cells (BMSCs) have been reported to attenuate myocardial I/R injury via their paracrine effects, which can be enhanced by hypoxic preconditioning. We hypothesized that the donor heart preservation with hypoxic conditioned medium (CdM) derived from BMSCs would improve post-transplant graft function. Methods Normoxic or hypoxic CdM were isolated from rat BMSCs cultured under normoxic (20% O2) or hypoxic (1% O2) condition. Donor hearts were explanted; stored in cardioplegic solution supplemented with either a medium (vehicle), normoxic CdM (N-CdM), or hypoxic CdM (H-CdM); and then heterotopically transplanted. Antibody arrays were performed to compare the differences between hypoxic and normoxic CdM. Results After heart transplantation, the donor heart preservation with normoxic CdM was associated with a shorter time to return of spontaneous contraction and left ventricular systolic diameter, lower histopathological scores, higher ejection fraction, and fractional shortening of the transplanted hearts. The cardioprotective effects may be associated with the inhibition of apoptosis and inflammation, as reflected by less TUNEL-positive cells and lower levels of plasma proinflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor-α) and cardiac troponin I in the N-CdM group compared with the vehicle group. These therapeutic effects can be further enhanced by hypoxic preconditioning. Antibody arrays revealed that nine proteins were significantly increased in hypoxic CdM compared with normoxic CdM. Furthermore, compared with vehicle and N-CdM groups, the protein levels of PI3K and p-Akt/Akt ratio in the transplanted hearts significantly increased in the H-CdM group. However, no significant difference was found in the phosphorylation of Smad2 and Smad3 for the donor hearts among the three groups. Conclusions Our results indicate that the cardioplegic solution-enriched with hypoxic CdM can be a novel and promising preservation solution for donor hearts.
Collapse
Affiliation(s)
- Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Hao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Ximao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Xiao Ling
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China
| | - Yufeng Zhu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China.
| | - Jun Lu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China.
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Baiyun District, Guangzhou, People's Republic of China.
| |
Collapse
|
10
|
Korkmaz-Icöz S, Li K, Loganathan S, Ding Q, Ruppert M, Radovits T, Brlecic P, Sayour AA, Karck M, Szabó G. Brain-dead donor heart conservation with a preservation solution supplemented by a conditioned medium from mesenchymal stem cells improves graft contractility after transplantation. Am J Transplant 2020; 20:2847-2856. [PMID: 32162462 DOI: 10.1111/ajt.15843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Hearts are usually procured from brain-dead (BD) donors. However, brain death may induce hemodynamic instability, which may contribute to posttransplant graft dysfunction. We hypothesized that BD-donor heart preservation with a conditioned medium (CM) from mesenchymal stem cells (MSCs) would improve graft function after transplantation. Additionally, we explored the PI3K pathway's potential role. Rat MSCs-derived CM was used for conservation purposes. Donor rats were either exposed to sham operation or brain death by inflation of a subdural balloon-catheter for 5.5 hours. Then, the hearts were explanted, stored in cardioplegic solution-supplemented with either a medium vehicle (BD and sham), CM (BD + CM), or LY294002, an inhibitor of PI3K (BD + CM + LY), and finally transplanted. Systolic performance and relaxation parameters were significantly reduced in BD-donors compared to sham. After transplantation, systolic and diastolic functions were significantly decreased, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells and endonuclease G positive cells were increased in the BD-group compared to sham. Preservation of BD-donor hearts with CM resulted in a recovery of systolic graft function (dP/dtmax : BD + CM: 3148 ± 178 vs BD: 2192 ± 94 mm Hg/s at 110 µL, P < .05) and reduced apoptosis. LY294002 partially lowered graft protection afforded by CM in the BD group. Our data suggest that PI3K/Akt pathway is not the primary mechanism of action of CM in improving posttransplant cardiac contractility and preventing caspase-independent apoptosis.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Kunsheng Li
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Anesthesiology, Ruhr-University Bochum, St. Josef- and St. Elisabeth Hospital, Bochum, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| | - Qingwei Ding
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mihály Ruppert
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Paige Brlecic
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Alex A Sayour
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Matthias Karck
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| |
Collapse
|
11
|
Loap P, Loirat D, Berger F, Ricci F, Vincent-Salomon A, Ezzili C, Mosseri V, Fourquet A, Ezzalfani M, Kirova Y. Combination of Olaparib and Radiation Therapy for Triple Negative Breast Cancer: Preliminary Results of the RADIOPARP Phase 1 Trial. Int J Radiat Oncol Biol Phys 2020; 109:436-440. [PMID: 32971187 DOI: 10.1016/j.ijrobp.2020.09.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Preclinical studies have evidenced that triple-negative breast cancer (TNBC) cell lines are more sensitive to poly (ADP-ribose) polymerase inhibitors. This provides a strong rationale for developing a new therapeutic approach for TNBC management based on poly (ADP-ribose) polymerase inhibition. The primary goal of the RADIOPARP phase 1 trial was to evaluate the dose-limiting toxicities (DLT) and the maximum tolerated dose of olaparib combined with locoregional radiation therapy. METHODS AND MATERIALS RADIOPARP was a single institutional phase 1 trial which evaluated olaparib-radiation therapy combination in patients with inflammatory, locoregionally advanced or metastatic TNBC who received neoadjuvant chemotherapy. Radiation therapy delivered 50 Gy to the breast or to the chest wall. Lymph nodes could be included in target volumes according to local guidelines. The dose-finding toxicity-based study was conducted in sequential and adaptive Bayesian scheme using the time-to-event continual reassessment method, with 4 olaparib dose levels (50 mg, 100 mg, 150 mg, and 200 mg twice per day). RESULTS Twenty-four patients with Eastern Cooperative Oncology Group Performance Status of 0 or 1 were enrolled from September 2017 to November 2019. Twenty-one patients (87.5%) received the olaparib-radiation therapy combination after breast surgery owing to residual disease after neoadjuvant chemotherapy, and the 3 other patients (12.5%) had unresectable tumors which were refractory to neoadjuvant chemotherapy. All patients received full course combination treatment as follows: 4 patients (pts) at 50 mg twice a day, 8 pts at 100 mg twice a day, 7 pts at 150 mg twice a day, and 5 pts at 200 mg twice a day. No DLT was observed. CONCLUSIONS Olaparib was escalated to the maximum target dose of 200 mg twice a day without DLT. Further follow-up is needed to evaluate the late toxicities. Pending the long-term results of the RADIOPARP trial, we suggest using 200 mg of olaparib twice per day for future trials.
Collapse
Affiliation(s)
- Pierre Loap
- Department of Radiation Oncology, Institut Curie, Paris, France.
| | - Delphine Loirat
- Department of Radiation Oncology, Institut Curie, Paris, France
| | | | - Francesco Ricci
- Department of Radiation Oncology, Institut Curie, Paris, France
| | | | - Cyrine Ezzili
- Department of Radiation Oncology, Institut Curie, Paris, France
| | | | - Alain Fourquet
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Monia Ezzalfani
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
| |
Collapse
|
12
|
Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov 2020; 19:711-736. [PMID: 32884152 DOI: 10.1038/s41573-020-0076-6] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The process of poly(ADP-ribosyl)ation and the major enzyme that catalyses this reaction, poly(ADP-ribose) polymerase 1 (PARP1), were discovered more than 50 years ago. Since then, advances in our understanding of the roles of PARP1 in cellular processes such as DNA repair, gene transcription and cell death have allowed the investigation of therapeutic PARP inhibition for a variety of diseases - particularly cancers in which defects in DNA repair pathways make tumour cells highly sensitive to the inhibition of PARP activity. Efforts to identify and evaluate potent PARP inhibitors have so far led to the regulatory approval of four PARP inhibitors for the treatment of several types of cancer, and PARP inhibitors have also shown therapeutic potential in treating non-oncological diseases. This Review provides a timeline of PARP biology and medicinal chemistry, summarizes the pathophysiological processes in which PARP plays a role and highlights key opportunities and challenges in the field, such as counteracting PARP inhibitor resistance during cancer therapy and repurposing PARP inhibitors for the treatment of non-oncological diseases.
Collapse
Affiliation(s)
- Nicola J Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK.
| | - Csaba Szabo
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
13
|
PARP-1 inhibitor-AG14361 suppresses acute allograft rejection via stabilizing CD4+FoxP3+ regulatory T cells. Pathol Res Pract 2020; 216:153021. [DOI: 10.1016/j.prp.2020.153021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/22/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
|
14
|
‘PARP’ing fibrosis: repurposing poly (ADP ribose) polymerase (PARP) inhibitors. Drug Discov Today 2020; 25:1253-1261. [DOI: 10.1016/j.drudis.2020.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
|
15
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Participation of the ATR/CHK1 pathway in replicative stress targeted therapy of high-grade ovarian cancer. J Hematol Oncol 2020; 13:39. [PMID: 32316968 PMCID: PMC7175546 DOI: 10.1186/s13045-020-00874-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecologic malignancies reported throughout the world. The initial, standard-of-care, adjuvant chemotherapy in epithelial ovarian cancer is usually a platinum drug, such as cisplatin or carboplatin, combined with a taxane. However, despite surgical removal of the tumor and initial high response rates to first-line chemotherapy, around 80% of women will develop cancer recurrence. Effective strategies, including chemotherapy and new research models, are necessary to improve the prognosis. The replication stress response (RSR) is characteristic of the development of tumors, including ovarian cancer. Hence, RSR pathway and DNA repair proteins have emerged as a new area for anticancer drug development. Although clinical trials have shown poly (ADP-ribose) polymerase inhibitors (PARPi) response rates of around 40% in women who carry a mutation in the BRCA1/2 genes, PARPi is responsible for tumor suppression, but not for complete tumor regression. Recent reports suggest that cells with impaired homologous recombination (HR) activities due to mutations in TP53 gene or specific DNA repair proteins are specifically sensitive to ataxia telangiectasia and Rad3-related protein (ATR) inhibitors. Replication stress activates DNA repair checkpoint proteins (ATR, CHK1), which prevent further DNA damage. This review describes the use of DNA repair checkpoint inhibitors as single agents and strategies combining these inhibitors with DNA-damaging compounds for ovarian cancer therapy, as well as the new platforms used for optimizing ovarian cancer therapy.
Collapse
Affiliation(s)
- Patrycja Gralewska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Aneta Rogalska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
16
|
Evdokimov A, Kutuzov M, Petruseva I, Lukjanchikova N, Kashina E, Kolova E, Zemerova T, Romanenko S, Perelman P, Prokopov D, Seluanov A, Gorbunova V, Graphodatsky A, Trifonov V, Khodyreva S, Lavrik O. Naked mole rat cells display more efficient excision repair than mouse cells. Aging (Albany NY) 2019; 10:1454-1473. [PMID: 29930219 PMCID: PMC6046242 DOI: 10.18632/aging.101482] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022]
Abstract
Naked mole rat (NMR) is the long-lived and tumor-resistant rodent. NMRs possess multiple adaptations that may contribute to longevity and cancer-resistance. However, whether NMRs have more efficient DNA repair have not been directly tested. Here we compared base excision repair (BER) and nucleotide excision repair (NER) systems in extracts from NMR and mouse fibroblasts after UVC irradiation. Transcript levels of the key repair enzymes demonstrated in most cases higher inducibility in the mouse vs the NMR cells. Ratios of repair enzymes activities in the extracts somewhat varied depending on post-irradiation time. NMR cell extracts were 2–3-fold more efficient at removing the bulky lesions, 1.5–3-fold more efficient at removing uracil, and about 1.4-fold more efficient at cleaving the AP-site than the mouse cells, while DNA polymerase activities being as a whole higher in the mouse demonstrate different patterns of product distribution. The level of poly(ADP-ribose) synthesis was 1.4–1.8-fold higher in the NMR cells. Furthermore, NMR cell extracts displayed higher binding of PARP1 to DNA probes containing apurinic/apyrimidinic site or photo-reactive DNA lesions. Cumulatively, our results suggest that the NMR has more efficient excision repair systems than the mouse, which may contribute to longevity and cancer resistance of this species.
Collapse
Affiliation(s)
- Alexei Evdokimov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Mikhail Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Irina Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | | | - Elena Kashina
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | - Ekaterina Kolova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Tatyana Zemerova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | | | - Polina Perelman
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia
| | - Dmitry Prokopov
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia
| | - Svetlana Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Olga Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| |
Collapse
|
17
|
Pathade AD, Kommineni N, Bulbake U, Thummar MM, Samanthula G, Khan W. Preparation and Comparison of Oral Bioavailability for Different Nano-formulations of Olaparib. AAPS PharmSciTech 2019; 20:276. [PMID: 31388783 DOI: 10.1208/s12249-019-1468-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Olaparib (OLA) is a poly ADP ribose polymerase (PARP) inhibitor approved for germline BRCA-mutated (gBRCAm) advanced ovarian cancer and breast cancer. Low oral bioavailability of this drug requires increase in the dose and frequency causing haematological toxicity in the patients. The purpose of this study is to prepare different nano-formulations of OLA lipospheres (LP) by melt dispersion and nano-suspensions (NSP) by solvent evaporation (SE) and wet milling (WM) techniques and compare oral bioavailability of these formulations. Size of the nano-formulations OLA-LP, OLA-NSPSE and OLA-NSPWM were found to be 126.71 ± 4.54, 128.6 ± 2.34 and 531.1 ± 5.34 nm with polydispersity index below 0.3. In vitro release studies were performed by dialysis bag method where the sustained drug release was observed from nano-formulations until 9 h with Higuchi for OLA suspended in 2.5% w/v sodium carboxy methyl cellulose (OLA-SP), OLA-LP and OLA-NSPWM and Peppas for OLA-NSPSE-based drug release kinetics. In vivo pharmacokinetic studies, haematological toxicity and distribution studies were performed on rats. Results showed that there was an improvement in Cmax, AUCtotal, t1/2 and MRT by OLA nano-formulations when compared with OLA-SP. OLA-SP has shown reduction in WBC, platelets and lymphocytes at 12 and 36 h time points; however, no reduction in cell count was observed with OLA nano-formulations. Distribution studies proved FITC nano-formulations were most rapidly absorbed and distributed when compared with FITC-loaded suspension. From the above results, it was concluded that OLA nano-formulations can be an alternative to enhance the oral bioavailability and to reduce the haematological toxicity of OLA.
Collapse
|
18
|
Cseh AM, Fabian Z, Quintana-Cabrera R, Szabo A, Eros K, Soriano ME, Gallyas F, Scorrano L, Sumegi B. PARP Inhibitor PJ34 Protects Mitochondria and Induces DNA-Damage Mediated Apoptosis in Combination With Cisplatin or Temozolomide in B16F10 Melanoma Cells. Front Physiol 2019; 10:538. [PMID: 31133874 PMCID: PMC6514236 DOI: 10.3389/fphys.2019.00538] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
PARP-1 inhibition has recently been employed in both mono- and combination therapies in various malignancies including melanoma with both promising and contradicting results reported. Although deeper understanding of the underlying molecular mechanisms may help improving clinical modalities, the complex cellular effects of PARP inhibitors make disentangling of the mechanisms involved in combination therapies difficult. Here, we used two cytostatic agents used in melanoma therapies in combination with PARP inhibition to have an insight into cellular events using the B16F10 melanoma model. We found that, when used in combination with cisplatin or temozolomide, pharmacologic blockade of PARP-1 by PJ34 augmented the DNA-damaging and cytotoxic effects of both alkylating compounds. Interestingly, however, this synergism unfolds relatively slowly and is preceded by molecular events that are traditionally believed to support cell survival including the stabilization of mitochondrial membrane potential and morphology. Our data indicate that the PARP inhibitor PJ34 has, apparently, opposing effects on the mitochondrial structure and cell survival. While, initially, it stimulates mitochondrial fusion and hyperpolarization, hallmarks of mitochondrial protection, it enhances the cytotoxic effects of alkylating agents at later stages. These findings may contribute to the optimization of PARP inhibitor-based antineoplastic modalities.
Collapse
Affiliation(s)
- Anna Maria Cseh
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Department of Biology, University of Padova, Padua, Italy
| | - Zsolt Fabian
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ruben Quintana-Cabrera
- Institute of Functional Biology and Genomics, University of Salamanca, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.,CIBERFES, Instituto de Salud Carlos III, Madrid, Spain
| | - Aliz Szabo
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Krisztian Eros
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Maria Eugenia Soriano
- Department of Biology, University of Padova, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Luca Scorrano
- Department of Biology, University of Padova, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
19
|
Ahmad A, Vieira JDC, de Mello AH, de Lima TM, Ariga SK, Barbeiro DF, Barbeiro HV, Szczesny B, Törö G, Druzhyna N, Randi EB, Marcatti M, Toliver-Kinsky T, Kiss A, Liaudet L, Salomao R, Soriano FG, Szabo C. The PARP inhibitor olaparib exerts beneficial effects in mice subjected to cecal ligature and puncture and in cells subjected to oxidative stress without impairing DNA integrity: A potential opportunity for repurposing a clinically used oncological drug for the experimental therapy of sepsis. Pharmacol Res 2019; 145:104263. [PMID: 31071432 DOI: 10.1016/j.phrs.2019.104263] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is involved in the pathogenesis of cell dysfunction, inflammation and organ failure during septic shock. The goal of the current study was to investigate the efficacy and safety of the clinically approved PARP inhibitor olaparib in experimental models of oxidative stress in vitro and in sepsis in vivo. In mice subjected to cecal ligation and puncture (CLP) organ injury markers, circulating and splenic immune cell distributions, circulating mediators, DNA integrity and survival was measured. In U937 cells subjected to oxidative stress, cellular bioenergetics, viability and DNA integrity were measured. Olaparib was used to inhibit PARP. The results show that in adult male mice subjected to CLP, olaparib (1-10 mg/kg i.p.) improved multiorgan dysfunction. Olaparib treatment reduced the degree of bacterial CFUs. Olaparib attenuated the increases in the levels of several circulating mediators in the plasma. In the spleen, the number of CD4+ and CD8+ lymphocytes were reduced in response to CLP; this reduction was inhibited by olaparib treatment. Treg but not Th17 lymphocytes increased in response to CLP; these cell populations were reduced in sepsis when the animals received olaparib. The Th17/Treg ratio was lower in CLP-olaparib group than in the CLP control group. Analysis of miRNA expression identified a multitude of changes in spleen and circulating white blood cell miRNA levels after CLP; olaparib treatment selectively modulated these responses. Olaparib extended the survival rate of mice subjected to CLP. In contrast to males, in female mice olaparib did not have significant protective effects in CLP. In aged mice olaparib exerted beneficial effects that were less pronounced than the effects obtained in young adult males. In in vitro experiments in U937 cells subjected to oxidative stress, olaparib (1-100 μM) inhibited PARP activity, protected against the loss of cell viability, preserved NAD+ levels and improved cellular bioenergetics. In none of the in vivo or in vitro experiments did we observe any adverse effects of olaparib on nuclear or mitochondrial DNA integrity. In conclusion, olaparib improves organ function and extends survival in septic shock. Repurposing and eventual clinical introduction of this clinically approved PARP inhibitor may be warranted for the experimental therapy of septic shock.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Juliana de Camargo Vieira
- Laboratório de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Aline Haas de Mello
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Thais Martins de Lima
- Laboratório de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Suely Kubo Ariga
- Laboratório de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Denise Frediani Barbeiro
- Laboratório de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Hermes Vieira Barbeiro
- Laboratório de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Bartosz Szczesny
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Gábor Törö
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Nadiya Druzhyna
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Elisa B Randi
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Michela Marcatti
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - András Kiss
- Second Department of Pathology, Semmelweis University Medical School, Budapest, Hungary.
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burns, Lausanne University Hospital Medical Center, Lausanne, Switzerland.
| | - Reinaldo Salomao
- Division of Infectious Diseases, Department of Medicine, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Francisco Garcia Soriano
- Laboratório de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA; Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
20
|
Papapetropoulos A, Szabo C. Inventing new therapies without reinventing the wheel: the power of drug repurposing. Br J Pharmacol 2018; 175:165-167. [PMID: 29313889 DOI: 10.1111/bph.14081] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.,Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
21
|
Joo HC, Choi JW, Moon H, Lee CY, Yoo KJ, Kim SW, Hwang KC. Protective effects of kenpaullone on cardiomyocytes following H 2O 2-induced oxidative stress are attributed to inhibition of connexin 43 degradation by SGSM3. Biochem Biophys Res Commun 2018; 499:368-373. [PMID: 29577900 DOI: 10.1016/j.bbrc.2018.03.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
A previous study showed that small G protein signaling modulator 3 (SGSM3) was highly correlated with Cx43 in heart functions and that high levels of SGSM3 may induce Cx43 turnover through lysosomal degradation in infarcted rat hearts. Here, we investigated the protective effects of kenpaullone on cardiomyocytes following H2O2-induced oxidative stress mediated by the interaction of SGSM3 with Cx43. We found that the gap junction protein Cx43 was significantly down-regulated in an H2O2 concentration-dependent manner, whereas expression of SGSM3 was up-regulated upon H2O2 exposure in H9c2 cells. The effect of kenpaullone pretreatment on H2O2-induced cytotoxicity was evaluated in H9c2 cells. H2O2 markedly increased the release of lactate dehydrogenase (LDH), while kenpaullone pretreatment suppressed LDH release in H9c2 cells. Moreover, kenpaullone pretreatment significantly reduced ROS fluorescence intensity and significantly down-regulated the level of apoptosis-activating genes (cleaved caspase-3, cleaved caspase-9 and cytochrome C), autophagy markers (LC3A/B), and the Cx43-interacting partner SGSM3. These results suggest that kenpaullone plays a role in protecting cardiomyocytes from oxidative stress and that the turnover of Cx43 through SGSM3-induced lysosomal degradation underlies the anti-apoptotic effect of kenpaullone.
Collapse
Affiliation(s)
- Hyun-Chel Joo
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Jung-Won Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea
| | - Hanbyeol Moon
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyung-Jong Yoo
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea; Catholic Kwandong University, International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea.
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea; Catholic Kwandong University, International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea.
| |
Collapse
|
22
|
Korkmaz-Icöz S, Szczesny B, Marcatti M, Li S, Ruppert M, Lasitschka F, Loganathan S, Szabó C, Szabó G. Olaparib protects cardiomyocytes against oxidative stress and improves graft contractility during the early phase after heart transplantation in rats. Br J Pharmacol 2017; 175:246-261. [PMID: 28806493 DOI: 10.1111/bph.13983] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/27/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Olaparib, rucaparib and niraparib, potent inhibitors of poly(ADP-ribose) polymerase (PARP) are approved as anti-cancer drugs in humans. Considering the previously demonstrated role of PARP in various forms of acute and chronic myocardial injury, we tested the effects of olaparib in in-vitro models of oxidative stress in cardiomyocytes, and in an in vivo model of cardiac transplantation. EXPERIMENTAL APPROACH H9c2-embryonic rat heart-derived myoblasts pretreated with vehicle or olaparib (10μM) were challenged with either hydrogen peroxide (H2 O2 ) or with glucose oxidase (GOx, which generates H2 O2 in the tissue culture medium). Cell viability assays (MTT, lactate dehydrogenase) and Western blotting for PARP and its product, PAR was performed. Heterotopic heart transplantation was performed in Lewis rats; recipients were treated either with vehicle or olaparib (10 mg kg-1 ). Left ventricular function of transplanted hearts was monitored via a Millar catheter. Multiple gene expression in the graft was measured by qPCR. KEY RESULTS Olaparib blocked autoPARylation of PARP1 and attenuated the rapid onset of death in H9c2 cells, induced by H2 O2 , but did not affect cell death following chronic, prolonged oxidative stress induced by GOx. In rats, after transplantation, left ventricular systolic and diastolic function were improved by olaparib. In the transplanted hearts, olaparib also reduced gene expression for c-jun, caspase-12, catalase, and NADPH oxidase-2. CONCLUSIONS AND IMPLICATIONS Olaparib protected cardiomyocytes against oxidative stress and improved graft contractility in a rat model of heart transplantation. These findings raise the possibility of repurposing this clinically approved oncology drug, to be used in heart transplantation. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Bartosz Szczesny
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Michela Marcatti
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Shiliang Li
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mihály Ruppert
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, University Heidelberg, Heidelberg, Germany
| | | | - Csaba Szabó
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|