1
|
Liu SJ, Fu JJ, Liao ZY, Liu YX, He J, He LY, Bai J, Yang JY, Niu SQ, Guo JL. Z-ligustilide alleviates atherosclerosis by reconstructing gut microbiota and sustaining gut barrier integrity through activation of cannabinoid receptor 2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156117. [PMID: 39426255 DOI: 10.1016/j.phymed.2024.156117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/16/2024] [Accepted: 07/01/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Z-Ligustilide (ZL) is an essential phthalide found in Ligusticum chuanxiong Hort, a commonly used traditional Chinese medicine for treating atherosclerosis (AS) clinically. ZL has been shown to be effective in treating AS. However, the underlying mechanism of ZL against AS and its potential targets remain elusive. PURPOSE The purpose of this research was to assess the influence of ZL on AS and explore the role of the gut microbiome in mediating this effect. METHODS A well-established AS mouse model, apolipoprotein E deficient (ApoE-/-) mice was used to examine the effects of ZL on AS, inflammation, and the intestinal barrier. To analyze the changes in gut microbial community, we employed the 16S rRNA gene sequencing. Antibiotic cocktail and fecal microbiota transplantation (FMT) were employed to clarify the contribution of the gut microbiota to the anti-AS effects of ZL. The mechanism through which ZL provided protective effects on AS and the intestinal barrier was explored by untargeted metabolomics, as well as by validating the involvement of cannabinoid receptor 2 (CB2R) in mice and Caco-2 cells. RESULTS Oral administration of ZL inhibited the development of atherosclerotic lesions, improved plaque stability, inhibited the increase in serum and atherosclerotic inflammation, and improved intestinal barrier function. Fecal bacteria from ZL-treated mice induced similar beneficial effects on AS and the intestinal barrier. We used 16S RNA gene sequencing to reveal a significant increase in Rikenella abundance in both ZL-treated mice and ZL-FMT mice, which was associated with the beneficial effects of ZL. Further function prediction analysis of the gut microbiota and CB2R antagonist intervention experiment in mice and Caco-2 cells showed that the activation of CB2R resulted in the enhancement of the intestinal barrier by ZL. Furthermore, the analysis of metabolomic profiling revealed the enrichment of capsaicin upon ZL treatment, which induced the activation of CB2R in human colon epithelial cells. CONCLUSION Our study is the first to demonstrate that oral treatment with ZL has the potential to alleviate AS by reducing inflammation levels and enhancing the intestinal barrier function. This mechanism relies on the gut microbiota in a CB2R-dependent manner, suggesting promising strategies and ideas for managing AS. This study provides insights into a novel mechanism for treating AS with ZL.
Collapse
Affiliation(s)
- Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Jiao-Jiao Fu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Zhen-Yue Liao
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yi-Xin Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Jing He
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Li-Ying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Jing Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Jing-Yan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Shu-Qi Niu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Jin-Lin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China; Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China.
| |
Collapse
|
2
|
Rakotoarivelo V, Mayer TZ, Simard M, Flamand N, Di Marzo V. The Impact of the CB 2 Cannabinoid Receptor in Inflammatory Diseases: An Update. Molecules 2024; 29:3381. [PMID: 39064959 PMCID: PMC11279428 DOI: 10.3390/molecules29143381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of inflammatory diseases is a heavy burden on modern societies. Cannabis has been used for several millennia to treat inflammatory disorders such as rheumatism or gout. Since the characterization of cannabinoid receptors, CB1 and CB2, the potential of cannabinoid pharmacotherapy in inflammatory conditions has received great interest. Several studies have identified the importance of these receptors in immune cell migration and in the production of inflammatory mediators. As the presence of the CB2 receptor was documented to be more predominant in immune cells, several pharmacological agonists and antagonists have been designed to treat inflammation. To better define the potential of the CB2 receptor, three online databases, PubMed, Google Scholar and clinicaltrial.gov, were searched without language restriction. The full texts of articles presenting data on the endocannabinoid system, the CB2 receptor and its role in modulating inflammation in vitro, in animal models and in the context of clinical trials were reviewed. Finally, we discuss the clinical potential of the latest cannabinoid-based therapies in inflammatory diseases.
Collapse
Affiliation(s)
- Volatiana Rakotoarivelo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Thomas Z. Mayer
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
| | - Mélissa Simard
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
- Joint International Unit between the CNR of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Québec City, QC G1V 0V6, Canada
| |
Collapse
|
3
|
Sun YD, Zhang H, Li YM, Han JJ. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189086. [PMID: 38342420 DOI: 10.1016/j.bbcan.2024.189086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a significant risk factor for the development of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs), as key mediators in liver injury response, are believed to play a crucial role in the repair process of liver injury. However, in MAFLD patients, the normal metabolic and immunoregulatory mechanisms of HSCs become disrupted, leading to disturbances in the local microenvironment. Abnormally activated HSCs are heavily involved in the initiation and progression of HCC. The metabolic disorders and abnormal activation of HSCs not only initiate liver fibrosis but also contribute to carcinogenesis. In this review, we provide an overview of recent research progress on the relationship between the abnormal metabolism of HSCs and the local immune system in the liver, elucidating the mechanisms of immune imbalance caused by abnormally activated HSCs in MAFLD patients. Based on this understanding, we discuss the potential and challenges of metabolic-based and immunology-based mechanisms in the treatment of MAFLD-related HCC, with a specific focus on the role of HSCs in HCC progression and their potential as targets for anti-cancer therapy. This review aims to enhance researchers' understanding of the importance of HSCs in maintaining normal liver function and highlights the significance of HSCs in the progression of MAFLD-related HCC.
Collapse
Affiliation(s)
- Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Hao Zhang
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China.
| |
Collapse
|
4
|
Suárez J, de Ceglia M, Rodríguez-Pozo M, Vargas A, Santos I, Melgar-Locatelli S, Castro-Zavala A, Castilla-Ortega E, Rodríguez de Fonseca F, Decara J, Rivera P. Inhibition of Adult Neurogenesis in Male Mice after Repeated Exposure to Paracetamol Overdose. Int J Mol Sci 2024; 25:1964. [PMID: 38396643 PMCID: PMC10888347 DOI: 10.3390/ijms25041964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Paracetamol, or acetaminophen (N-acetyl-para-aminophenol, APAP), is an analgesic and antipyretic drug that is commonly used worldwide, implicated in numerous intoxications due to overdose, and causes serious liver damage. APAP can cross the blood-brain barrier and affects brain function in numerous ways, including pain signals, temperature regulation, neuroimmune response, and emotional behavior; however, its effect on adult neurogenesis has not been thoroughly investigated. We analyze, in a mouse model of hepatotoxicity, the effect of APAP overdose (750 mg/kg/day) for 3 and 4 consecutive days and after the cessation of APAP administration for 6 and 15 days on cell proliferation and survival in two relevant neurogenic zones: the subgranular zone of the dentate gyrus and the hypothalamus. The involvement of liver damage (plasma transaminases), neuronal activity (c-Fos), and astroglia (glial fibrillar acidic protein, GFAP) were also evaluated. Our results indicated that repeated APAP overdoses are associated with the inhibition of adult neurogenesis in the context of elevated liver transaminase levels, neuronal hyperactivity, and astrogliosis. These effects were partially reversed after the cessation of APAP administration for 6 and 15 days. In conclusion, these results suggest that APAP overdose impairs adult neurogenesis in the hippocampus and hypothalamus, a fact that may contribute to the effects of APAP on brain function.
Collapse
Affiliation(s)
- Juan Suárez
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain; (J.S.); (M.R.-P.); (I.S.)
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Marialuisa de Ceglia
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Miguel Rodríguez-Pozo
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain; (J.S.); (M.R.-P.); (I.S.)
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Antonio Vargas
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Ignacio Santos
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain; (J.S.); (M.R.-P.); (I.S.)
| | - Sonia Melgar-Locatelli
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Adriana Castro-Zavala
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Estela Castilla-Ortega
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
- Unidad Clínica de Neurología, Hospital Regional Universitario de Málaga, Instituto IBMA-Plataforma BIONAND, 29010 Málaga, Spain
| | - Juan Decara
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| | - Patricia Rivera
- Grupo de Neuropsicofarmacología, Instituto IBIMA-Plataforma BIONAND, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 29010 Málaga, Spain; (M.d.C.); (A.V.); (S.M.-L.); (A.C.-Z.); (E.C.-O.); (F.R.d.F.)
| |
Collapse
|
5
|
Scandiffio R, Bonzano S, Cottone E, Shrestha S, Bossi S, De Marchis S, Maffei ME, Bovolin P. Beta-Caryophyllene Modifies Intracellular Lipid Composition in a Cell Model of Hepatic Steatosis by Acting through CB2 and PPAR Receptors. Int J Mol Sci 2023; 24:ijms24076060. [PMID: 37047034 PMCID: PMC10094507 DOI: 10.3390/ijms24076060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease; however, no specific pharmacological therapy has yet been approved for this condition. Plant-derived extracts can be an important source for the development of new drugs. The aim of this study was to investigate the effects of (E)-β-caryophyllene (BCP), a phytocannabinoid recently found to be beneficial against metabolic diseases, on HepG2 steatotic hepatocytes. Using a fluorescence-based lipid quantification assay and GC-MS analysis, we show that BCP is able to decrease lipid accumulation in steatotic conditions and to change the typical steatotic lipid profile by primarily reducing saturated fatty acids. By employing specific antagonists, we demonstrate that BCP action is mediated by multiple receptors: CB2 cannabinoid receptor, peroxisome proliferator-activated receptor α (PPARα) and γ (PPARγ). Interestingly, BCP was able to counteract the increase in CB2 and the reduction in PPARα receptor expression observed in steatotic conditions. Moreover, through immunofluorescence and confocal microscopy, we demonstrate that CB2 receptors are mainly intracellularly localized and that BCP is internalized in HepG2 cells with a maximum peak at 2 h, suggesting a direct interaction with intracellular receptors. The results obtained with BCP in normal and steatotic hepatocytes encourage future applications in the treatment of NAFLD.
Collapse
Affiliation(s)
- Rosaria Scandiffio
- Cell Biology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Sara Bonzano
- Cell Biology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Erika Cottone
- Cell Biology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Sujata Shrestha
- Cell Biology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Simone Bossi
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Silvia De Marchis
- Cell Biology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Massimo E Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Patrizia Bovolin
- Cell Biology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| |
Collapse
|
6
|
Progress in the treatment of drug-induced liver injury with natural products. Pharmacol Res 2022; 183:106361. [PMID: 35882295 DOI: 10.1016/j.phrs.2022.106361] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
There are numerous prescription drugs and non-prescription drugs that cause drug-induced liver injury (DILI), which is the main cause of liver disease in humans around the globe. Its mechanism becomes clearer as the disease is studied further. For an instance, when acetaminophen (APAP) is taken in excess, it produces N-acetyl-p-benzoquinone imine (NAPQI) that binds to biomacromolecules in the liver causing liver injury. Treatment of DILI with traditional Chinese medicine (TCM) has shown to be effective. For example, activation of the Nrf2 signaling pathway as well as regulation of glutathione (GSH) synthesis, coupling, and excretion are the mechanisms by which ginsenoside Rg1 (Rg1) treats APAP-induced acute liver injury. Nevertheless, reducing the toxicity of TCM in treating DILI is still a problem to be overcome at present and in the future. Accumulated evidences show that hydrogel-based nanocomposite may be an excellent carrier for TCM. Therefore, we reviewed TCM with potential anti-DILI, focusing on the signaling pathway of these drugs' anti-DILI effect, as well as the possibility and prospect of treating DILI by TCM based on hydrogel materials in the future. In conclusion, this review provides new insights to further explore TCM in the treatment of DILI.
Collapse
|
7
|
López-Gambero AJ, Pacheco-Sánchez B, Rosell-Valle C, Medina-Vera D, Navarro JA, Fernández-Arjona MDM, de Ceglia M, Sanjuan C, Simon V, Cota D, Rivera P, Rodríguez de Fonseca F, Suárez J. Dietary administration of D-chiro-inositol attenuates sex-specific metabolic imbalances in the 5xFAD mouse model of Alzheimer's disease. Biomed Pharmacother 2022; 150:112994. [PMID: 35483188 DOI: 10.1016/j.biopha.2022.112994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/02/2022] Open
Abstract
Increasing evidence shows that hypothalamic dysfunction, insulin resistance, and weight loss precede and progress along with the cognitive decline in sporadic Alzheimer's Disease (AD) with sex differences. This study aimed to determine the effect of oral dietary administration of D-Chiro-inositol (DCI), an inositol used against insulin resistance associated with polycystic ovary, on the occurrence of metabolic disorders in the transgenic 5xFAD mouse model of AD (FAD: Family Alzheimer's Disease). DCI was administered from 6 to 10 months of age to male and female 5xFAD mice and control (non-Tg) littermates. Energy balance and multiple metabolic and inflammatory parameters in the hypothalamus, liver and plasma were evaluated to assess the central and peripheral effects of DCI. Results indicated that weight loss and reduced food intake in 5xFAD mice were associated with decreased neuropeptides controlling food intake and the appearance of a pro-inflammatory state in the hypothalamus. Oral administration of DCI partially restored energy balance and hypothalamic parameters, highlighting an increased expression of Npy and Agrp and female-specific downregulation of Gfap and Igf1. DCI also partially normalized impaired insulin signaling and circulating insulin, GLP-1, and GIP deficiencies in 5xFAD mice. Principal component analysis of metabolic parameters indicated the presence of a female-specific fatty liver in 5xFAD mice: DCI administration reversed hepatic fat accumulation, β-oxidation, inflammation and increased GOT and GPT levels. Our study depicts that metabolic impairment along with the cognitive decline in a mouse model of AD, which is exacerbated in females, can be ameliorated by oral supplementation with insulin-sensitizing DCI.
Collapse
Affiliation(s)
- Antonio J López-Gambero
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; Universidad de Málaga, Andalucia Tech, Departamento de Biología Celular, Genética y Fisiología, Campus de Teatinos s/n, 29071 Málaga, Spain.
| | | | | | - Dina Medina-Vera
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; Universidad de Málaga, Andalucia Tech, Departamento de Biología Celular, Genética y Fisiología, Campus de Teatinos s/n, 29071 Málaga, Spain; Universidad de Málaga, Andalucia Tech, Facultad de Medicina, Campus de Teatinos s/n, 29071 Málaga, Spain; UGC Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain.
| | - Juan Antonio Navarro
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain; Universidad de Málaga, Andalucia Tech, Facultad de Medicina, Campus de Teatinos s/n, 29071 Málaga, Spain.
| | - María Del Mar Fernández-Arjona
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain.
| | - Marialuisa de Ceglia
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain.
| | - Carlos Sanjuan
- EURONUTRA S.L, Parque Tecnológico de Andalucía, Campanillas, 29590, Spain.
| | - Vincent Simon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France.
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France.
| | - Patricia Rivera
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain.
| | - Fernando Rodríguez de Fonseca
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain.
| | - Juan Suárez
- Instituto de investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain; Universidad de Málaga, Andalucia Tech, Facultad de Medicina, Campus de Teatinos s/n, 29071 Málaga, Spain; Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, 29071 Málaga, Spain.
| |
Collapse
|
8
|
Hao R, Ge J, Li F, Jiang Y, Sun-Waterhouse D, Li D. MiR-34a-5p/Sirt1 axis: A novel pathway for puerarin-mediated hepatoprotection against benzo(a)pyrene. Free Radic Biol Med 2022; 186:53-65. [PMID: 35561843 DOI: 10.1016/j.freeradbiomed.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
Benzo[a]pyrene (BaP) as a carcinogen induces oxidative stress and inflammation, causing health problems including liver damage. Puerarin (a natural flavonoid) is traditionally used to provide hepatoprotective effects. This research was established to meet the rising demand for effective therapies/treatments against hepatic diseases and investigate the mechanism underlying the protective actions of puerarin against BaP-induced liver damage. In mice, puerarin combated effectively the detrimental changes in liver weight, color and function indices caused by BaP. In HepG2 cells, puerarin alleviated BaP-induced cell death, oxidative stress and inflammation, and such effects were positively correlated with puerarin's concentration (12.5-50 μM). Mechanistic studies revealed that BaP induced low Sirt1 expression and high miR-34a-5p expression, and puerarin treatment alleviated these changes. Oxidative stress and inflammation induced by BaP were almost eliminated when miR-34a-5p was silenced. Inhibiting miR-34a-5p or overexpressing Sirt1 had a similar effect to puerain treatment. Overexpression of miR-34a-5p and inhibition of Sirt1 reduced the protective effect of puerarin. Collectively, miR-34a-5p participates in the regulation of puerarin's protective function against BaP-induced injury through targeting Sirt1. There is a novel pathway for suppressing oxidative stress and inflammation via miR-34a-5p/Sirt1 axis in puerarin-mediated hepatoprotection, which opens up a new avenue for alternative therapies.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Junlin Ge
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China.
| |
Collapse
|
9
|
Yang J, Wu M, Fang H, Su Y, Zhang L, Zhou H. Puerarin Prevents Acute Liver Injury via Inhibiting Inflammatory Responses and ZEB2 Expression. Front Pharmacol 2021; 12:727916. [PMID: 34421621 PMCID: PMC8378253 DOI: 10.3389/fphar.2021.727916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/26/2021] [Indexed: 01/02/2023] Open
Abstract
Puerarin, an isoflavone component extracted from herb radix puerariae, is widely used in China in the treatment of immune diseases and inflammation. Previous studies have demonstrated that puerarin prevented acute lung injury by regulating inflammatory responses. However, the effect of puerarin on acute liver injury (ALI) was unclear. The purpose of this study was to explore the beneficial effects of puerarin when applied to ALI. We found that puerarin inhibited liver injury and inflammatory cell infiltration in lipopolysaccharide (LPS)/D-galactose (D-Gal)-induced acute liver failure and the liver pro-inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) in liver tissues with ALI and LPS-induced L-02 cells but upregulated the expression level of zinc finger E-box-binding homeobox 2 (ZEB2). Significantly, the results of this study showed that the inhibition of liver pro-inflammatory cytokine (IL-1β, IL-6, and TNF-α) production in LPS-induced L-02 cells was caused by ZEB2 overexpression. However, knocking down ZEB2 promoted LPS-mediated secretion of liver pro-inflammatory cytokines in L-02 cells. Additional experiments showed that puerarin inhibited the activation of the NF-κB signaling pathway by elevating ZEB2 expression in L-02 cells. In summary, puerarin most likely prevented activation of the pro-inflammatory factors and reduced LPS/D-Gal-induced liver injury by enhancing the ZEB2 expression level and, consequently, blocking activation of the NF-κB signaling pathway in the liver.
Collapse
Affiliation(s)
- Junfa Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China
| | - Maomao Wu
- Department of Pharmacy, Anhui Chest Hospital, Hefei, China
| | - Hui Fang
- Hangzhou Normal University Affiliated Hospital, Hangzhou, China
| | - Yue Su
- Institute of Clinical Trial, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Huan Zhou
- School of Public Basic, Bengbu Medical College, Bengbu, China
| |
Collapse
|
10
|
Hashiesh HM, Sharma C, Goyal SN, Jha NK, Ojha S. Pharmacological Properties, Therapeutic Potential and Molecular Mechanisms of JWH133, a CB2 Receptor-Selective Agonist. Front Pharmacol 2021; 12:702675. [PMID: 34393784 PMCID: PMC8363263 DOI: 10.3389/fphar.2021.702675] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system has attracted attention as a pharmacological target for several pathological conditions. Cannabinoid (CB2)-selective agonists have been the focus of pharmacological studies because modulation of the CB2 receptor (CB2R) can be useful in the treatment of pain, inflammation, arthritis, addiction, and cancer among other possible therapeutic applications while circumventing CNS-related adverse effects. Increasing number of evidences from different independent preclinical studies have suggested new perspectives on the involvement of CB2R signaling in inflammation, infection and immunity, thus play important role in cancer, cardiovascular, renal, hepatic and metabolic diseases. JWH133 is a synthetic agonist with high CB2R selectivity and showed to exert CB2R mediated antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, and immunomodulatory activities. Cumulative evidences suggest that JWH133 protects against hepatic injury, renal injury, cardiotoxicity, fibrosis, rheumatoid arthritis, and cancer as well as against oxidative damage and inflammation, inhibits fibrosis and apoptosis, and acts as an immunosuppressant. This review provides a comprehensive overview of the polypharmacological properties and therapeutic potential of JWH133. This review also presents molecular mechanism and signaling pathways of JWH133 under various pathological conditions except neurological diseases. Based on the available data, this review proposes the possibilities of developing JWH133 as a promising therapeutic agent; however, further safety and toxicity studies in preclinical studies and clinical trials in humans are warranted.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Yang J, Xu L, Wu M, Fang H, Lu Y, Shi C, Wang Y, Jiang S, Ma Q, Li Z, Zhang L, Zhang L. Paeonol derivative-6 attenuates inflammation by activating ZEB2 in acute liver injury. Int Immunopharmacol 2021; 91:107235. [PMID: 33326919 DOI: 10.1016/j.intimp.2020.107235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Paeonol is a natural phenolic compound and isolated as an active ingredient from Moutan Cortex. Paeonol derivative-6 (DPF-6) is a derivative of paeonol improved in water solubility and bioavailability. Previous studies have reported that paeonol possesses a variety of pharmacological activities, such as antioxidant and anti-inflammatory properties. Moreover, we have previously verified that DPF-6 has anti-inflammatory effects. However, the role and fundamental mechanism of DPF-6 in acute liver injury (ALI) was still unclear. In this study, we indicated that DPF-6 inhibited inflammation and the expression of TNF-α, IL-6 and IL-1β in liver tissues and LPS-mediated L-02 cells, concomitant with the upregulated expression of ZEB2. More importantly, it was demonstrated that overexpression of ZEB2 inhibited the expression level of TNF-α, IL-6 and IL-1β in LPS-mediated L-02 cells. In contrast, knockdown of ZEB2 increased the expression level of TNF-α, IL-6 and IL-1β in LPS-mediated L-02 cells. Further studies showed that ZEB2 inhibited the inflammation cytokine secretion via JNK signaling pathway in L-02 cells. Taken together, all the above results indicate that DPF-6 increased the expression of ZEB2, consequently inhibited inflammation cytokine secretion through JNK signaling pathway, which may be utilized as a potential anti-inflammation monomeric compound in the treatment of ALI.
Collapse
Affiliation(s)
- Junfa Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Lei Xu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Meifei Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Hui Fang
- Hangzhou Normal University Affiliated Hospital, Hangzhou 310015, China
| | - Yuchen Lu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | | | - Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Shaowei Jiang
- The First Affiliated Hospital of Anhui Medical Unversity, Hefei, China
| | - Qiang Ma
- The Second Hosipital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zeng Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
12
|
Sepulveda-Crespo D, Resino S, Martinez I. Strategies Targeting the Innate Immune Response for the Treatment of Hepatitis C Virus-Associated Liver Fibrosis. Drugs 2021; 81:419-443. [PMID: 33400242 DOI: 10.1007/s40265-020-01458-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Direct-acting antivirals eliminate hepatitis C virus (HCV) in more than 95% of treated individuals and may abolish liver injury, arrest fibrogenesis, and reverse fibrosis and cirrhosis. However, liver regeneration is usually a slow process that is less effective in the late stages of fibrosis. What is more, fibrogenesis may prevail in patients with advanced cirrhosis, where it can progress to liver failure and hepatocellular carcinoma. Therefore, the development of antifibrotic drugs that halt and reverse fibrosis progression is urgently needed. Fibrosis occurs due to the repair process of damaged hepatic tissue, which eventually leads to scarring. The innate immune response against HCV is essential in the initiation and progression of liver fibrosis. HCV-infected hepatocytes and liver macrophages secrete proinflammatory cytokines and chemokines that promote the activation and differentiation of hepatic stellate cells (HSCs) to myofibroblasts that produce extracellular matrix (ECM) components. Prolonged ECM production by myofibroblasts due to chronic inflammation is essential to the development of fibrosis. While no antifibrotic therapy is approved to date, several drugs are being tested in phase 2 and phase 3 trials with promising results. This review discusses current state-of-the-art knowledge on treatments targeting the innate immune system to revert chronic hepatitis C-associated liver fibrosis. Agents that cause liver damage may vary (alcohol, virus infection, etc.), but fibrosis progression shows common patterns among them, including chronic inflammation and immune dysregulation, hepatocyte injury, HSC activation, and excessive ECM deposition. Therefore, mechanisms underlying these processes are promising targets for general antifibrotic therapies.
Collapse
Affiliation(s)
- Daniel Sepulveda-Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| | - Isidoro Martinez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
13
|
Wang Y, Yu Z, Xiao W, Lu S, Zhang J. Allosteric binding sites at the receptor-lipid bilayer interface: novel targets for GPCR drug discovery. Drug Discov Today 2020; 26:690-703. [PMID: 33301977 DOI: 10.1016/j.drudis.2020.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023]
Abstract
As a superfamily of membrane receptors, G-protein-coupled receptors (GPCRs) have significant roles in human physiological processes, including cell proliferation, metabolism, and neuromodulation. GPCRs are vital targets of therapeutic drugs, and their allosteric regulation represents a novel direction for drug discovery. Given the numerous breakthroughs in structural biology, diverse allosteric sites on GPCRs have been identified within the extracellular and intracellular loops, and the seven core transmembrane helices. However, a unique type of allosteric site has also been discovered at the interface of the receptor-lipid bilayer, similar to the β2-adrenergic receptor. Here, we review recent identifications of these allosteric sites and the detailed modulator-target interactions within the interface for each modulator to highlight the role of lipids in GPCR allosteric drug discovery.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Zhengtian Yu
- Nutshell Biotechnology Co., Ltd., Shanghai, China
| | - Wen Xiao
- Nutshell Biotechnology Co., Ltd., Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
14
|
Exacerbated LPS/GalN-Induced Liver Injury in the Stress-Sensitive Wistar Kyoto Rat Is Associated with Changes in the Endocannabinoid System. Molecules 2020; 25:molecules25173834. [PMID: 32842550 PMCID: PMC7504576 DOI: 10.3390/molecules25173834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
Acute liver injury (ALI) is a highly destructive and potentially life-threatening condition, exacerbated by physical and psychological stress. The endocannabinoid system plays a key role in modulating stress and hepatic function. The aim of this study was to examine the development of acute liver injury in the genetically susceptible stress-sensitive Wistar-Kyoto (WKY) rat compared with normo-stress-sensitive Sprague Dawley (SD) rats, and associated changes in the endocannabinoid system. Administration of the hepatotoxin lipopolysaccharide/D-Galactosamine (LPS/GalN) resulted in marked liver injury in WKY, but not SD rats, with increased alanine aminotransferase (ALT), aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH) plasma levels, significant histopathological changes, increased hepatic pro-inflammatory cytokine expression and caspase-3 activity and expression and reduced Glutathione (GSH) activity. Furthermore, compared to SD controls, WKY rats display increased anandamide and 2-Arachidonoylglycerol levels concurrent with decreased expression of their metabolic enzymes and a decrease in cannabinoid (CB)1 receptor expression following LPS/GalN. CB1 antagonism with AM6545 or CB2 agonism with JWH133 did not alter LPS/GalN-induced liver injury in SD or WKY rats. These findings demonstrate exacerbation of acute liver injury induced by LPS/GalN in a stress-sensitive rat strain, with effects associated with alterations in the hepatic endocannabinoid system. Further studies are required to determine if the endocannabinoid system mediates or modulates the exacerbation of liver injury in this stress-sensitive rat strain.
Collapse
|
15
|
Rivera P, Vargas A, Pastor A, Boronat A, López-Gambero AJ, Sánchez-Marín L, Medina-Vera D, Serrano A, Pavón FJ, de la Torre R, Agirregoitia E, Lucena MI, Rodríguez de Fonseca F, Decara J, Suárez J. Differential hepatoprotective role of the cannabinoid CB 1 and CB 2 receptors in paracetamol-induced liver injury. Br J Pharmacol 2020; 177:3309-3326. [PMID: 32167157 DOI: 10.1111/bph.15051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Protective mechanisms of the endogenous cannabinoid system against drug-induced liver injury (DILI) are actively being investigated regarding the differential regulatory role of the cannabinoid CB1 and CB2 receptors in liver fibrogenesis and inflammation. EXPERIMENTAL APPROACH The 2-arachidonoylglycerol (2-AG)-related signalling receptors and enzymatic machinery, and inflammatory/fibrogenic factors were investigated in the liver of a mouse model of hepatotoxicity induced by acute and repeated overdoses (750 mg·kg-1 ·day-1 ) of paracetamol (acetaminophen), previously treated with selective CB1 (ACEA) and CB2 (JWH015) agonists (10 mg·kg-1 ), or lacking CB1 and CB2 receptors. KEY RESULTS Acute paracetamol increased the expression of CB2 , ABHD6 and COX-2, while repeated paracetamol increased that of CB1 and COX-2 and decreased that of DAGLβ. Both acute paracetamol and repeated paracetamol decreased the liver content of acylglycerols (2-AG, 2-LG and 2-OG). Human liver samples from a patient suffering APAP hepatotoxicity confirmed CB1 and CB2 increments. Acute paracetamol-exposed CB2 KO mice had higher expression of the fibrogenic αSMA and the cytokine IL-6 and lower apoptotic cleaved caspase 3. CB1 deficiency enhanced the repeated APAP-induced increases in αSMA and cleaved caspase 3 and blocked those of CYP2E1, TNF-α, the chemokine CCL2 and the circulating γ-glutamyltransferase (γGT). Although JWH015 reduced the expression of αSMA and TNF-α in acute paracetamol, ACEA increased the expression of cleaved caspase 3 and CCL2 in repeated paracetamol. CONCLUSION AND IMPLICATIONS The differential role of CB1 versus CB2 receptors on inflammatory/fibrogenic factors related to paracetamol-induced hepatotoxicity should be considered for designing alternative therapies against DILI.
Collapse
Affiliation(s)
- Patricia Rivera
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Biomédica la Princesa, Madrid, Spain.,UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Antonio Vargas
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Antoni Pastor
- Farmacología Integrada y Neurociencia de Sistemas, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Anna Boronat
- Farmacología Integrada y Neurociencia de Sistemas, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Antonio Jesús López-Gambero
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Laura Sánchez-Marín
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Dina Medina-Vera
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.,UGC Corazón, Hospital Universitario Virgen de la Victoria, IBIMA, Universidad de Málaga, Málaga, Spain
| | - Rafael de la Torre
- Farmacología Integrada y Neurociencia de Sistemas, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain
| | - María Isabel Lucena
- Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, IBIMA, Universidad de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| |
Collapse
|