1
|
Zhao S, Huang S, Zhong Q, Han L, Wang Y, Xu F, Ma L, Ding Y, Xia L, Chen X. Study of the Association of Single Nucleotide Polymorphisms in Candidate Genes With Sevoflurane. J Clin Pharmacol 2023; 63:91-104. [PMID: 35943164 DOI: 10.1002/jcph.2138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 01/07/2023]
Abstract
The susceptibility of different individuals to anesthetics varies widely, and sevoflurane is no exception. We hypothesized that polymorphisms in genes involved in pharmacokinetics and pharmacodynamics may explain this variation. A total of 151 individuals undergoing otorhinolaryngology surgery were included. The influence of genetic polymorphisms on sevoflurane sensitivity were investigated through SNaPshot technology. Individuals carrying KCNK2 rs6686529 G > C, MTRR rs3733784 TT, rs2307116 GG, or rs1801394 AA polymorphisms had a higher sensitivity to the sedative effect of sevoflurane than those without those polymorphisms. The univariate linear regression analysis indicated that MTRR rs3733784 TT, rs2307116 GG, and rs1801394 AA were potentially significant predictors of higher sensitivity to the sedative effect of sevoflurane. Moreover, CYP2E1 rs3813867 G > C and rs2031920 C > T, GABRG1 rs279858 T > C, KCNK3 rs1275988 CC, GRIN2B rs1806201 GG, MTRR rs2307116 G > A, and rs1801394 A > G were associated with a higher sensitivity to the cardiovascular effect of sevoflurane. Our results suggested that 9 single nucleotide polymorphisms in genes involved in metabolizing enzymes, transport proteins, target proteins of sevoflurane and folate metabolism may help to explain individual differences in the susceptibility to the sedative or cardiovascular effect of sevoflurane.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leiming Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Dong C, Li J, Ding W, Ueda R, Xie X, Wu J, Matsuura H, Horie M. Open channel block of Kv1.5 channels by HMQ1611. Front Pharmacol 2022; 13:965086. [PMID: 36188606 PMCID: PMC9524145 DOI: 10.3389/fphar.2022.965086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Kv1.5 channels conduct the ultra-rapid delayed rectifier potassium current (IKur). Pharmacological blockade of human Kv1.5 (hKv1.5) has been regarded as an effective treatment of re-entrant based atrial fibrillation, because Kv1.5 is highly expressed in human cardiac atria but scarcely in ventricles. The Kv1.5 blockade is also expected to be used in cancer therapeutics since Kv1.5 is overexpressed in some types of human tumors. Here, we investigated the blockade of hKv1.5 channels by HMQ1611, a symmetrical biphenyl derivative. hKv1.5 channels were heterologously expressed in Chinese hamster ovary cells. The effects of HMQ1611 on wild-type and 13 hKv1.5 mutant channels were examined using the whole-cell patch-clamp method, and molecular docking simulation was conducted to predict the docking position of HMQ1611 within Kv1.5 channels. We showed that HMQ1611 reversibly inhibited the hKv1.5 current in a concentration-dependent manner (IC50 = 2.07 μM). HMQ1611 blockade of hKv1.5 current developed with time during depolarizing voltage-clamp steps, and this blockade was also voltage-dependent with a steep increase over the voltage range for channel openings. HMQ1611 inhibition was significantly reduced in the T479A, T480A, V505A, I508A, L510A, V512A, and V516A hKv1.5 mutant channels. Molecular docking analysis predicted that V505, V512, and T480 were involved in the blocking action of HMQ1611 on hKv1.5 channels. These results suggest that HMQ1611 inhibits hKv1.5 currents as an open channel blocker. Amino acid residues located at the base of the selectivity filter (T479 and T480) and in the S6 segment (V505, I508, L510, V512, and V516) of hKv1.5 appear to constitute potential binding sites for HMQ1611.
Collapse
Affiliation(s)
- Chao Dong
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jiawei Li
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
| | - Weiguang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Rika Ueda
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Xiaolu Xie
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jie Wu
- Department of Pharmacology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
- *Correspondence: Jie Wu,
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
3
|
Wang CM, Chen WC, Zhang Y, Lin S, He HF. Update on the Mechanism and Treatment of Sevoflurane-Induced Postoperative Cognitive Dysfunction. Front Aging Neurosci 2021; 13:702231. [PMID: 34305576 PMCID: PMC8296910 DOI: 10.3389/fnagi.2021.702231] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Sevoflurane is one of the most widely used anesthetics for the induction and maintenance of general anesthesia in surgical patients. Sevoflurane treatment may increase the incidence of postoperative cognitive dysfunction (POCD), and patients with POCD exhibit lower cognitive abilities than before the operation. POCD affects the lives of patients and places an additional burden on patients and their families. Understanding the mechanism of sevoflurane-induced POCD may improve prevention and treatment of POCD. In this paper, we review the diagnosis of POCD, introduce animal models of POCD in clinical research, analyze the possible mechanisms of sevoflurane-induced POCD, and summarize advances in treatment for this condition.
Collapse
Affiliation(s)
- Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| |
Collapse
|
4
|
Sevoflurane excites nociceptive sensory neurons by inhibiting K + conductances in rats. Neurosci Lett 2021; 756:135951. [PMID: 33984431 DOI: 10.1016/j.neulet.2021.135951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
Sevoflurane, which is preferentially used as a day-case anesthetic based on its low blood solubility, acts on the central nervous system and exerts analgesic effects. However, it still remains unknown whether sevoflurane affects the excitability of nociceptive sensory neurons. Therefore, we conducted this study to examine the effects of sevoflurane on the excitability of small-sized dorsal root ganglion (DRG) neurons of rats using the whole-cell patch-clamp technique. In a voltage-clamp condition, sevoflurane elicited the membrane current in a concentration-dependent manner, in which the reversal potential was similar to the equilibrium potential of K+. In a current-clamp condition, sevoflurane directly depolarized the membrane potentials in a concentration-dependent manner. Moreover, at a clinically relevant concentration, sevoflurane decreased the threshold for action potential generation. These findings suggest that sevoflurane acts on the leak K+ channels to increase the excitability of DRG neurons. Sevoflurane increased the half-width of single action potentials, which resulted from the inhibition of voltage-gated K+ currents, including the fast inactivating A-type and non-inactivating delayed rectifier K+ currents. Our study indicates that sevoflurane could exhibit pronociceptive effects on nociceptive sensory neurons by inhibiting K+ conductances.
Collapse
|
5
|
Fukushima Y, Kojima A, Mi X, Ding WG, Kitagawa H, Matsuura H. Open-channel blocking action of volatile anaesthetics desflurane and sevoflurane on human voltage-gated K v 1.5 channel. Br J Pharmacol 2020; 177:3811-3827. [PMID: 32436224 DOI: 10.1111/bph.15105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Volatile anaesthetics have been shown to differentially modulate mammalian Shaker-related voltage-gated potassium (Kv 1.x) channels. This study was designed to investigate molecular and cellular mechanisms underlying the modulatory effects of desflurane or sevoflurane on human Kv 1.5 (hKv 1.5) channels. EXPERIMENTAL APPROACH Thirteen single-point mutations were constructed within pore domain of hKv 1.5 channel using site-directed mutagenesis. The effects of desflurane or sevoflurane on heterologously expressed wild-type and mutant hKv 1.5 channels were examined by whole-cell patch-clamp technique. A computer simulation was conducted to predict the docking pose of desflurane or sevoflurane within hKv 1.5 channel. KEY RESULTS Both desflurane and sevoflurane increased hKv 1.5 current at mild depolarizations but decreased it at strong depolarizations, indicating that these anaesthetics produce both stimulatory and inhibitory actions on hKv 1.5 channels. The inhibitory effect of desflurane or sevoflurane on hKv 1.5 channels arose primarily from its open-channel blocking action. The inhibitory action of desflurane or sevoflurane on hKv 1.5 channels was significantly attenuated in T480A, V505A, and I508A mutant channels, compared with wild-type channel. Computational docking simulation predicted that desflurane or sevoflurane resides within the inner cavity of channel pore and has contact with Thr479, Thr480, Val505, and Ile508. CONCLUSION AND IMPLICATIONS Desflurane and sevoflurane exert an open-channel blocking action on hKv 1.5 channels by functionally interacting with specific amino acids located within the channel pore. This study thus identifies a novel molecular basis mediating inhibitory modulation of hKv 1.5 channels by desflurane and sevoflurane.
Collapse
Affiliation(s)
- Yutaka Fukushima
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan.,Department of Anesthesiology, Shiga University of Medical Science, Otsu, Japan
| | - Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Japan
| | - Xinya Mi
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Hirotoshi Kitagawa
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|