1
|
Yashiro K, Iwaki Y, Urata H, Kokubo M, Mori T, Sekioka Y, Isami K, Kato J, Wieting J, McGowan KM, Bridges TM, Boutaud O, Engers DW, Denton JS, Kurata H, Lindsley CW. Discovery of ONO-2920632 (VU6011887): A Highly Selective and CNS Penetrant TREK-2 (TWIK-Related K+ Channel 2) Preferring Activator In Vivo Tool Compound. ACS Chem Neurosci 2025; 16:960-967. [PMID: 39981749 PMCID: PMC11887051 DOI: 10.1021/acschemneuro.5c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Herein we describe our initial work on the K2P family of potassium ion channels with the chemical optimization and characterization of a novel series of TWIK-Related K+ Channel (TREK)-1/2 dual activators and TREK-2 preferring activators derived from a high-throughput screening hit. The exercise provided TREK activators with good CNS penetration and others with low CNS exposure to enable exploration of both central and peripheral TREK activation. From this, ONO-2920632 (VU6011887 = 19b) emerged as a reasonably potent (human Tl+; TREK-1 EC50 = 2.8 μM (95% Emax), TREK-2 EC50 = 0.30 μM (184% Emax)), first-generation CNS penetrant (rat Kp = 0.37) in vivo tool compound with selectivity versus the other K2P channels (>91-fold selective vs TASK1, TASK2, TASK3, TRAAK, TWIK2, and 31-fold selective vs TRESK) and no significant activity in a large ancillary pharmacology panel. ONO-2920632 (VU6011887) displayed robust, dose dependent efficacy when dosed orally in a mouse pain model (acetic acid writhing assay), where it was equipotent at 3 mg/kg to the assay standard indomethacin at 10 mg/kg. The therapeutic potential of TREK channel activation has long been hampered by a lack of selective, small molecule tools, and this work provides a variety of in vivo tool compounds for the community.
Collapse
Affiliation(s)
- Kentaro Yashiro
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Yuzo Iwaki
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Hirohito Urata
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Masaya Kokubo
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Takahiro Mori
- Research
Center of Neurology, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Yoko Sekioka
- Research
Center of Neurology, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Koichi Isami
- Research
Center of Neurology, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Junya Kato
- Pharmacokinetic
Research, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Joshua Wieting
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Kevin M. McGowan
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Darren W. Engers
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jerod S. Denton
- Department
of Anesthesiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Haruto Kurata
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville Tennessee 37232, United States
| |
Collapse
|
2
|
Delanne-Cuménal M, Lamoine S, Meleine M, Aissouni Y, Prival L, Fereyrolles M, Barbier J, Cercy C, Boudieu L, Schopp J, Lazdunski M, Eschalier A, Lolignier S, Busserolles J. The TREK-1 potassium channel is involved in both the analgesic and anti-proliferative effects of riluzole in bone cancer pain. Biomed Pharmacother 2024; 176:116887. [PMID: 38852511 DOI: 10.1016/j.biopha.2024.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The metastasis of tumors into bone tissue typically leads to intractable pain that is both very disabling and particularly difficult to manage. We investigated here whether riluzole could have beneficial effects for the treatment of prostate cancer-induced bone pain and how it could influence the development of bone metastasis. METHODS We used a bone pain model induced by intratibial injection of human PC3 prostate cancer cells into male SCID mice treated or not with riluzole administered in drinking water. We also used riluzole in vitro to assess its possible effect on PC3 cell viability and functionality, using patch-clamp. RESULTS Riluzole had a significant preventive effect on both evoked and spontaneous pain involving the TREK-1 potassium channel. Riluzole did not interfere with PC3-induced bone loss or bone remodeling in vivo. It also significantly decreased PC3 cell viability in vitro. The antiproliferative effect of riluzole is correlated with a TREK-1-dependent membrane hyperpolarization in these cells. CONCLUSION The present data suggest that riluzole could be very useful to manage evoked and spontaneous hypersensitivity in cancer-induced bone pain and has no significant adverse effect on cancer progression.
Collapse
Affiliation(s)
- Mélissa Delanne-Cuménal
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Sylvain Lamoine
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Mathieu Meleine
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Youssef Aissouni
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Laetitia Prival
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Mathilde Fereyrolles
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Julie Barbier
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Christine Cercy
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Ludivine Boudieu
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Julien Schopp
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Michel Lazdunski
- Université de Nice Sophia Antipolis, Valbonne 06560, France; CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 Route des Lucioles Sophia Antipolis, Valbonne 06560, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France; Institut Analgesia, Faculté de Médecine, BP38, Clermont-Ferrand 63001, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Jérôme Busserolles
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France.
| |
Collapse
|
3
|
Rödström KEJ, Cloake A, Sörmann J, Baronina A, Smith KHM, Pike ACW, Ang J, Proks P, Schewe M, Holland-Kaye I, Bushell SR, Elliott J, Pardon E, Baukrowitz T, Owens RJ, Newstead S, Steyaert J, Carpenter EP, Tucker SJ. Extracellular modulation of TREK-2 activity with nanobodies provides insight into the mechanisms of K2P channel regulation. Nat Commun 2024; 15:4173. [PMID: 38755204 PMCID: PMC11099193 DOI: 10.1038/s41467-024-48536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Potassium channels of the Two-Pore Domain (K2P) subfamily, KCNK1-KCNK18, play crucial roles in controlling the electrical activity of many different cell types and represent attractive therapeutic targets. However, the identification of highly selective small molecule drugs against these channels has been challenging due to the high degree of structural and functional conservation that exists not only between K2P channels, but across the whole K+ channel superfamily. To address the issue of selectivity, here we generate camelid antibody fragments (nanobodies) against the TREK-2 (KCNK10) K2P K+ channel and identify selective binders including several that directly modulate channel activity. X-ray crystallography and CryoEM data of these nanobodies in complex with TREK-2 also reveal insights into their mechanisms of activation and inhibition via binding to the extracellular loops and Cap domain, as well as their suitability for immunodetection. These structures facilitate design of a biparatropic inhibitory nanobody with markedly improved sensitivity. Together, these results provide important insights into TREK channel gating and provide an alternative, more selective approach to modulation of K2P channel activity via their extracellular domains.
Collapse
Affiliation(s)
- Karin E J Rödström
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alexander Cloake
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Janina Sörmann
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Agnese Baronina
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kathryn H M Smith
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ashley C W Pike
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Jackie Ang
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Peter Proks
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Marcus Schewe
- Institute of Physiology, Medical Faculty, Kiel University, Kiel, Germany
| | | | - Simon R Bushell
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Jenna Elliott
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Thomas Baukrowitz
- Institute of Physiology, Medical Faculty, Kiel University, Kiel, Germany
| | - Raymond J Owens
- The Rosalind Franklin Institute, Harwell Campus, Didcot, UK
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Simon Newstead
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Elisabeth P Carpenter
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK.
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Derre A, Soler N, Billoux V, Benizri S, Vialet B, Rivat C, Barthélémy P, Carroll P, Pattyn A, Venteo S. FXYD2 antisense oligonucleotide provides an efficient approach for long-lasting relief of chronic peripheral pain. JCI Insight 2023; 8:161246. [PMID: 37154155 DOI: 10.1172/jci.insight.161246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Chronic pain, whether of inflammatory or neuropathic origin, affects about 18% of the population of developed countries, and most current treatments are only moderately effective and/or cause serious side effects. Therefore, the development of novel therapeutic approaches still represents a major challenge. The Na,K-ATPase modulator FXYD2 is critically required for the maintenance of neuropathic pain in rodents. Here, we set up a therapeutic protocol based on the use of chemically modified antisense oligonucleotides (ASOs) to inhibit FXYD2 expression and treat chronic pain. We identified an ASO targeting a 20-nucleotide stretch in the FXYD2 mRNA that is evolutionarily conserved between rats and humans and is a potent inhibitor of FXYD2 expression. We used this sequence to synthesize lipid-modified forms of ASO (FXYD2-LASO) to facilitate their entry into dorsal root ganglia neurons. We established that intrathecal or intravenous injections of FXYD2-LASO in rat models of neuropathic or inflammatory pain led to a virtually complete alleviation of their pain symptoms, without causing obvious side effects. Remarkably, by using 2'-O-2-methoxyethyl chemical stabilization of the ASO (FXYD2-LASO-Gapmer), we could significantly prolong the therapeutic action of a single treatment up to 10 days. This study establishes FXYD2-LASO-Gapmer administration as a promising and efficient therapeutic strategy for long-lasting relief of chronic pain conditions in human patients.
Collapse
Affiliation(s)
- Alexandre Derre
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Noelian Soler
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Valentine Billoux
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Sebastien Benizri
- ARNA Laboratory, University of Bordeaux, INSERM U1212, UMR CNRS 5320, Bordeaux, France
| | - Brune Vialet
- ARNA Laboratory, University of Bordeaux, INSERM U1212, UMR CNRS 5320, Bordeaux, France
| | - Cyril Rivat
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Philippe Barthélémy
- ARNA Laboratory, University of Bordeaux, INSERM U1212, UMR CNRS 5320, Bordeaux, France
| | - Patrick Carroll
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Alexandre Pattyn
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Stephanie Venteo
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
5
|
Benarroch E. What Is the Role of 2-Pore Domain Potassium Channels (K2P) in Pain? Neurology 2022; 99:516-521. [PMID: 36123135 DOI: 10.1212/wnl.0000000000201197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022] Open
|
6
|
Panasawatwong A, Pipatpolkai T, Tucker SJ. Transition between conformational states of the TREK-1 K2P channel promoted by interaction with PIP 2. Biophys J 2022; 121:2380-2388. [PMID: 35596528 DOI: 10.1016/j.bpj.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Members of the TREK family of two-pore domain (K2P) potassium channels are highly sensitive to regulation by membrane lipids, including phosphatidylinositol-4,5-bisphosphate (PIP2). Previous studies have demonstrated that PIP2 increases TREK1 channel activity, however, the mechanistic understanding of the conformational transitions induced by PIP2 remain unclear. Here, we used coarse-grained molecular dynamics (CG-MD) and atomistic MD simulations to model the PIP2 binding site on both the up and down state conformations of TREK-1. We also calculated the free energy of PIP2 binding relative to other anionic phospholipids in both conformational states using potential of mean force (PMF) and free energy perturbation (FEP) calculations. Our results identify state-dependent binding of PIP2 to sites involving the proximal C-terminus and we show that PIP2 promotes a conformational transition from a down state towards an intermediate that resembles the up state. These results are consistent with functional data for PIP2 regulation and together provide evidence for a structural mechanism of TREK-1 channel activation by phosphoinositides.
Collapse
Affiliation(s)
| | - Tanadet Pipatpolkai
- Department of Physiology Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, U.K.; Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, U.K..
| | - Stephen J Tucker
- Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, U.K.; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, U.K.; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K..
| |
Collapse
|
7
|
Regulation of Two-Pore-Domain Potassium TREK Channels and their Involvement in Pain Perception and Migraine. Neurosci Lett 2022; 773:136494. [DOI: 10.1016/j.neulet.2022.136494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
|
8
|
Cunningham KP, Clapp LH, Mathie A, Veale EL. The Prostacyclin Analogue, Treprostinil, Used in the Treatment of Pulmonary Arterial Hypertension, is a Potent Antagonist of TREK-1 and TREK-2 Potassium Channels. Front Pharmacol 2021; 12:705421. [PMID: 34267666 PMCID: PMC8276018 DOI: 10.3389/fphar.2021.705421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an aggressive vascular remodeling disease that carries a high morbidity and mortality rate. Treprostinil (Remodulin) is a stable prostacyclin analogue with potent vasodilatory and anti-proliferative activity, approved by the FDA and WHO as a treatment for PAH. A limitation of this therapy is the severe subcutaneous site pain and other forms of pain experienced by some patients, which can lead to significant non-compliance. TWIK-related potassium channels (TREK-1 and TREK-2) are highly expressed in sensory neurons, where they play a role in regulating sensory neuron excitability. Downregulation, inhibition or mutation of these channels leads to enhanced pain sensitivity. Using whole-cell patch-clamp electrophysiological recordings, we show, for the first time, that treprostinil is a potent antagonist of human TREK-1 and TREK-2 channels but not of TASK-1 channels. An increase in TASK-1 channel current was observed with prolonged incubation, consistent with its therapeutic role in PAH. To investigate treprostinil-induced inhibition of TREK, site-directed mutagenesis of a number of amino acids, identified as important for the action of other regulatory compounds, was carried out. We found that a gain of function mutation of TREK-1 (Y284A) attenuated treprostinil inhibition, while a selective activator of TREK channels, BL-1249, overcame the inhibitory effect of treprostinil. Our data suggests that subcutaneous site pain experienced during treprostinil therapy may result from inhibition of TREK channels near the injection site and that pre-activation of these channels prior to treatment has the potential to alleviate this nociceptive activity.
Collapse
Affiliation(s)
- Kevin P Cunningham
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, United Kingdom.,Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Lucie H Clapp
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, United Kingdom.,School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, United Kingdom
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
9
|
Huang L, Xu G, Jiang R, Luo Y, Zuo Y, Liu J. Development of Non-opioid Analgesics Targeting Two-pore Domain Potassium Channels. Curr Neuropharmacol 2021; 20:16-26. [PMID: 33827408 PMCID: PMC9199554 DOI: 10.2174/1570159x19666210407152528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Two-pore domain potassium (K2P) channels are a diverse family of potassium channels. K2P channels generate background leak potassium currents to regulate cellular excitability and are thereby involved in a wide range of neurological disorders. K2P channels are modulated by a variety of physicochemical factors such as mechanical stretch, temperature, and pH. In the the peripheral nervous system (PNS), K2P channels are widely expressed in nociceptive neurons and play a critical roles in pain perception. In this review, we summarize the recent advances in the pharmacological properties of K2P channels, with a focus on the exogenous small-molecule activators targeting K2P channels. We emphasize the subtype-selectivity, cellular and in vivo pharmacological properties of all the reported small-molecule activators. The key underlying analgesic mechanisms mediated by K2P are also summarized based on the data in the literature from studies using small-molecule activators and genetic knock-out animals. We discuss advantages and limitations of the translational perspectives of K2P in pain medicine and provide outstanding questions for future studies in the end.
Collapse
Affiliation(s)
- Lu Huang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Guangyin Xu
- Department of Physiology and Neurobiology, Institute of Neuroscience, Medical College of Soochow University, Suzhou, 215123, Jiangsu. China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yuncheng Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yunxia Zuo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| |
Collapse
|
10
|
Translational value of non-human primates in opioid research. Exp Neurol 2021; 338:113602. [PMID: 33453211 DOI: 10.1016/j.expneurol.2021.113602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 01/02/2023]
Abstract
Preclinical opioid research using animal models not only provides mechanistic insights into the modulation of opioid analgesia and its associated side effects, but also validates drug candidates for improved treatment options for opioid use disorder. Non-human primates (NHPs) have served as a surrogate species for humans in opioid research for more than five decades. The translational value of NHP models is supported by the documented species differences between rodents and primates regarding their behavioral and physiological responses to opioid-related ligands and that NHP studies have provided more concordant results with human studies. This review highlights the utilization of NHP models in five aspects of opioid research, i.e., analgesia, abuse liability, respiratory depression, physical dependence, and pruritus. Recent NHP studies have found that (1) mixed mu opioid and nociceptin/orphanin FQ peptide receptor partial agonists appear to be safe, non-addictive analgesics and (2) mu opioid receptor- and mixed opioid receptor subtype-based medications remain the only two classes of drugs that are effective in alleviating opioid-induced adverse effects. Given the recent advances in pharmaceutical sciences and discoveries of novel targets, NHP studies are posed to identify the translational gap and validate therapeutic targets for the treatment of opioid use disorder. Pharmacological studies using NHPs along with multiple outcome measures (e.g., behavior, physiologic function, and neuroimaging) will continue to facilitate the research and development of improved medications to curb the opioid epidemic.
Collapse
|
11
|
CORRECTION. Br J Pharmacol 2020; 177:5246. [PMID: 33460078 PMCID: PMC7589008 DOI: 10.1111/bph.15280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Busserolles J, Ben Soussia I, Pouchol L, Marie N, Meleine M, Devilliers M, Judon C, Schopp J, Clémenceau L, Poupon L, Chapuy E, Richard S, Noble F, Lesage F, Ducki S, Eschalier A, Lolignier S. TREK1 channel activation as a new analgesic strategy devoid of opioid adverse effects. Br J Pharmacol 2020; 177:4782-4795. [PMID: 32851651 DOI: 10.1111/bph.15243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Opioids are effective painkillers. However, their risk-benefit ratio is dampened by numerous adverse effects and opioid misuse has led to a public health crisis. Safer alternatives are required, but isolating the antinociceptive effect of opioids from their adverse effects is a pharmacological challenge because activation of the μ opioid receptor triggers both the antinociceptive and adverse effects of opioids. EXPERIMENTAL APPROACH The TREK1 potassium channel is activated downstream of μ receptor and involved in the antinociceptive activity of morphine but not in its adverse effects. Bypassing the μ opioid receptor to directly activate TREK1 could therefore be a safer analgesic strategy. KEY RESULTS We developed a selective TREK1 activator, RNE28, with antinociceptive activity in naive rodents and in models of inflammatory and neuropathic pain. This activity was lost in TREK1 knockout mice or wild-type mice treated with the TREK1 blocker spadin, showing that TREK1 is required for the antinociceptive activity of RNE28. RNE28 did not induce respiratory depression, constipation, rewarding effects, or sedation at the analgesic doses tested. CONCLUSION AND IMPLICATIONS This proof-of-concept study shows that TREK1 activators could constitute a novel class of painkillers, inspired by the mechanism of action of opioids but devoid of their adverse effects.
Collapse
Affiliation(s)
- Jérôme Busserolles
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Ismail Ben Soussia
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Université Côte d'Azur, INSERM, Valbonne, France
| | - Laetitia Pouchol
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Nicolas Marie
- Neuroplasticité et thérapie des addictions, Université Paris Descartes, CNRS, Inserm, Paris, France
| | - Mathieu Meleine
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Maïly Devilliers
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Céline Judon
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Julien Schopp
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Loïc Clémenceau
- Neuroplasticité et thérapie des addictions, Université Paris Descartes, CNRS, Inserm, Paris, France
| | - Laura Poupon
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Eric Chapuy
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Serge Richard
- Centre de Recherches Biologiques, CERB, Baugy, France
| | - Florence Noble
- Neuroplasticité et thérapie des addictions, Université Paris Descartes, CNRS, Inserm, Paris, France
| | - Florian Lesage
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Université Côte d'Azur, INSERM, Valbonne, France
| | - Sylvie Ducki
- ICCF, SIGMA Clermont, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| |
Collapse
|