1
|
Kim OH, Jeon KO, Kim G, Jang CG, Yoon SS, Jang EY. The neuropharmacological properties of α-pyrrolidinobutiothiophenone, a new synthetic cathinone, in rodents; role of the dopaminergic system. Br J Pharmacol 2024; 181:3462-3482. [PMID: 38772548 DOI: 10.1111/bph.16422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND AND PURPOSE α-Pyrrolidinobutiothiophenone (α-PBT) is a chemical derivative of cathinone, a structural analogue of amphetamine. Until now, there have been a few previous neurochemical or neurobehavioural studies on the abuse potential of α-PBT. EXPERIMENTAL APPROACH We examined the abuse potential of α-PBT by measuring psychomotor, rewarding, and reinforcing properties and methamphetamine-like discriminative stimulus effects in rodents using locomotor activity, conditioned place preference, self-administration, and drug discrimination studies. To clarify the underlying neuropharmacological mechanisms, we measured dopamine levels and neuronal activation in the dorsal striatum. In addition, we investigated the role of the dopamine D1 receptor or D2 receptors in α-PBT-induced hyperlocomotor activity, conditioned place preference, and the methamphetamine-like discriminative stimulus effect of α-PBT in rodents. KEY RESULTS α-PBT promoted hyperlocomotor activity in mice. α-PBT induced drug-paired place preference in mice and supported self-administration in rats. In a drug discrimination experiment, α-PBT fully substituted for the discriminative stimulus effects of methamphetamine in rats. Furthermore, α-PBT increased dopamine levels and c-Fos expression in the dorsal striatum of mice, which was associated with these behaviours. Finally, pretreatment with the D1 receptor antagonist SCH23390 or the D2 receptors antagonist eticlopride significantly attenuated acute or repeated α-PBT-induced hyperlocomotor activity, place preference, and the methamphetamine-like discriminative stimulus effects in rodents. CONCLUSIONS AND IMPLICATIONS These findings suggest that α-PBT has abuse potential at the highest dose tested via enhanced dopaminergic transmission in the dorsal striatum of rodents. The results provide scientific evidence for the legal restrictions of the recreational use of α-PBT.
Collapse
Affiliation(s)
- Oc-Hee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kyung Oh Jeon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Gihyeon Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seong Shoon Yoon
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Eun Young Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Lee JG, Hur KH, Hwang SB, Lee S, Lee SY, Jang CG. Designer Drug, 25D-NBOMe, Has Reinforcing and Rewarding Effects through Change of a Dopaminergic Neurochemical System. ACS Chem Neurosci 2023; 14:2658-2666. [PMID: 37463338 DOI: 10.1021/acschemneuro.3c00196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
2-(2,5-Dimethoxy-4-methylphenyl)-N-(2-methoxybenzyl)_ethanamine (25D-NBOMe), an analogue of the 2C family, is a newly synthesized psychoactive substance. It acts as an agonist at the 5-HT2A receptor and has a similar mechanism to that of NBOMe compounds. However, the pharmacological mechanism for its rewarding and reinforcing effects has not been revealed. In the present study, intravenous self-administration (IVSA) test and conditioned place preference (CPP) test were performed to investigate whether 25D-NBOMe has abuse potential. We also evaluated the effects of 25D-NBOMe on neurochemical changes using western blot analysis and microdialysis. The IVSA test revealed increased self-administration in 25D-NBOMe (0.03 mg/kg)-treated rats. In addition, the CPP test revealed rewarding effects in 25D-NBOMe (1 mg/kg)-treated mice. In the neurochemical studies, 25D-NBOMe treatment affected the expression of dopamine (DA) receptor D1 (DRD1), DA receptor D2 (DRD2), tyrosine hydroxylase, DA transporter (DAT), and phospho-DAT (p-DAT) in the nucleus accumbens (NAc). In addition, microdialysis revealed that treatment with progressively increasing doses (1, 3, and 10 mg/kg) of 25D-NBOMe increased the extracellular levels of DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid in the rat NAc. Taken together, our results show the abuse potential and neurochemical changes related to addictive behavior after administration of 25D-NBOMe.
Collapse
Affiliation(s)
- Jae-Gyeong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Su-Bin Hwang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sooyeun Lee
- Department of Analytical Toxicology, College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Hur KH, Lee Y, Donio AL, Lee JG, Lee BR, Kim SK, Yoon S, Lee YS, Kim HC, Lee SY, Jang CG. Mepirapim, a novel synthetic cannabinoid, induces Parkinson's disease-related behaviors by causing maladaptation of the dopamine system in the brain. Arch Toxicol 2023; 97:581-591. [PMID: 36355181 DOI: 10.1007/s00204-022-03414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Mepirapim is a novel synthetic cannabinoid that first appeared on the illicit drug market in 2013. In recent years, recreational abuse of Mepirapim has caused serious emergencies, posing a threat to public health. However, there are no legal regulations to prohibit the use of Mepirapim, as there is no scientific evidence for the dangerous pharmacological effects of the drug. In the present study, we investigated the dangerous neurotoxic effects of Mepirapim through behavioral and molecular experiments in mice (ICR/CD1, male, 25-30 g). In particular, based on a previous study that Mepirapim activates the dopamine system, we evaluated whether high-dose Mepirapim [single (15, 30, or 60 mg·kg-1, i.p.) or multiple (8, 15, or 30 mg·kg-1, i.p. × 4 at 2 h intervals)] treatment causes Parkinson's disease-related symptoms through damage to the dopamine system. In the result, we found that Mepirapim treatment caused comprehensive Parkinson's disease-related symptoms, including motor impairment, cognitive deficits and mood disorders. Furthermore, we confirmed the maladaptation in dopamine-related neurochemicals, including decreased dopamine levels, decreased tyrosine hydroxylase expression, and increased α-synuclein expression, in the brains of mice treated with Mepirapim. Taken together, these results indicate that Mepirapim has dangerous neurotoxic effects that induces Parkinson's disease-related behaviors by causing maladaptation of the dopamine system in the brain. Based on these findings, we propose the strict regulation of recreational abuse and therapeutic misuse of Mepirapim.
Collapse
Affiliation(s)
- Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Audrey Lynn Donio
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae-Gyeong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seolmin Yoon
- Department of Fundamental Pharmaceutical Sciences, School of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yong-Sup Lee
- Department of Pharmacy, School of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, School of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, School of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Mepirapim, a Novel Synthetic Cannabinoid, Induces Addiction-Related Behaviors through Neurochemical Maladaptation in the Brain of Rodents. Pharmaceuticals (Basel) 2022; 15:ph15060710. [PMID: 35745629 PMCID: PMC9229951 DOI: 10.3390/ph15060710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Mepirapim is a synthetic cannabinoid that has recently been abused for recreational purposes. Although serious side effects have been reported from users, the dangerous pharmacological effects of Mepirapim have not been scientifically demonstrated. In this study, we investigated the addictive potential of Mepirapim through an intravenous self-administration test and a conditioned place preference test in rodents. Moreover, to determine whether the pharmacological effects of Mepirapim are mediated by cannabinoid receptors, we investigated whether Mepirapim treatment induces cannabinoid tetrad symptoms in mice. Lastly, to identify Mepirapim induced neurochemical maladaptation in the brains of mice, we performed microdialysis, western blots and neurotransmitter enzyme-linked immunosorbent assays. In the results, Mepirapim supported the maintenance of intravenous self-administration and the development of conditioned place preference. As a molecular mechanism of Mepirapim addiction, we identified a decrease in GABAeric signalling and an increase in dopaminergic signalling in the brain reward circuit. Finally, by confirming the Mepirapim-induced expression of cannabinoid tetrad symptoms, we confirmed that Mepirapim acts pharmacologically through cannabinoid receptor one. Taken together, we found that Mepirapim induces addiction-related behaviours through neurochemical maladaptation in the brain. On the basis of these findings, we propose the strict regulation of recreational abuse of Mepirapim.
Collapse
|
5
|
Jurásek B, Rimpelová S, Babor M, Čejka J, Bartůněk V, Kuchař M. Intriguing Cytotoxicity of the Street Dissociative Anesthetic Methoxphenidine: Unexpected Impurities Spotted. Int J Mol Sci 2022; 23:ijms23042083. [PMID: 35216198 PMCID: PMC8879332 DOI: 10.3390/ijms23042083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The black market for new psychoactive substances has been constantly evolving and the substances that appear on this market cause a considerable number of issues, in extreme cases leading to human deaths. While monitoring the drug black market, we detected a sample of a dissociative anesthetic methoxphenidine, the salt of which contained an unusual anion in the form of bromo- and chloro-zincate complex. Concerning the unknown and potentially hazardous properties of this sample, we performed an in vitro cytotoxicity screening in cell lines of various origins (e.g., kidney, liver, bladder) which was compared with the toxicity results of the methoxphenidine standard prepared for this purpose. The street methoxphenidine sample exhibited markedly higher toxicity than the standard, which was probably caused by the anion impurity. Since it is not usual to analyze anions in salts of novel psychoactive substances, but such samples may be commonly available at the drug black market, we have developed a method for their identification with X-ray powder diffraction (XRPD), which also enabled us to distinguish between different polymorphs/solvates of methoxphenidine that were crystallized in the laboratory. XRPD offers additional data about samples, which may not be discovered by routine techniques, and in some cases, they may help to find out essential information.
Collapse
Affiliation(s)
- Bronislav Jurásek
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
- Correspondence: (S.R.); (M.K.)
| | - Martin Babor
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (M.B.); (J.Č.)
| | - Jan Čejka
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (M.B.); (J.Č.)
| | - Vilém Bartůněk
- Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
- Correspondence: (S.R.); (M.K.)
| |
Collapse
|