1
|
Yao CY, Tao HT, He JJ, Zhu FY, Xie CQ, Cheng YN, Li JQ, Liu ZZ, Hou CY, Liu XL, Fan YL, Fang D, Lv XR. NUAK1 acts as a novel regulator of PD-L1 via activating GSK-3β/β-catenin pathway in hepatocellular carcinoma. Mol Med 2025; 31:38. [PMID: 39901136 PMCID: PMC11789290 DOI: 10.1186/s10020-025-01088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND NUAK1 is associated with metastasis and drug resistance in hepatocellular carcinoma (HCC). However, little is known about the immune functions of NUAK1 in HCC. Therefore, the aim of this study was to elucidate the novel role of NUAK1 in facilitating immune evasion in HCC and to investigate the mechanisms underpinning this process. METHOD The levels of NUAK1 expression and the infiltration of CD8+ T cells were assessed in tumor tissues from HCC patients and mice xenograft model. HCC cell lines were used to validate the role of NUAK1 in regulating the transcription of PD-L1, the diethylnitrosamine-induced HCC model was established and the expression levels of NUAK1 and PD-L1 proteins in the rat livers were detected. Western blotting, immunofluorescence, real time PCR, and immunohistochemical staining were used to investigate the underlying mechanisms by which NUAK1 regulates PD-L1 expression in hepatocellular carcinoma. RESULTS NUAK1 expression was negatively correlated with CD8+ T cell infiltration in tumor tissues from HCC patients and mice xenograft model. Both gain and loss of functions have identified NUAK1 promoted PD-L1 expression at transcriptional level in HCC cells. The increased expression of NUAK1 and PD-L1 proteins were observed in the rat livers of diethylnitrosamine-induced HCC model. Moreover, overexpression of NUAK1 promotes GSK3β Ser9 phosphorylation, β-catenin expression and nuclear accumulation in HCC cells. By contrast, knockdown of NUAK1 has opposite effects. Inhibition of GSK3β activity significantly promoted β-catenin expression and PD-L1 expression in HCC cells. IHC analyses of tumor tissues from HCC patients suggested that the levels of p-GSK3β and β-catenin were positively correlated with NUAK1 expression. Knockdown of β-catenin also reversed NUAK1-mediated PD-L1 expression in HCC cells. CONCLUSIONS This study revealed a novel role for NUAK1, which promotes the transcriptional expression of PD-L1 by activating GSK3β/β-catenin signaling pathway, leading to immune escape of hepatocellular carcinoma. Registry and the registration no. of the study/trial: Not applicable.
Collapse
Affiliation(s)
- Chao-Yan Yao
- Department of Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hang-Tian Tao
- Department of Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Jin-Jin He
- Department of Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, 475004, China
| | - Feng-Yi Zhu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Cui-Qing Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yu-Na Cheng
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Ji-Qin Li
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zhuang-Zhuang Liu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Chun-Yu Hou
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Xue-Li Liu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yong-Li Fan
- Department of Oncology, The First Affiliated Hospital of Henan University, Kaifeng, 475000, China.
| | - Dong Fang
- Department of Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
| | - Xin-Rui Lv
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, The First Affiliated Hospital of Henan University, Ximen Ave, Kaifeng, 475000, China.
| |
Collapse
|
2
|
Cao R, Xu T. Steven-Johnson Syndrome/Toxic Epidermal Necrolysis is Associated with PD-1/PD-L1 Inhibitors Usage: A Case Series. Br J Hosp Med (Lond) 2024; 85:1-11. [PMID: 39347662 DOI: 10.12968/hmed.2024.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Aims/Background The increasing adoption of inhibitors of programmed cell death-1 (PD-1) and its ligand, programmed death-ligand 1 (PD-L1), in the treatment of multiple cancer types in China has started to garner broader attention due to the occurrence of immune-related adverse events (irAEs), especially life-threatening skin reactions such as Steven-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN). Isolated case reports have described SJS/TEN associated with PD-1/PD-L1 inhibitors usage. In this paper, we presented a series of cases of SJS/TEN following the use of PD-1/PD-L1 inhibitors in a dermatology hospital located in Zhejiang Province of China in the past several years, summarizing characteristics of these cases and providing a reference of management. Methods We retrospectively reviewed all the medical records of inpatients diagnosed with SJS/TEN in the Hangzhou Third People's Hospital from 2012 to 2024. We analyzed and compared the situation of SJS/TEN onset, types of PD-1/PD-L1 inhibitors used, score of severity, laboratory findings, and essential therapies of the patients who had received PD-1/PD-L1. Results We identified 12 SJS/TEN patients who had been treated with PD1/PD-L1 inhibitors: sintilimab had been used in six patients; tislelizumab in two cases; toripalimab, keytruda and cadonilimab each in one case; and an unknown prescription in one case. The longest duration between the first PD-1/PD-L1 inhibitor dose and the SJS/TEN diagnosis recorded was nine months whereas the shortest was 11 days. Half of the selected patients received chemotherapy at the same time. More than two types of therapies were applied to the cases, except for two cases with mild SJS. Conclusion This study unveils a potential, under-recognized cause of SJS/TEN in the cancer patients after analyzing the cases of SJS/TEN in cancer patients with prior exposure to PD-1/PD-L1 inhibitors. This paper also provides clue about the prominent features of SJS/TEN aforesaid, offering insights on the effective management measures for optimizing clinical safety.
Collapse
Affiliation(s)
- Riqu Cao
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Tianhong Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Chauhan A, Pathak VM, Yadav M, Chauhan R, Babu N, Chowdhary M, Ranjan A, Mathkor DM, Haque S, Tuli HS, Ramniwas S, Yadav V. Role of ursolic acid in preventing gastrointestinal cancer: recent trends and future perspectives. Front Pharmacol 2024; 15:1405497. [PMID: 39114347 PMCID: PMC11303223 DOI: 10.3389/fphar.2024.1405497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024] Open
Abstract
Gastrointestinal malignancies are one of the major worldwide health concerns. In the present review, we have assessed the plausible therapeutic implication of Ursolic Acid (UA) against gastrointestinal cancer. By modulating several signaling pathways critical in cancer development, UA could offer anti-inflammatory, anti-proliferative, and anti-metastatic properties. However, being of low oral bioavailability and poor permeability, its clinical value is restricted. To deliver and protect the drug, liposomes and polymer micelles are two UA nanoformulations that can effectively increase medicine stability. The use of UA for treating cancers is safe and appropriate with low toxicity characteristics and a predictable pharmacokinetic profile. Although the bioavailability of UA is limited, its nanoformulations could emerge as an alternative to enhance its efficacy in treating GI cancers. Further optimization and validation in the clinical trials are necessary. The combination of molecular profiling with nanoparticle-based drug delivery technologies holds the potential for bringing UA to maximum efficacy, looking for good prospects with GI cancer treatment.
Collapse
Affiliation(s)
- Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | | | - Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Neelesh Babu
- Department of Microbiology, Baba Farid Institute of Technology, Dehradun, Uttarakhand, India
| | - Manish Chowdhary
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
4
|
Wang Z, Yuan L, Liao X, Guo X, Chen J. Reducing PD-L1 Expression by Degraders and Downregulators as a Novel Strategy to Target the PD-1/PD-L1 Pathway. J Med Chem 2024; 67:6027-6043. [PMID: 38598179 DOI: 10.1021/acs.jmedchem.3c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Targeting the programmed cell death protein-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway has evolved into one of the most promising strategies for tumor immunotherapy. Thus far, multiple monoclonal antibody drugs have been approved for treating a variety of tumors, while the development of small-molecule PD-1/PD-L1 inhibitors has lagged far behind, with only a few small-molecule inhibitors entering clinical trials. In addition to antibody drugs and small-molecule inhibitors, reducing the expression levels of PD-L1 has attracted extensive research interest as another promising strategy to target the PD-1/PD-L1 pathway. Herein, we analyze the structures and mechanisms of molecules that reduce PD-L1 expression and classify them as degraders and downregulators according to whether they directly bind to PD-L1. Moreover, we discuss the potential prospects for developing PD-L1-targeting drugs based on these molecules. It is hoped that this perspective will provide profound insights into the discovery of potent antitumor immunity drugs.
Collapse
Affiliation(s)
- Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaotong Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xia Guo
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Williams MTS, Guzman ML. Cancer microenvironment and pharmacological interventions. Br J Pharmacol 2024; 181:213-215. [PMID: 38148105 DOI: 10.1111/bph.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Affiliation(s)
- Mark T S Williams
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Monica L Guzman
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
6
|
Fusco N, Ivanova M, Frascarelli C, Criscitiello C, Cerbelli B, Pignataro MG, Pernazza A, Sajjadi E, Venetis K, Cursano G, Pagni F, Di Bella C, Accardo M, Amato M, Amico P, Bartoli C, Bogina G, Bortesi L, Boldorini R, Bruno S, Cabibi D, Caruana P, Dainese E, De Camilli E, Dell'Anna V, Duda L, Emmanuele C, Fanelli GN, Fernandes B, Ferrara G, Gnetti L, Gurrera A, Leone G, Lucci R, Mancini C, Marangi G, Mastropasqua MG, Nibid L, Orrù S, Pastena M, Peresi M, Perracchio L, Santoro A, Vezzosi V, Zambelli C, Zuccalà V, Rizzo A, Costarelli L, Pietribiasi F, Santinelli A, Scatena C, Curigliano G, Guerini-Rocco E, Martini M, Graziano P, Castellano I, d'Amati G. Advancing the PD-L1 CPS test in metastatic TNBC: Insights from pathologists and findings from a nationwide survey. Crit Rev Oncol Hematol 2023; 190:104103. [PMID: 37595344 DOI: 10.1016/j.critrevonc.2023.104103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023] Open
Abstract
Pembrolizumab has received approval as a first-line treatment for unresectable/metastatic triple-negative breast cancer (mTNBC) with a PD-L1 combined positive score (CPS) of ≥ 10. However, assessing CPS in mTNBC poses challenges. Firstly, it represents a novel analysis for breast pathologists. Secondly, the heterogeneity of PD-L1 expression in mTNBC further complicates the assessment. Lastly, the lack of standardized assays and staining platforms adds to the complexity. In KEYNOTE trials, PD-L1 expression was evaluated using the IHC 22C3 pharmDx kit as a companion diagnostic test. However, both the 22C3 pharmDx and VENTANA PD-L1 (SP263) assays are validated for CPS assessment. Consequently, assay-platform choice, staining conditions, and scoring methods can significantly impact the testing outcomes. This consensus paper aims to discuss the intricacies of PD-L1 CPS testing in mTNBC and provide practical recommendations for pathologists. Additionally, we present findings from a nationwide Italian survey elucidating the state-of-the-art in PD-L1 CPS testing in mTNBC.
Collapse
Affiliation(s)
- Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carmen Criscitiello
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Bruna Cerbelli
- Department of Medical-Surgical Sciences and Biotechnologies Sapienza University of Rome, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Medical-Surgical Sciences and Biotechnologies Sapienza University of Rome, Rome, Italy
| | - Angelina Pernazza
- Department of Medical-Surgical Sciences and Biotechnologies Sapienza University of Rome, Rome, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Giulia Cursano
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, University Milan Bicocca, Monza (MB), Italy; Department of Pathology, IRCCS San Gerardo Hospital, Monza (MB), Italy
| | - Camillo Di Bella
- Department of Pathology, IRCCS San Gerardo Hospital, Monza (MB), Italy
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Michelina Amato
- Department of Pathology, San Giovanni-Addolorata Hospital, Rome Italy
| | - Paolo Amico
- Department of Pathology, Ospedale Maria Paternò Arezzo, Ragusa, Italy
| | - Caterina Bartoli
- Morphological Diagnostic and Biomolecular Characterization Area, Complex Unit of Pathological Anatomy Empoli-Prato, Oncological Department Azienda USL Toscana Centro, Italy
| | - Giuseppe Bogina
- Pathology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | - Laura Bortesi
- Pathology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | - Renzo Boldorini
- Pathology Unit, University of Eastern Piedmont, Novara, Italy
| | - Sara Bruno
- Division of Pathology, ASL2 Savona, Liguria, Italy
| | - Daniela Cabibi
- Department of Sciences for the Promotion of Health and Mother and Child Care, Anatomic Pathology, University of Palermo, Palermo, Italy
| | - Pietro Caruana
- Pathology Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Emanuele Dainese
- Surgical Pathology Division, Department of Oncology, ASST Lecco, "A. Manzoni" Hospital, Lecco, Italy
| | - Elisa De Camilli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Loren Duda
- Department of Clinical and Experimental Medicine, Pathology Unit, University of Foggia, Foggia, Italy
| | - Carmela Emmanuele
- Division of Pathology, Umberto I Hospital Presidium, Enna Provincial Health Department (ASP), Enna, Italy
| | - Giuseppe Nicolò Fanelli
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Gerardo Ferrara
- Department of Anatomic Pathology and Cytopathology, G. Pascale National Cancer Institute Foundation (IRCCS) Naples, Italy
| | - Letizia Gnetti
- Division of Pathology, Umberto I Hospital Presidium, Enna Provincial Health Department (ASP), Enna, Italy
| | | | - Giorgia Leone
- Division of Pathology, Clinical Institute Humanitas Catania Cubba, Misterbianco (Catania), Italy
| | - Raffaella Lucci
- Pathology Unit, Monaldi Hospital, A.O. dei Colli of Naples, Naples, Italy
| | - Cristina Mancini
- Division of Pathology, Umberto I Hospital Presidium, Enna Provincial Health Department (ASP), Enna, Italy
| | - Grazia Marangi
- Anatomic Pathology Unit, SS. Annunziata Hospital, Taranto, Italy
| | - Mauro G Mastropasqua
- Department of Precision and Regenerative Medicine and Jonian Area, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Lorenzo Nibid
- Research Unit of Anatomical Pathology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy; Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Rome, Italy
| | - Sandra Orrù
- Businco Oncologic Hospital, ARNAS Brotzu, Cagliari, Italy
| | - Maria Pastena
- IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Monica Peresi
- Pathology and Cytopathology Diagnostic Unit, Ospedale Villa Scassi di Genova, Genoa, Italy
| | - Letizia Perracchio
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Angela Santoro
- General Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Vania Vezzosi
- Histopathology and Molecular Diagnostics Unit, Careggi Hospital, Firenze, Italy
| | | | - Valeria Zuccalà
- Pathology Unit, Pugliese-Ciaccio Hospital Catanzaro, Catanzaro, Italy
| | - Antonio Rizzo
- Division of Pathology, Clinical Institute Humanitas Catania Cubba, Misterbianco (Catania), Italy
| | | | | | - Alfredo Santinelli
- Anatomic Pathology, Azienda Sanitaria Territoriale di Pesaro-Urbino, Pesaro, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maurizio Martini
- Department of Human and Developmental Pathology, University of Messina, Messina, Italy
| | - Paolo Graziano
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | | | - Giulia d'Amati
- Department of Medical-Surgical Sciences and Biotechnologies Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Li T, Wang X, Niu M, Wang M, Zhou J, Wu K, Yi M. Bispecific antibody targeting TGF-β and PD-L1 for synergistic cancer immunotherapy. Front Immunol 2023; 14:1196970. [PMID: 37520520 PMCID: PMC10373067 DOI: 10.3389/fimmu.2023.1196970] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
The PD-1/PD-L1 signaling pathway plays a crucial role in cancer immune evasion, and the use of anti-PD-1/PD-L1 antibodies represents a significant milestone in cancer immunotherapy. However, the low response rate observed in unselected patients and the development of therapeutic resistance remain major obstacles to their clinical application. Accumulating studies showed that overexpressed TGF-β is another immunosuppressive factor apart from traditional immune checkpoints. Actually, the effects of PD-1 and TGF-β pathways are independent and interactive, which work together contributing to the immune evasion of cancer cell. It has been verified that blocking TGF-β and PD-L1 simultaneously could enhance the efficacy of PD-L1 monoclonal antibody and overcome its treatment resistance. Based on the bispecific antibody or fusion protein technology, multiple bispecific and bifunctional antibodies have been developed. In the preclinical and clinical studies, these updated antibodies exhibited potent anti-tumor activity, superior to anti-PD-1/PD-L1 monotherapies. In the review, we summarized the advances of bispecific antibodies targeting TGF-β and PD-L1 in cancer immunotherapy. We believe these next-generation immune checkpoint inhibitors would substantially alter the cancer treatment paradigm, especially in anti-PD-1/PD-L1-resistant patients.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingli Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Ivanova M, Porta FM, Giugliano F, Frascarelli C, Sajjadi E, Venetis K, Cursano G, Mazzarol G, Guerini-Rocco E, Curigliano G, Criscitiello C, Fusco N. Breast Cancer with Brain Metastasis: Molecular Insights and Clinical Management. Genes (Basel) 2023; 14:1160. [PMID: 37372340 DOI: 10.3390/genes14061160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer-related death among women. Brain metastases are a primary contributor to mortality, as they often go undetected until late stages due to their dormant nature. Moreover, the clinical management of brain metastases is complicated by the relevant issue of blood-brain barrier penetration. The molecular pathways involved in the formation, progression, and colonization of primary breast tumors and subsequent brain metastases are diverse, posing significant hurdles due to the heterogeneous nature of breast cancer subtypes. Despite advancements in primary breast cancer treatments, the prognosis for patients with brain metastases remains poor. In this review, we aim to highlight the biological mechanisms of breast cancer brain metastases by evaluating multi-step genetic pathways and to discuss currently available and emerging treatment strategies to propose a prospective overview of the management of this complex disease.
Collapse
Affiliation(s)
- Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesca Maria Porta
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- School of Pathology, University of Milan, 20122 Milan, Italy
| | - Federica Giugliano
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giulia Cursano
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giovanni Mazzarol
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|