1
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
2
|
Mencía M. Acid digestion and symbiont: Proton sharing at the origin of mitochondriogenesis?: Proton production by a symbiotic bacterium may have been the origin of two hallmark eukaryotic features, acid digestion and mitochondria: Proton production by a symbiotic bacterium may have been the origin of two hallmark eukaryotic features, acid digestion and mitochondria. Bioessays 2023; 45:e2200136. [PMID: 36373631 DOI: 10.1002/bies.202200136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
The initial relationships between organisms leading to endosymbiosis and the first eukaryote are currently a topic of hot debate. Here, I present a theory that offers a gradual scenario in which the origins of phagocytosis and mitochondria are intertwined in such a way that the evolution of one would not be possible without the other. In this scenario, the premitochondrial bacterial symbiont became initially associated with a protophagocytic host on the basis of cooperation to kill prey with symbiont-produced toxins and reactive oxygen species (ROS). Subsequently, the cooperation was focused on the digestion stage, through the acidification of the protophagocytic cavities via exportation of protons produced by the aerobic respiration of the symbiont. The host gained an improved phagocytic capacity and the symbiont received organic compounds from prey. As the host gradually lost its membrane energetics to develop lysosomal digestion, respiration was centralized in the premitochondrial symbiont for energy production for the consortium.
Collapse
Affiliation(s)
- Mario Mencía
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CBMSO) UAM-CSIC, Universidad Autónoma de Madrid, Madrid, 28409, Spain
| |
Collapse
|
3
|
Bassot A, Morio B, Bortoli S, Coumoul X. Le B-A-BA de la mitochondrie, une cheffe d’orchestre intracellulaire très dynamique. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2022. [DOI: 10.1016/j.cnd.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Li Q. Geometric basis of action potential of skeletal muscle cells and neurons. Open Life Sci 2022; 17:1191-1199. [PMID: 36185399 PMCID: PMC9482420 DOI: 10.1515/biol-2022-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/15/2022] Open
Abstract
Although we know something about single-cell neuromuscular junctions, it is still unclear how multiple skeletal muscle cells coordinate to complete intricate spatial curve movement. Here, we hypothesize that skeletal muscle cell populations with action potentials are aligned according to curved manifolds in space (a curved shape in space). When a specific motor nerve impulse is transmitted, the skeletal muscle also moves according to the corresponding shape (manifolds). The action potential of motor nerve fibers has the characteristics of a time curve manifold, and this time-manifold curve of motor nerve fibers comes from the visual cortex in which spatial geometric manifolds are formed within the synaptic connection of neurons. This spatial geometric manifold of the synaptic connection of neurons originates from spatial geometric manifolds outside nature that are transmitted to the brain through the cone cells and ganglion cells of the retina. The essence of life is that life is an object that can move autonomously, and the essence of life's autonomous movement is the movement of proteins. Theoretically, because of the infinite diversity of geometric manifold shapes in nature, the arrangement and combination of 20 amino acids should have infinite diversity, and the geometric manifold formed by the protein three-dimensional spatial structure should also have infinite diversity.
Collapse
Affiliation(s)
- Qing Li
- Department of Function, ShiJiaZhuang Traditional Chinese Medical Hospital, No. 233, ZhongShan West Road, ShiJiaZhuang, HeBei Province 050051, China
| |
Collapse
|
5
|
Križančić Bombek L, Čater M. Skeletal Muscle Uncoupling Proteins in Mice Models of Obesity. Metabolites 2022; 12:metabo12030259. [PMID: 35323702 PMCID: PMC8955650 DOI: 10.3390/metabo12030259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity and accompanying type 2 diabetes are among major and increasing worldwide problems that occur fundamentally due to excessive energy intake during its expenditure. Endotherms continuously consume a certain amount of energy to maintain core body temperature via thermogenic processes, mainly in brown adipose tissue and skeletal muscle. Skeletal muscle glucose utilization and heat production are significant and directly linked to body glucose homeostasis at rest, and especially during physical activity. However, this glucose balance is impaired in diabetic and obese states in humans and mice, and manifests as glucose resistance and altered muscle cell metabolism. Uncoupling proteins have a significant role in converting electrochemical energy into thermal energy without ATP generation. Different homologs of uncoupling proteins were identified, and their roles were linked to antioxidative activity and boosting glucose and lipid metabolism. From this perspective, uncoupling proteins were studied in correlation to the pathogenesis of diabetes and obesity and their possible treatments. Mice were extensively used as model organisms to study the physiology and pathophysiology of energy homeostasis. However, we should be aware of interstrain differences in mice models of obesity regarding thermogenesis and insulin resistance in skeletal muscles. Therefore, in this review, we gathered up-to-date knowledge on skeletal muscle uncoupling proteins and their effect on insulin sensitivity in mouse models of obesity and diabetes.
Collapse
|
6
|
Borisov VB. Effect of Membrane Environment on the Ligand-Binding Properties of the Terminal Oxidase Cytochrome bd-I from Escherichia coli. BIOCHEMISTRY (MOSCOW) 2021; 85:1603-1612. [PMID: 33705298 DOI: 10.1134/s0006297920120123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome bd-I is a terminal oxidase of the Escherichia coli respiratory chain. This integral membrane protein contains three redox-active prosthetic groups (hemes b558, b595, and d) and couples the electron transfer from quinol to molecular oxygen to the generation of proton motive force, as one of its important physiological functions. The study was aimed at examining the effect of the membrane environment on the ligand-binding properties of cytochrome bd-I by absorption spectroscopy. The membrane environment was found to modulate the ligand-binding characteristics of the hemoprotein in both oxidized and reduced states. Absorption changes upon the addition of exogenous ligands, such as cyanide or carbon monoxide (CO), to the detergent-solubilized enzyme were much more significant and heterogeneous than those observed with the membrane-bound enzyme. In the native membranes, both cyanide and CO interacted mainly with heme d. An additional ligand-binding site (heme b558) appeared in the isolated enzyme, as was evidenced by more pronounced changes in the absorption in the Soret band. This additional reactivity could also be detected after treatment of E. coli membranes with a detergent. The observed effect did not result from the enzyme denaturation, since reconstitution of the isolated enzyme into azolectin liposomes restored the ligand-binding pattern close to that observed for the intact membranes.
Collapse
Affiliation(s)
- V B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
7
|
Capitanio G, Papa F, Papa S. The allosteric protein interactions in the proton-motive function of mammalian redox enzymes of the respiratory chain. Biochimie 2021; 189:1-12. [PMID: 34097987 DOI: 10.1016/j.biochi.2021.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022]
Abstract
Insight into mammalian respiratory complexes defines the role of allosteric protein interactions in their proton-motive activity. In cytochrome c oxidase (CxIV) conformational change of subunit I, caused by O2 binding to heme a32+-CuB+ and reduction, and stereochemical transitions coupled to oxidation/reduction of heme a and CuA, combined with electrostatic effects, determine the proton pumping activity. In ubiquinone-cytochrome c oxidoreductase (CxIII) conformational movement of Fe-S protein between cytochromes b and c1 is the key element of the proton-motive activity. In NADH-ubiquinone oxidoreductase (CxI) ubiquinone binding and reduction result in conformational changes of subunits in the quinone reaction structure which initiate proton pumping.
Collapse
Affiliation(s)
- Giuseppe Capitanio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Francesco Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Sergio Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy.
| |
Collapse
|
8
|
Borisov VB, Forte E. Terminal Oxidase Cytochrome bd Protects Bacteria Against Hydrogen Sulfide Toxicity. BIOCHEMISTRY (MOSCOW) 2021; 86:22-32. [PMID: 33705279 DOI: 10.1134/s000629792101003x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide (H2S) is often called the third gasotransmitter (after nitric oxide and carbon monoxide), or endogenous gaseous signaling molecule. This compound plays important roles in organisms from different taxonomic groups, from bacteria to animals and humans. In mammalian cells, H2S has a cytoprotective effect at nanomolar concentrations, but becomes cytotoxic at higher concentrations. The primary target of H2S is mitochondria. At submicromolar concentrations, H2S inhibits mitochondrial heme-copper cytochrome c oxidase, thereby blocking aerobic respiration and oxidative phosphorylation and eventually leading to cell death. Since the concentration of H2S in the gut is extremely high, the question arises - how can gut bacteria maintain the functioning of their oxygen-dependent respiratory electron transport chains under such conditions? This review provides an answer to this question and discusses the key role of non-canonical bd-type terminal oxidases of the enterobacterium Escherichia coli, a component of the gut microbiota, in maintaining aerobic respiration and growth in the presence of toxic concentrations of H2S in the light of recent experimental data.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, I-00185 Rome, Italy
| |
Collapse
|
9
|
In Escherichia coli Ammonia Inhibits Cytochrome bo3 But Activates Cytochrome bd-I. Antioxidants (Basel) 2020; 10:antiox10010013. [PMID: 33375541 PMCID: PMC7824442 DOI: 10.3390/antiox10010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Interaction of two redox enzymes of Escherichia coli, cytochrome bo3 and cytochrome bd-I, with ammonium sulfate/ammonia at pH 7.0 and 8.3 was studied using high-resolution respirometry and absorption spectroscopy. At pH 7.0, the oxygen reductase activity of none of the enzymes is affected by the ligand. At pH 8.3, cytochrome bo3 is inhibited by the ligand, with 40% maximum inhibition at 100 mM (NH4)2SO4. In contrast, the activity of cytochrome bd-I at pH 8.3 increases with increasing the ligand concentration, the largest increase (140%) is observed at 100 mM (NH4)2SO4. In both cases, the effector molecule is apparently not NH4+ but NH3. The ligand induces changes in absorption spectra of both oxidized cytochromes at pH 8.3. The magnitude of these changes increases as ammonia concentration is increased, yielding apparent dissociation constants Kdapp of 24.3 ± 2.7 mM (NH4)2SO4 (4.9 ± 0.5 mM NH3) for the Soret region in cytochrome bo3, and 35.9 ± 7.1 and 24.6 ± 12.4 mM (NH4)2SO4 (7.2 ± 1.4 and 4.9 ± 2.5 mM NH3) for the Soret and visible regions, respectively, in cytochrome bd-I. Consistently, addition of (NH4)2SO4 to cells of the E. coli mutant containing cytochrome bd-I as the only terminal oxidase at pH 8.3 accelerates the O2 consumption rate, the highest one (140%) being at 27 mM (NH4)2SO4. We discuss possible molecular mechanisms and physiological significance of modulation of the enzymatic activities by ammonia present at high concentration in the intestines, a niche occupied by E. coli.
Collapse
|
10
|
Nitric Oxide Does Not Inhibit but Is Metabolized by the Cytochrome bcc- aa3 Supercomplex. Int J Mol Sci 2020; 21:ijms21228521. [PMID: 33198276 PMCID: PMC7697965 DOI: 10.3390/ijms21228521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a well-known active site ligand and inhibitor of respiratory terminal oxidases. Here, we investigated the interaction of NO with a purified chimeric bcc-aa3 supercomplex composed of Mycobacterium tuberculosis cytochrome bcc and Mycobacterium smegmatisaa3-type terminal oxidase. Strikingly, we found that the enzyme in turnover with O2 and reductants is resistant to inhibition by the ligand, being able to metabolize NO at 25 °C with an apparent turnover number as high as ≈303 mol NO (mol enzyme)−1 min−1 at 30 µM NO. The rate of NO consumption proved to be proportional to that of O2 consumption, with 2.65 ± 0.19 molecules of NO being consumed per O2 molecule by the mycobacterial bcc-aa3. The enzyme was found to metabolize the ligand even under anaerobic reducing conditions with a turnover number of 2.8 ± 0.5 mol NO (mol enzyme)−1 min−1 at 25 °C and 8.4 µM NO. These results suggest a protective role of mycobacterial bcc-aa3 supercomplexes against NO stress.
Collapse
|
11
|
Wu M, Gu J, Zong S, Guo R, Liu T, Yang M. Research journey of respirasome. Protein Cell 2020; 11:318-338. [PMID: 31919741 PMCID: PMC7196574 DOI: 10.1007/s13238-019-00681-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Respirasome, as a vital part of the oxidative phosphorylation system, undertakes the task of transferring electrons from the electron donors to oxygen and produces a proton concentration gradient across the inner mitochondrial membrane through the coupled translocation of protons. Copious research has been carried out on this lynchpin of respiration. From the discovery of individual respiratory complexes to the report of the high-resolution structure of mammalian respiratory supercomplex I1III2IV1, scientists have gradually uncovered the mysterious veil of the electron transport chain (ETC). With the discovery of the mammalian respiratory mega complex I2III2IV2, a new perspective emerges in the research field of the ETC. Behind these advances glitters the light of the revolution in both theory and technology. Here, we give a short review about how scientists 'see' the structure and the mechanism of respirasome from the macroscopic scale to the atomic scale during the past decades.
Collapse
Affiliation(s)
- Meng Wu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuai Zong
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Morelli AM, Ravera S, Calzia D, Panfoli I. An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol 2020; 9:180221. [PMID: 30966998 PMCID: PMC6501646 DOI: 10.1098/rsob.180221] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Understanding how biological systems convert and store energy is a primary purpose of basic research. However, despite Mitchell's chemiosmotic theory, we are far from the complete description of basic processes such as oxidative phosphorylation (OXPHOS) and photosynthesis. After more than half a century, the chemiosmotic theory may need updating, thanks to the latest structural data on respiratory chain complexes. In particular, up-to date technologies, such as those using fluorescence indicators following proton displacements, have shown that proton translocation is lateral rather than transversal with respect to the coupling membrane. Furthermore, the definition of the physical species involved in the transfer (proton, hydroxonium ion or proton currents) is still an unresolved issue, even though the latest acquisitions support the idea that protonic currents, difficult to measure, are involved. Moreover, FoF1-ATP synthase ubiquitous motor enzyme has the peculiarity (unlike most enzymes) of affecting the thermodynamic equilibrium of ATP synthesis. It seems that the concept of diffusion of the proton charge expressed more than two centuries ago by Theodor von Grotthuss is to be taken into consideration to resolve these issues. All these uncertainties remind us that also in biology it is necessary to consider the Heisenberg indeterminacy principle, which sets limits to analytical questions.
Collapse
Affiliation(s)
- Alessandro Maria Morelli
- 1 Pharmacy Department, Biochemistry Lab, University of Genova , Viale Benedetto XV 3, 16132 Genova , Italy
| | - Silvia Ravera
- 2 Experimental Medicine Department, University of Genova , Via De Toni 14, 16132 Genova , Italy
| | - Daniela Calzia
- 1 Pharmacy Department, Biochemistry Lab, University of Genova , Viale Benedetto XV 3, 16132 Genova , Italy
| | - Isabella Panfoli
- 2 Experimental Medicine Department, University of Genova , Via De Toni 14, 16132 Genova , Italy
| |
Collapse
|
13
|
Palese LL. Explaining leak states in the proton pump of heme-copper oxidases observed in single-molecule experiments. Biophys Chem 2019; 256:106276. [PMID: 31731070 DOI: 10.1016/j.bpc.2019.106276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 11/28/2022]
Abstract
Heme-copper oxidases couple the exergonic oxygen reduction with the endergonic proton translocation. Redox-linked structural changes have been localized in deeply buried regions of the protein, near the low-potential heme. How these movements can modulate distant gating events along the intramolecular proton path, where the entry (exit) of pumped proton occurs, is a major concern for the proton pump models. Generally, these models associate, more or less directly, all translocation events with redox transitions. Although they can account for many phenomenological aspects of the pump, evidences from single-molecules experiments about leak states of the pump represent a formidable challenge. Disconnecting the redox-linked pKa shifts of the proton loading site from the external barriers, we obtain a simple stochastic mechanism which behaves similarly to the real enzyme, able to reverse the flow of the proton transfer.
Collapse
|
14
|
|
15
|
Capitanio G, Palese LL, Papa F, Papa S. Allosteric Cooperativity in Proton Energy Conversion in A1-Type Cytochrome c Oxidase. J Mol Biol 2019; 432:534-551. [PMID: 31626808 DOI: 10.1016/j.jmb.2019.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022]
Abstract
Cytochrome c oxidase (CcO), the CuA, heme a, heme a3, CuB enzyme of respiratory chain, converts the free energy released by aerobic cytochrome c oxidation into a membrane electrochemical proton gradient (ΔμH+). ΔμH+ derives from the membrane anisotropic arrangement of dioxygen reduction to two water molecules and transmembrane proton pumping from a negative (N) space to a positive (P) space separated by the membrane. Spectroscopic, potentiometric, and X-ray crystallographic analyses characterize allosteric cooperativity of dioxygen binding and reduction with protonmotive conformational states of CcO. These studies show that allosteric cooperativity stabilizes the favorable conformational state for conversion of redox energy into a transmembrane ΔμH+.
Collapse
Affiliation(s)
- Giuseppe Capitanio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Luigi Leonardo Palese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sergio Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy.
| |
Collapse
|
16
|
Hussain S, Andrews D, Hill BC. Exposure of Bacillus subtilis to silver inhibits activity of cytochrome c oxidase in vivo via interaction with SCO, the Cu A assembly protein. Metallomics 2019; 10:735-744. [PMID: 29676768 DOI: 10.1039/c7mt00343a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Silver has long been used as an antimicrobial agent in general and medicinal use. Here, we observe that exposure of the Gram-positive, endospore-forming bacterium Bacillus subtilis to Ag(i) effects growth in a biphasic manner. In the first phase at Ag(i) concentrations below 50 μM B. subtilis growth is not affected, but activity of the respiratory enzyme cytochrome c oxidase is disrupted completely. Between 50 to 100 μM Ag(i) B. subtilis growth is drastically diminished and completely absent above 100 μM Ag(i). Synthesis of cytochrome c oxidase, or SCO proteins, have been shown to play a role in assembly of the CuA center of cytochrome c oxidase and we suppose that the effects observed here of silver on Bacillus subtilis in culture may be explained at least in part by the interaction of Bacillus SCO (BsSCO) with Ag(i). We find that Ag(i) forms a high affinity complex with BsSCO in vitro that blocks SCO's interaction with copper indicating competition between the metals for binding BsSCO. The interaction of BsSCO with Ag(i) exhibits multiple phases and is more complex than that observed for the high-affinity, 1 : 1 copper complex with BsSCO. We propose that the initial response of B. subtilis cultures is due to high affinity binding of Ag(i) to BsSCO that blocks the functionality of BsSCO required for assembly of cytochrome c oxidase. Our results provide evidence of a specific effect of silver on Bacillus subtilis cells and implies that SCO proteins play a role in sensitivity to Ag(i).
Collapse
Affiliation(s)
- Shina Hussain
- Queen's University, Biomedical and Molecular Sciences, Kingston, Canada.
| | | | | |
Collapse
|
17
|
Snapshot of an oxygen intermediate in the catalytic reaction of cytochrome c oxidase. Proc Natl Acad Sci U S A 2019; 116:3572-3577. [PMID: 30808749 DOI: 10.1073/pnas.1814526116] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase (CcO) reduces dioxygen to water and harnesses the chemical energy to drive proton translocation across the inner mitochondrial membrane by an unresolved mechanism. By using time-resolved serial femtosecond crystallography, we identified a key oxygen intermediate of bovine CcO. It is assigned to the PR-intermediate, which is characterized by specific redox states of the metal centers and a distinct protein conformation. The heme a 3 iron atom is in a ferryl (Fe4+ = O2-) configuration, and heme a and CuB are oxidized while CuA is reduced. A Helix-X segment is poised in an open conformational state; the heme a farnesyl sidechain is H-bonded to S382, and loop-I-II adopts a distinct structure. These data offer insights into the mechanism by which the oxygen chemistry is coupled to unidirectional proton translocation.
Collapse
|
18
|
Palese LL. Cytochrome c oxidase structures suggest a four-state stochastic pump mechanism. Phys Chem Chem Phys 2019; 21:4822-4830. [DOI: 10.1039/c8cp07365a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A simple stochastic model for a cytochrome c oxidase proton pump.
Collapse
Affiliation(s)
- Luigi Leonardo Palese
- University of Bari “Aldo Moro”
- Department of Basic Medical Sciences
- Neurosciences and Sense Organs (SMBNOS)
- Bari
- Italy
| |
Collapse
|
19
|
Wikström M, Krab K, Sharma V. Oxygen Activation and Energy Conservation by Cytochrome c Oxidase. Chem Rev 2018; 118:2469-2490. [PMID: 29350917 PMCID: PMC6203177 DOI: 10.1021/acs.chemrev.7b00664] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
This review focuses on the type
A cytochrome c oxidases (CcO), which
are found in all mitochondria
and also in several aerobic bacteria. CcO catalyzes
the respiratory reduction of dioxygen (O2) to water by
an intriguing mechanism, the details of which are fairly well understood
today as a result of research for over four decades. Perhaps even
more intriguingly, the membrane-bound CcO couples
the O2 reduction chemistry to translocation of protons
across the membrane, thus contributing to generation of the electrochemical
proton gradient that is used to drive the synthesis of ATP as catalyzed
by the rotary ATP synthase in the same membrane. After reviewing the
structure of the core subunits of CcO, the active
site, and the transfer paths of electrons, protons, oxygen, and water,
we describe the states of the catalytic cycle and point out the few
remaining uncertainties. Finally, we discuss the mechanism of proton
translocation and the controversies in that area that still prevail.
Collapse
Affiliation(s)
- Mårten Wikström
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland
| | - Klaas Krab
- Department of Molecular Cell Physiology , Vrije Universiteit , P.O. Box 7161 , Amsterdam 1007 MC , The Netherlands
| | - Vivek Sharma
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland.,Department of Physics , University of Helsinki , P.O. Box 64 , Helsinki FI-00014 , Finland
| |
Collapse
|