1
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Fan G, Li D, Liu J, Tao N, Meng C, Cui J, Cai J, Sun T. HNRNPD is a prognostic biomarker in non-small cell lung cancer and affects tumor growth and metastasis via the PI3K-AKT pathway. Biotechnol Genet Eng Rev 2024; 40:1571-1590. [PMID: 36971333 DOI: 10.1080/02648725.2023.2196155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein D (HNRNPD) can regulate expression of key proteins in various cancers. However, the prognostic predictive value and biology function of HNRNPD in non-small cell lung cancer (NSCLC) is unknown. First, we used the TCGA and GEO datasets to determine that HNRNPD predicts the prognosis of NSCLC patients. Following that, we knocked down HNRNPD in NSCLC cell lines in vitro and validated its biological function using CCK-8, transwell assays, wound healing tests, and Western blotting. Finally, we constructed tissue microarrays (TMAs) from 174 NSCLC patients and verified our findings using immunohistochemistry staining for HNRNPD from public databases. In both the public datasets, NSCLC tissues with elevated HNRNPD expression had shorter overall survival (OS). In addition, HNRNPD knockdown NSCLC cell lines showed significantly reduced proliferation, invasion, and metastatic capacity via the PI3K-AKT pathway. Finally, elevated HNRNPD expression in NSCLC TMAs was linked to a poorer prognosis and decreased PD-L1 expression levels. HNRNPD is associated with a poorer prognosis in NSCLC and affects tumor growth and metastasis via the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Guoqing Fan
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Danni Li
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
| | - Jingjing Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Chao Meng
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
| | - Tieying Sun
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
3
|
Meng W, Yu S, Li Y, Wang H, Feng Y, Sun W, Liu Y, Sun S, Liu H. Mutant p53 achieves function by regulating EGR1 to induce epithelial mesenchymal transition. Tissue Cell 2024; 90:102510. [PMID: 39126833 DOI: 10.1016/j.tice.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The epithelial-mesenchymal transition (EMT) plays a crucial role in lung cancer metastasis, rendering it a promising therapeutic target. Research has shown that non-small cell lung cancer (NSCLC) with p53 mutations exhibits an increased tendency for cancer metastasis. However, the exact contribution of the p53-R273H mutation to tumor metastasis remains uncertain in the current literature. Our study established the H1299-p53-R273H cell model successfully by transfecting the p53-R273H plasmid into H1299 cells. We observed that p53-R273H promotes cell proliferation, migration, invasion, and EMT through CCK-8, wound healing, transwell, western blot and immunofluorescence assays. Notably, the expression of EGR1 was increased in H1299-p53-R273H cells. Knocking out EGR1 in these cells hindered the progression of EMT. ChIP-PCR experiments revealed that p53-R273H binds to the EGR1 promoter sequence, thereby regulating its expression. These findings suggest that p53-R273H triggers EMT by activating EGR1, thereby offering a potential therapeutic approach for lung cancer treatment.
Collapse
Affiliation(s)
- Weipei Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Yu
- Interventional Center, Jilin Cancer Hospital, No. 1018 Huguang Rd, Chaoyang, Changchun 130012, China
| | - Yan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Haichen Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuqing Feng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Wanyue Sun
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Haifeng Liu
- Interventional Center, Jilin Cancer Hospital, No. 1018 Huguang Rd, Chaoyang, Changchun 130012, China.
| |
Collapse
|
4
|
Lailler C, Didelot A, Garinet S, Berthou H, Sroussi M, de Reyniès A, Dedhar S, Martin-Lannerée S, Fabre E, Le Pimpec-Barthes F, Perrier A, Poindessous V, Mansuet-Lupo A, Djouadi F, Launay JM, Laurent-Puig P, Blons H, Mouillet-Richard S. PrP C controls epithelial-to-mesenchymal transition in EGFR-mutated NSCLC: implications for TKI resistance and patient follow-up. Oncogene 2024; 43:2781-2794. [PMID: 39147880 PMCID: PMC11379626 DOI: 10.1038/s41388-024-03130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Patients with EGFR-mutated non-small cell lung cancer (NSCLC) benefit from treatment with tyrosine kinase inhibitors (TKI) targeting EGFR. Despite improvements in patient care, especially with the 3rd generation TKI osimertinib, disease relapse is observed in all patients. Among the various processes involved in TKI resistance, epithelial-to-mesenchymal transition (EMT) is far from being fully characterized. We hypothesized that the cellular prion protein PrPC could be involved in EMT and EGFR-TKI resistance in NSCLC. Using 5 independent lung adenocarcinoma datasets, including our own cohort, we document that the expression of the PRNP gene encoding PrPC is associated with EMT. By manipulating the levels of PrPC in different EGFR-mutated NSCLC cell lines, we firmly establish that the expression of PrPC is mandatory for cells to maintain or acquire a mesenchymal phenotype. Mechanistically, we show that PrPC operates through an ILK-RBPJ cascade, which also controls the expression of EGFR. Our data further demonstrate that PrPC levels are elevated in EGFR-mutated versus wild-type tumours or upon EGFR activation in vitro. In addition, we provide evidence that PRNP levels increase with TKI resistance and that reducing PRNP expression sensitizes cells to osimertinib. Finally, we found that plasma PrPC levels are increased in EGFR-mutated NSCLC patients from 2 independent cohorts and that their longitudinal evolution mirrors that of disease. Altogether, these findings define PrPC as a candidate driver of EMT-dependent resistance to EGFR-TKI in NSCLC. They further suggest that monitoring plasma PrPC levels may represent a valuable non-invasive strategy for patient follow-up and warrant considering PrPC-targeted therapies for EGFR-mutated NSCLC patients with TKI failure.
Collapse
Affiliation(s)
- Claire Lailler
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Audrey Didelot
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Simon Garinet
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Hugo Berthou
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Marine Sroussi
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Genetics and Molecular Medicine, Hôpital Européen Georges Pompidou, Paris, France
| | - Aurélien de Reyniès
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Shoukat Dedhar
- Genetics Unit, Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Séverine Martin-Lannerée
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Elizabeth Fabre
- AP-HP Department of Thoracic Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Alexandre Perrier
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Virginie Poindessous
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Audrey Mansuet-Lupo
- AP-HP Department of Pathology, Hôpital Cochin, Université Paris Cité, Paris, France
| | - Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Jean-Marie Launay
- INSERM U942 Lariboisière Hospital, Paris, France
- Pharma Research Department, F. Hoffmann-La-Roche Ltd., Basel, Switzerland
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Genetics and Molecular Medicine, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Blons
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France.
- Institut du Cancer Paris CARPEM, AP-HP, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Hôpital Européen Georges Pompidou, Paris, France.
| | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France.
| |
Collapse
|
5
|
Frezzetti D, Caridi V, Marra L, Camerlingo R, D’Alessio A, Russo F, Dotolo S, Rachiglio AM, Esposito Abate R, Gallo M, Maiello MR, Morabito A, Normanno N, De Luca A. The Impact of Inadequate Exposure to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors on the Development of Resistance in Non-Small-Cell Lung Cancer Cells. Int J Mol Sci 2024; 25:4844. [PMID: 38732063 PMCID: PMC11084975 DOI: 10.3390/ijms25094844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients treated with EGFR-tyrosine kinase inhibitors (TKIs) inevitably develop resistance through several biological mechanisms. However, little is known on the molecular mechanisms underlying acquired resistance to suboptimal EGFR-TKI doses, due to pharmacodynamics leading to inadequate drug exposure. To evaluate the effects of suboptimal EGFR-TKI exposure on resistance in NSCLC, we obtained HCC827 and PC9 cell lines resistant to suboptimal fixed and intermittent doses of gefitinib and compared them to cells exposed to higher doses of the drug. We analyzed the differences in terms of EGFR signaling activation and the expression of epithelial-mesenchymal transition (EMT) markers, whole transcriptomes byRNA sequencing, and cell motility. We observed that the exposure to low doses of gefitinib more frequently induced a partial EMT associated with an induced migratory ability, and an enhanced transcription of cancer stem cell markers, particularly in the HCC827 gefitinib-resistant cells. Finally, the HCC827 gefitinib-resistant cells showed increased secretion of the EMT inducer transforming growth factor (TGF)-β1, whose inhibition was able to partially restore gefitinib sensitivity. These data provide evidence that different levels of exposure to EGFR-TKIs in tumor masses might promote different mechanisms of acquired resistance.
Collapse
Affiliation(s)
- Daniela Frezzetti
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Vincenza Caridi
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Laura Marra
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Rosa Camerlingo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Amelia D’Alessio
- Laboratory of Toxicology Analysis, Department for the Treatment of Addictions, ASL Salerno, 84124 Salerno, Italy;
| | - Francesco Russo
- Institute of Endocrinology and Experimental Oncology, National Research Council of Italy, 80131 Naples, Italy;
| | - Serena Dotolo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Marianna Gallo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Monica Rosaria Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Alessandro Morabito
- Thoracic Department, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| |
Collapse
|
6
|
Theard PL, Linke AJ, Sealover NE, Daley BR, Yang J, Cox K, Kortum RL. SOS2 modulates the threshold of EGFR signaling to regulate osimertinib efficacy and resistance in lung adenocarcinoma. Mol Oncol 2024; 18:641-661. [PMID: 38073064 PMCID: PMC10920089 DOI: 10.1002/1878-0261.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
Son of sevenless 1 and 2 (SOS1 and SOS2) are RAS guanine nucleotide exchange factors (RasGEFs) that mediate physiologic and pathologic receptor tyrosine kinase (RTK)-dependent RAS activation. Here, we show that SOS2 modulates the threshold of epidermal growth factor receptor (EGFR) signaling to regulate the efficacy of and resistance to the EGFR tyrosine kinase inhibitor (EGFR-TKI) osimertinib in lung adenocarcinoma (LUAD). SOS2 deletion (SOS2KO ) sensitized EGFR-mutated cells to perturbations in EGFR signaling caused by reduced serum and/or osimertinib treatment to inhibit phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation, oncogenic transformation, and survival. Bypassing RTK reactivation of PI3K/AKT signaling represents a common resistance mechanism to EGFR-TKIs; SOS2KO reduced PI3K/AKT reactivation to limit osimertinib resistance. In a forced HGF/MET-driven bypass model, SOS2KO inhibited hepatocyte growth factor (HGF)-stimulated PI3K signaling to block HGF-driven osimertinib resistance. Using a long-term in situ resistance assay, most osimertinib-resistant cultures exhibited a hybrid epithelial/mesenchymal phenotype associated with reactivated RTK/AKT signaling. In contrast, RTK/AKT-dependent osimertinib resistance was markedly reduced by SOS2 deletion; the few SOS2KO cultures that became osimertinib resistant primarily underwent non-RTK-dependent epithelial-mesenchymal transition (EMT). Since bypassing RTK reactivation and/or tertiary EGFR mutations represent most osimertinib-resistant cancers, these data suggest that targeting proximal RTK signaling, here exemplified by SOS2 deletion, has the potential to delay the development osimertinib resistance and enhance overall clinical responses for patients with EGFR-mutated LUAD.
Collapse
Affiliation(s)
- Patricia L. Theard
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Amanda J. Linke
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Brianna R. Daley
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Johnny Yang
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Katherine Cox
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Robert L. Kortum
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| |
Collapse
|
7
|
Lin YY, Lin YS, Liang CW. Heterogeneity of cancer stem cell-related marker expression is associated with three-dimensional structures in malignant pleural effusion produced by lung adenocarcinoma. Cytopathology 2024; 35:105-112. [PMID: 37897199 DOI: 10.1111/cyt.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/28/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION Cancer stem cells have been described in lung adenocarcinoma-associated malignant pleural effusion. They show clinically important features, including the ability to initiate new tumours and resistance to treatments. However, their correlation with the three-dimensional tumour structures in the effusion is not well understood. METHODS Cell blocks produced from lung adenocarcinoma patients' pleural effusion were examined for cancer stem cell-related markers Nanog and CD133 using immunocytochemistry. The three-dimensional cancer cell structures and CD133 expression patterns were visualized with tissue-clearing technology. The expression patterns were correlated with tumour cell structures, genetic variants and clinical outcomes. RESULTS Thirty-nine patients were analysed. Moderate-to-strong Nanog expression was detected in 27 cases (69%), while CD133 was expressed by more than 1% of cancer cells in 11 cases (28%). Nanog expression was more homogenous within individual specimens, while CD133 expression was detected in single tumour cells or cells within small clusters instead of larger structures in 8 of the 11 positive cases (73%). Although no statistically significant correlation between the markers and tumour genetic variants or patient survival was observed, we recorded seven cases with follow-up specimens after cancer treatment, and four (57%) showed a change in stem cell-related marker expression corresponding to treatment response. CONCLUSIONS Lung adenocarcinoma cells in the pleural effusion show variable expression of cancer stem cell-related markers, some showing a correlation with the size of cell clusters. Their expression level is potentially correlated with cancer treatment effects.
Collapse
Affiliation(s)
- Yen-Yu Lin
- Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yueh-Shen Lin
- Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cher-Wei Liang
- Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
8
|
Gao M, Lai K, Deng Y, Lu Z, Song C, Wang W, Xu C, Li N, Geng Q. Eriocitrin inhibits epithelial-mesenchymal transformation (EMT) in lung adenocarcinoma cells via triggering ferroptosis. Aging (Albany NY) 2023; 15:10089-10104. [PMID: 37787987 PMCID: PMC10599723 DOI: 10.18632/aging.205049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/20/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Lung adenocarcinoma (LUAD) is the most prevalent pathological subtype of non-small cell lung cancer (NSCLC), characterized by a high propensity for relapse and metastasis due to epithelial-mesenchymal transition (EMT) of cancer cells. Ferroptosis, a newly discovered regulated cell death modality, is interconnected with the EMT process in certain cancers. Eriocitrin, a natural flavonoid compound, exerts anti-inflammatory and anticancer effects. OBJECTIVES The aim of this study is to investigate the potential inhibitory effect of eriocitrin on lung adenocarcinoma metastasis and explore whether its underlying mechanism involves ferroptosis induction in cancer cells. METHODS The CCK8 assay and wound healing assay and transwell were conducted to determine the cell viability and migration ability of A549 and H1299 cells, respectively. EMT process was assessed by western blot and RT-PCR to detect protein and mRNA levels of EMT markers. ROS and cell iron were measured to determine ferroptosis level. RESULTS Eriocitrin treatment significantly inhibited cell viability and migration ability in a concentration-dependent manner. Furthermore, eriocitrin administration for 24 hours resulted in enhanced expression of E-cadherin, while downregulating vimentin, N-cadherin and snail expression, indicating marked repression of the EMT process. Additionally, eriocitrin significantly induced ferroptosis in A549 and H1299 cells, as evidenced by increased ROS levels, downregulation of Nrf-2, SLC7A11 and GPX4 expression, and enhanced cellular iron accumulation. Moreover, pretreatment with the ferroptosis inhibitor ferrostatin-1 effectively abrogated the inhibitory effects of eriocitrin on EMT. CONCLUSIONS Our findings further support the anti-cancer properties of eriocitrin, as evidenced by its ability to inhibit the EMT process in LUAD cells, which is partially mediated through induction of ferroptosis in cancer cells.
Collapse
Affiliation(s)
- Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kai Lai
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenjie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chenzhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
9
|
Ma G, Zeng Y, Zhong W, Zhao X, Wang G, Bie F, Du J. Comprehensive analysis of suppressor of cytokine signaling 2 protein in the malignant transformation of NSCLC. Exp Ther Med 2023; 26:370. [PMID: 37415839 PMCID: PMC10320659 DOI: 10.3892/etm.2023.12069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/02/2023] [Indexed: 07/08/2023] Open
Abstract
Suppressor of cytokine signaling 2 (SOCS2) plays an essential role in a number of physiological phenomena and functions as a tumor suppressor. Understanding the predictive effects of SOCS2 on non-small cell lung cancer (NSCLC) is urgently needed. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to assess SOCS2 gene expression levels in NSCLC. The clinical significance of SOCS2 was evaluated through Kaplan-Meier curve analysis and the analysis of related clinical factors. Gene Set Enrichment Analysis (GSEA) was used to identify the biological functions of SOCS2. Subsequently proliferation, wound-healing, colony formation and Transwell assays, and carboplatin drug experiments were used for verification. The results revealed that SOCS2 expression was low in the NSCLC tissues of patients in TCGA and GEO database analyses. Downregulated SOCS2 was associated with poor prognosis, as determined by Kaplan-Meier survival analysis (HR 0.61, 95% CI 0.52-0.73; P<0.001). GSEA showed that SOCS2 was involved in intracellular reactions, including epithelial-mesenchymal transition (EMT). Cell experiments indicated that knockdown of SOCS2 caused the malignant progression of NSCLC cell lines. Furthermore, the drug experiment showed that silencing of SOCS2 promoted the resistance of NSCLC cells to carboplatin. In conclusion, low expression of SOCS2 was associated with poor clinical prognosis by effecting EMT and causing drug resistance in NSCLC cell lines. Furthermore, SOCS2 could act as a predictive indicator for NSCLC.
Collapse
Affiliation(s)
- Guoyuan Ma
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yukai Zeng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Weiqing Zhong
- Department of Radiology, The Third Affiliated Hospital of Shandong First Medical University (The Fourth People's Hospital of Jinan), Jinan, Shandong 250031, P.R. China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guanghui Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Fenglong Bie
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
10
|
Theard PL, Linke AJ, Sealover NE, Daley BR, Yang J, Cox K, Kortum RL. SOS2 regulates the threshold of mutant EGFR-dependent oncogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524989. [PMID: 37425733 PMCID: PMC10327037 DOI: 10.1101/2023.01.20.524989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Son of Sevenless 1 and 2 (SOS1 and SOS2) are RAS guanine nucleotide exchange factors (RasGEFs) that mediate physiologic and pathologic RTK-dependent RAS activation. Here, we show that SOS2 modulates the threshold of epidermal growth factor receptor (EGFR) signaling to regulate the efficacy of and resistance to the EGFR-TKI osimertinib in lung adenocarcinoma (LUAD). SOS2 deletion sensitized EGFR-mutated cells to perturbations in EGFR signaling caused by reduced serum and/or osimertinib treatment to inhibit PI3K/AKT pathway activation, oncogenic transformation, and survival. Bypass RTK reactivation of PI3K/AKT signaling represents a common resistance mechanism to EGFR-TKIs; SOS2 KO reduced PI3K/AKT reactivation to limit osimertinib resistance. In a forced HGF/MET-driven bypass model, SOS2 KO inhibited HGF-stimulated PI3K signaling to block HGF-driven osimertinib resistance. Using a long term in situ resistance assay, a majority of osimertinib resistant cultures exhibited a hybrid epithelial/mesenchymal phenotype associated with reactivated RTK/AKT signaling. In contrast, RTK/AKT-dependent osimertinib resistance was markedly reduced by SOS2 deletion; the few SOS2 KO cultures that became osimertinib resistant primarily underwent non-RTK dependent EMT. Since bypass RTK reactivation and/or tertiary EGFR mutations represent the majority of osimertinib-resistant cancers, these data suggest that targeting SOS2 has the potential to eliminate the majority of osimertinib resistance.
Collapse
Affiliation(s)
- Patricia L. Theard
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Amanda J. Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Johnny Yang
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Katherine Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| |
Collapse
|
11
|
Hu L, Liu Y, Fu C, Zhao J, Cui Q, Sun Q, Wang H, Lu L, Dai H, Xu X, Yang W. The Tumorigenic Effect of the High Expression of Ladinin-1 in Lung Adenocarcinoma and Its Potential as a Therapeutic Target. Molecules 2023; 28:1103. [PMID: 36770773 PMCID: PMC9919345 DOI: 10.3390/molecules28031103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
The oncogenic role of Ladinin-1 (LAD1), an anchoring filament protein, is largely unknown. In this study, we conducted a series of studies on the oncogenic role of LAD1 in lung adenocarcinoma (LUAD). Firstly, we analyzed the aberrant expression of LAD1 in LUAD and its correlation with patient survival, tumor immune infiltration, and the activation of cancer signaling pathways. Furthermore, the relationship between LAD1 expression and K-Ras and EGF signaling activation, tumor cell proliferation, migration, and colony formation was studied by gene knockout/knockout methods. We found that LAD1 was frequently overexpressed in LUAD, and high LAD1 expression predicts a poor prognosis. LAD1 exhibits promoter hypomethylation in LUAD, which may contribute to its mRNA upregulation. Single-sample gene set enrichment analysis (ssGSEA) showed that acquired immunity was negatively correlated with LAD1 expression, which was verified by the downregulated GO terms of "Immunoglobulin receptor binding" and "Immunoglobulin complex circulating" in the LAD1 high-expression group through Gene Set Variation Analysis (GSVA). Notably, the Ras-dependent signature was the most activated signaling in the LAD1 high-expression group, and the phosphorylation of downstream effectors, such as ERK and c-jun, was strongly inhibited by LAD1 deficiency. Moreover, we demonstrated that LAD1 depletion significantly inhibited the proliferation, migration, and cell-cycle progression of LUAD cells and promoted sensitivity to Gefitinib, K-Ras inhibitor, and paclitaxel treatments. We also confirmed that LAD1 deficiency remarkably retarded tumor growth in the xenograft model. Conclusively, LAD1 is a critical prognostic biomarker for LUAD and has potential as an intervention target.
Collapse
Affiliation(s)
- Lei Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - Yu Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
| | - Changfang Fu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
| | - Jiarong Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Qianwen Cui
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
| | - Qiuyan Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Hongqiang Wang
- Biological Molecular Information System Laboratory, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030024, China
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
| | - Xiaohui Xu
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Peng J, LI S, LI B, Hu W, Ding C. Exosomes Secreted from Mesenchymal Stem Cells Carry miR-486-5p to Inhibit Cell Proliferation and the Epithelial-Mesenchymal Transition Process to Treat Human Lung Cancer by Down-Regulating MIER3. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Exosomes are nano-vesicles that can shuttle active cargoes. Mesenchymal stem cells play a complex function in tumour progression.We investigated the effect of miR-486-5p, an exosome of human bone marrow-derived MSCs on lung cancer. We found that miR-486-5p, carried in mesenchymal stem
cells and mesenchymal stem cell-derived exosomes, regulates MIER3 expression by binding to its 3’UTR, thereby inhibiting the epithelial-mesenchymal transition process of A549 cells. In vivo, we demonstrated that exosome treatment reduced the area of tumour necrosis, increased
the expression of miR-486-5p and inhibited the epithelial–mesenchymal transition process in mice. In conclusion, mesenchymal stem cell-derived exosomal miR-486-5p directly and negatively targets MIER3 to inhibit lung cancer.
Collapse
Affiliation(s)
- Jingcui Peng
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, P.R. China
| | - Sa LI
- Department of Construction, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, P.R. China
| | - Bin LI
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, P.R. China
| | - Wenxia Hu
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, P.R. China
| | - Cuimin Ding
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, P.R. China
| |
Collapse
|
13
|
Zhang Q, Jia Y, Pan P, Zhang X, Jia Y, Zhu P, Chen X, Jiao Y, Kang G, Zhang L, Ma X. α5-nAChR associated with Ly6E modulates cell migration via TGF-β1/Smad signaling in non-small cell lung cancer. Carcinogenesis 2022; 43:393-404. [PMID: 34994389 DOI: 10.1093/carcin/bgac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The α5-nicotinic acetylcholine receptor (α5-nAChR) is closely associated with nicotine-related lung cancer, offering a novel perspective for investigating the molecular pathogenesis of this disease. However, the mechanism by which α5-nAChR functions in lung carcinogenesis remains to be elucidated. Lymphocyte antigen 6 (Ly6) proteins, like snake three-finger alpha toxins such as α-bungarotoxin, can modulate nAChR signaling. Ly6E, a member of the Ly6 family, is a biomarker of poor prognosis in smoking-induced lung carcinogenesis and is involved in the regulation of TGF-β1/Smad signaling. Here, we explored the underlying mechanisms linking α5-nAChR and Ly6E in non-small cell lung cancer (NSCLC). The expression of α5-nAChR was correlated with Ly6 expression, smoking status and lower survival in NSCLC tissues. In vitro, α5-nAChR mediated Ly6E, the phosphorylation of the TGF-β1 downstream molecule Smad3 (pSmad3, a key mediator of TGF-β1 signaling), the epithelial-mesenchymal transition (EMT) markers Zeb1, N-cadherin and vimentin expression in NSCLC cells. The downregulation of Ly6E reduced α5-nAChR, pSmad3, Zeb1, N-cadherin and vimentin expression. Functionally, silencing both α5-nAChR and Ly6E significantly inhibited cell migration compared to silencing α5-nAChR or Ly6E alone. Furthermore, the functional effects of α5-nAchR and Ly6E were confirmed in chicken embryo chorioallantoic membrane (CAM) and mouse xenograft models. Therefore, our findings uncover a new interaction between α5-nAChR and Ly6E that inhibits cancer cell migration by modulating the TGF-β1/Smad signaling pathway in NSCLC, which may serve as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Jia
- Department of Clinical Laboratory, Taian City Central Hospital, Taian, China
| | - Pan Pan
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiuping Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Zhu
- Department of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Xiaowei Chen
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Jiao
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guiyu Kang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Taian City Central Hospital, Taian, China
| | - Lulu Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Medical Laboratory, Weifang Medical University, Weifang, China.,Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
He J, Ren W, Wang W, Han W, Jiang L, Zhang D, Guo M. Exosomal targeting and its potential clinical application. Drug Deliv Transl Res 2021; 12:2385-2402. [PMID: 34973131 PMCID: PMC9458566 DOI: 10.1007/s13346-021-01087-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Exosomes are extracellular vesicles secreted by a variety of living cells, which have a certain degree of natural targeting as nano-carriers. Almost all exosomes released by cells will eventually enter the blood circulation or be absorbed by other cells. Under the action of content sorting mechanism, some specific surface molecules can be expressed on the surface of exosomes, such as tetraspanins protein and integrin. To some extent, these specific surface molecules can fuse with specific cells, so that exosomes show specific cell natural targeting. In recent years, exosomes have become a drug delivery system with low immunogenicity, high biocompatibility and high efficacy. Nucleic acids, polypeptides, lipids, or small molecule drugs with therapeutic function are organically loaded into exosomes, and then transported to specific types of cells or tissues in vivo, especially tumor tissues, to achieve targeting drug delivery. The natural targeting of exosome has been found and recognized in some studies, but there are still many challenges in effective clinical treatments. The use of the natural targeting of exosomes alone is incapable of accurately transporting the goods loaded to specific sites. Besides, the natural targeting of exosomes is still an open question in disease targeting and efficient gene/chemotherapy combined therapy. Engineering transformation and modification on exosomes can optimize its natural targeting and deliver the goods to a specific location, providing wide use in clinical treatment. This review summarizes the research progress of exosomal natural targeting and transformation strategy of obtained targeting after transformation. The mechanism of natural targeting and obtained targeting after transformation are also reviewed. The potential value of exosomal targeting in clinical application is also discussed.
Collapse
Affiliation(s)
- Jiao He
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China
| | - Wenyan Han
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China
| | - Lu Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China
| | - Dai Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, People's Republic of China
| | - Mengqi Guo
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
15
|
Dong Y, Sun X, Zhang K, He X, Zhang Q, Song H, Xu M, Lu H, Ren R. Type IIA topoisomerase (TOP2A) triggers epithelial-mesenchymal transition and facilitates HCC progression by regulating Snail expression. Bioengineered 2021; 12:12967-12979. [PMID: 34939898 PMCID: PMC8810028 DOI: 10.1080/21655979.2021.2012069] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/22/2023] Open
Abstract
Type IIA topoisomerase (TOP2A) is upregulated in hepatocellular carcinoma (HCC) and its expression is positively correlated with poor prognosis. However, the underlying molecular mechanism of this connection are poorly understood. Hence, the present work aimed to examine the possible mechanisms which may be useful in identifying a potential therapeutic strategy. The differential expression of TOP2A mRNA in HCC as compared with adjacent normal tissue was analyzed using the Oncomine database. The expression levels of TOP2A in HCC specimens and cell lines were assessed by Western blot and RT-qPCR. Stable cell lines were generated to knockdown or overexpress TOP2A, and then cell growth, migration, and invasion were analyzed. Furthermore, this study examined epithelial-mesenchymal transition (EMT) as well as the activation of related pathways. Additionally, the correlation between TOP2A levels and E-cadherin/Snail expression was determined in 72 HCC specimens. Higher expression levels of TOP2A were observed in HCC in Oncomine datasets, and the results were verified using 40 pairs of HCC specimens and peritumoral tissues. TOP2A expression levels were remarkably elevated in cells with great metastatic capacity. In addition, HCC cell growth, migration, and invasion were suppressed after TOP2A knockdown in MHCC97H cells (MHCC97H-shRNA-TOP2A), while these capabilities were promoted in TOP2A-overexpressing Hep3B cells (Hep3B-TOP2A). Furthermore, EMT was inhibited in MHCC97H-shRNA-TOP2A cells, but induced in Hep3B-TOP2A cells. The induction of EMT by TOP2A was shown to be mediated by Snail, as TOP2A promoted Snail expression through the p-ERK1/2/p-SMAD2 signaling pathway. TOP2A level showed a negative correlation with E-cadherin, whereas a positive correlation with that of vimentin and Snail in human HCC specimens by immunohistochemistry analyses. Kaplan-Meier survival curves revealed that TOP2A upregulation showed a positive correlation with poor prognosis patients. Taken together, TOP2A possibly enhances the metastasis of HCC by promoting EMT through the mediation of the p-ERK1/2/p-SMAD2/Snail pathway. This indicates that TOP2A maybe a potential factor to predict the prognosis of HCC.
Collapse
Affiliation(s)
- Yinying Dong
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Xiangyin Sun
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Kong Zhang
- Department of Intensive-care Unit, The Affiliated Hospital of Qingdao University, Qingdao, PR China
| | - Xinjia He
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Qian Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Hao Song
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Mingjin Xu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Haijun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| | - Ruimei Ren
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,PR China
| |
Collapse
|
16
|
Belluomini L, Dodi A, Caldart A, Kadrija D, Sposito M, Casali M, Sartori G, Ferrara MG, Avancini A, Bria E, Menis J, Milella M, Pilotto S. A narrative review on tumor microenvironment in oligometastatic and oligoprogressive non-small cell lung cancer: a lot remains to be done. Transl Lung Cancer Res 2021; 10:3369-3384. [PMID: 34430373 PMCID: PMC8350097 DOI: 10.21037/tlcr-20-1134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Objective In this review, we aim to collect and discuss available data about the role and composition of tumor microenvironment (TME) in oligometastatic (OMD) and oligoprogressive (OPD) non-small cell lung cancer (NSCLC). Furthermore, we aim to summarize the ongoing clinical trials evaluating as exploratory objective the TME composition, through tissue and/or blood samples, in order to clarify whether TME and its components could explain, at least partially, the oligometastatic/oligoprogressive process and could unravel the existence of predictive and/or prognostic factors for local ablative therapy (LAT). Background OMD/OPD NSCLC represent a heterogeneous group of diseases. Several data have shown that TME plays an important role in tumor progression and therefore in treatment response. The crucial role of several types of cells and molecules such as immune cells, cytokines, integrins, protease and adhesion molecules, tumor-associated macrophages (TAMs) and mesenchymal stem cells (MSCs) has been widely established. Due to the peculiar activation of specific pathways and expression of adhesion molecules, metastatic cells seem to show a tropism for specific anatomic sites (the so-called “seed and soil” hypothesis). Based on this theory, metastases appear as a biologically driven process rather than a random release of cancer cells. Although the role and the function of TME at the time of progression in patients with NSCLC treated with tyrosine-kinase inhibitors and immune checkpoint inhibitors (ICIs) have been investigated, limited data about the role and the biological meaning of TME are available in the specific OMD/OPD setting. Methods Through a comprehensive PubMed and ClinicalTrials.gov search, we identified available and ongoing studies exploring the role of TME in oligometastatic/oligoprogressive NSCLC. Conclusions Deepening the knowledge on TME composition and function in OMD/OPD may provide innovative implications in terms of both prognosis and prediction of outcome in particular from local treatments, paving the way for future investigations of personalized approaches in both advanced and early disease settings.
Collapse
Affiliation(s)
- Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alessandra Dodi
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alberto Caldart
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Dzenete Kadrija
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Marco Sposito
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Miriam Casali
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Giulia Sartori
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alice Avancini
- Biomedical, Clinical and Experimental Sciences, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Jessica Menis
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Medical Oncology Department, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
17
|
Zhang J, Zhang X, Yang S, Bao Y, Xu D, Liu L. FOXH1 promotes lung cancer progression by activating the Wnt/β-catenin signaling pathway. Cancer Cell Int 2021; 21:293. [PMID: 34090445 PMCID: PMC8180118 DOI: 10.1186/s12935-021-01995-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The expression of forkhead box protein H1 (FOXH1) is frequently upregulated in various cancers. However, the molecular mechanisms underlying the association between FOXH1 expression and lung cancer progression still remain poorly understood. Thus, the main objective of this study is to explore the role of FOXH1 in lung cancer. METHODS The Cancer Genome Atlas dataset was used to investigate FOXH1 expression in lung cancer tissues, and the Kaplan-Meier plotter dataset was used to determine the role of FOXH1 in patient prognosis. A549 and PC9 cells were transfected with short hairpin RNA targeting FOXH1 mRNA. The Cell Counting Kit-8, colony formation, soft agar, wound healing, transwell invasion and flow cytometry assays were performed to evaluate proliferation, migration and invasion of lung cancer cells. Tumorigenicity was examined in a BALB/c nude mice model. Western blot analysis was performed to assess the molecular mechanisms, and β-catenin activity was measured by a luciferase reporter system assay. RESULTS Higher expression level of FOXH1 was observed in tumor tissue than in normal tissue, and this was associated with poor overall survival. Knockdown of FOXH1 significantly inhibited lung cancer cell proliferation, migration, invasion, and cycle. In addition, the mouse xenograft model showed that knockdown of FOXH1 suppressed tumor growth in vivo. Further experiments revealed that FOXH1 depletion inhibited the epithelial-mesenchymal transition of lung cancer cells by downregulating the expression of mesenchymal markers (Snail, Slug, matrix metalloproteinase-2, N-cadherin, and Vimentin) and upregulating the expression of an epithelial marker (E-cadherin). Moreover, knockdown of FOXH1 significantly downregulated the activity of β-catenin and its downstream targets, p-GSK-3β and cyclin D1. CONCLUSION FOXH1 exerts oncogenic functions in lung cancer through regulation of the Wnt/β-catenin signaling pathway. FOXH1 might be a potential therapeutic target for patients with certain types of lung cancer.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Morphological Experiment Center, Medical College of Yanbian University, Yanji, Jilin, 133000, China.,Department of Histology and Embryology, Jilin Medical University, Jilin, Jilin, 132013, China
| | - Xian Zhang
- Department of General Surgery, Affiliated Hospital of Yanbian University, Yanji, Jilin, 133000, China
| | - Shasha Yang
- Department of Morphological Experiment Center, Medical College of Yanbian University, Yanji, Jilin, 133000, China
| | - Yanqiu Bao
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, Jilin, 133000, China
| | - Dongyuan Xu
- Department of Morphological Experiment Center, Medical College of Yanbian University, Yanji, Jilin, 133000, China.
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, Jilin, 133000, China.
| |
Collapse
|
18
|
SATB1 protein is associated with the epithelial‑mesenchymal transition process in non‑small cell lung cancers. Oncol Rep 2021; 45:118. [PMID: 33955522 PMCID: PMC8107643 DOI: 10.3892/or.2021.8069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most frequently diagnosed neoplasms and the leading cause of cancer‑related mortality worldwide. Its predominant subtype is non‑small cell lung cancer (NSCLC), which accounts for over 80% of the cases. Surprisingly, the majority of lung cancer‑related deaths are caused not by a primary tumour itself, but by its metastasis to distant organs. Therefore, it becomes especially important to identify the factors involved in lung cancer metastatic spread. Special AT‑rich binding protein 1 (SATB1) is a nuclear matrix protein that mediates chromatin looping and plays the role of global transcriptional regulator. During the past decade, it has received much attention as a factor promoting tumour invasion. In breast, colorectal and prostate cancers, SATB1 has been shown to influence the epithelial‑mesenchymal transition (EMT) process, which is thought to be crucial for cancer metastasis. The aim of this study was to analyse the possible correlations between the expression of SATB1 and major EMT‑associated proteins in NSCLC clinical samples. Additionally, the impact of EMT induction in NSCLC cell lines on SATB1 mRNA expression was also investigated. Immunohistochemistry was used to assess the expression of SATB1, SNAIL, SLUG, Twist1, E‑cadherin, and N‑cadherin in 242 lung cancer clinical samples. EMT was induced by TGF‑β1 treatment in the A549 and NCI‑H1703 lung cancer cell lines. Changes in gene expression profiles were analyzed using real‑time PCR and Droplet Digital PCR. SATB1 expression was positively correlated with the expression of SNAIL (R=0.129; P=0.045), SLUG (R=0.449; P<0.0001), and Twist1 (R=0.264; P<0.0001). Moreover, SATB1 expression significantly increased after in vitro EMT induction in A549 and NCI‑H1703 cell lines. The results obtained may point to the role of SATB1 as one of the regulators of EMT in NSCLC.
Collapse
|
19
|
Jiang M, Fang S, Zhao X, Zhou C, Gong Z. Epithelial-mesenchymal transition-related circular RNAs in lung carcinoma. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0238. [PMID: 33710806 PMCID: PMC8185863 DOI: 10.20892/j.issn.2095-3941.2020.0238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a highly complex phenotypic conversion during embryogenesis, and is important for metastasis, which contributes to tumor deterioration and poor prognoses of cancer patients. Lung carcinoma has a high tendency to develop the EMT. Circular RNAs (circRNAs) are involved in EMT-related cell invasion and metastasis in various types of cancers. Moreover, circRNAs have been found to be a link to EMT-related transcription factors and EMT-associated signaling pathways. This review mainly focuses on the influence of EMT-related circRNAs on lung carcinomas. More specifically, the roles of EMT-inducing and EMT-suppressive circRNAs in lung carcinomas are discussed. With circRNAs potentially becoming promising biomarkers and therapeutic targets for cancer managements, they will hopefully stimulate the interest of medical workers in the early diagnosis, personalized treatment, and positive prognoses in the era of precision oncology.
Collapse
Affiliation(s)
- Meina Jiang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Xiaodong Zhao
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Chengwei Zhou
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| |
Collapse
|
20
|
Cancer Stem Cells-Key Players in Tumor Relapse. Cancers (Basel) 2021; 13:cancers13030376. [PMID: 33498502 PMCID: PMC7864187 DOI: 10.3390/cancers13030376] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor relapse and treatment failure are unfortunately common events for cancer patients, thus often rendering cancer an uncurable disease. Cancer stem cells (CSCs) are a subset of cancer cells endowed with tumor-initiating and self-renewal capacity, as well as with high adaptive abilities. Altogether, these features contribute to CSC survival after one or multiple therapeutic approaches, thus leading to treatment failure and tumor progression/relapse. Thus, elucidating the molecular mechanisms associated with stemness-driven resistance is crucial for the development of more effective drugs and durable responses. This review will highlight the mechanisms exploited by CSCs to overcome different therapeutic strategies, from chemo- and radiotherapies to targeted therapies and immunotherapies, shedding light on their plasticity as an insidious trait responsible for their adaptation/escape. Finally, novel CSC-specific approaches will be described, providing evidence of their preclinical and clinical applications.
Collapse
|
21
|
Lu Y, Liu Y, Oeck S, Zhang GJ, Schramm A, Glazer PM. Hypoxia Induces Resistance to EGFR Inhibitors in Lung Cancer Cells via Upregulation of FGFR1 and the MAPK Pathway. Cancer Res 2020; 80:4655-4667. [PMID: 32873635 DOI: 10.1158/0008-5472.can-20-1192] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/22/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-term, moderate hypoxia promotes resistance to the EGFR TKI osimertinib (AZD9291) in the non-small cell lung cancer (NSCLC) cell line H1975, which harbors two EGFR mutations including T790M. Hypoxia-induced resistance was associated with development of epithelial-mesenchymal transition (EMT) coordinated by increased expression of ZEB-1, an EMT activator. Hypoxia induced increased fibroblast growth factor receptor 1 (FGFR1) expression in NSCLC cell lines H1975, HCC827, and YLR086, and knockdown of FGFR1 attenuated hypoxia-induced EGFR TKI resistance in each line. Upregulated expression of FGFR1 by hypoxia was mediated through the MAPK pathway and attenuated induction of the proapoptotic factor BIM. Consistent with this, inhibition of FGFR1 function by the selective small-molecule inhibitor BGJ398 enhanced EGFR TKI sensitivity and promoted upregulation of BIM levels. Furthermore, inhibition of MEK activity by trametinib showed similar effects. In tumor xenografts in mice, treatment with either BGJ398 or trametinib enhanced response to AZD9291 and improved survival. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through increased expression of FGFR1. The combination of EGFR TKI and FGFR1 or MEK inhibitors may offer an attractive therapeutic strategy for NSCLC. SIGNIFICANCE: Hypoxia-induced resistance to EGFR TKI is driven by overexpression of FGFR1 to sustain ERK signaling, where a subsequent combination of EGFR TKI with FGFR1 inhibitors or MEK inhibitors reverses this resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4655/F1.large.jpg.
Collapse
Affiliation(s)
- Yuhong Lu
- Department of Therapeutic Radiology, Yale University School of Medicine. New Haven, Connecticut
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine. New Haven, Connecticut
| | - Sebastian Oeck
- Department of Therapeutic Radiology, Yale University School of Medicine. New Haven, Connecticut
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - Gary J Zhang
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Alexander Schramm
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine. New Haven, Connecticut.
- Department of Genetics, Yale University School of Medicine. New Haven, Connecticut
| |
Collapse
|
22
|
Ancel J, Dewolf M, Deslée G, Nawrocky-Raby B, Dalstein V, Gilles C, Polette M. Clinical Impact of the Epithelial-Mesenchymal Transition in Lung Cancer as a Biomarker Assisting in Therapeutic Decisions. Cells Tissues Organs 2020; 211:91-109. [PMID: 32750701 DOI: 10.1159/000510103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/11/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common solid cancers and represents the leading cause of cancer death worldwide. Over the last decade, research on the epithelial-mesenchymal transition (EMT) in lung cancer has gained increasing attention. Here, we review clinical and histological features of non-small-cell lung cancer associated with EMT. We then aimed to establish potential clinical implications of EMT in current therapeutic options, including surgery, radiation, targeted therapy against oncogenic drivers, and immunotherapy.
Collapse
Affiliation(s)
- Julien Ancel
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Maxime Dewolf
- Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Gaëtan Deslée
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Béatrice Nawrocky-Raby
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Véronique Dalstein
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Christine Gilles
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium,
| | - Myriam Polette
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| |
Collapse
|
23
|
Liu LZ, Wang M, Xin Q, Wang B, Chen GG, Li MY. The permissive role of TCTP in PM 2.5/NNK-induced epithelial-mesenchymal transition in lung cells. J Transl Med 2020; 18:66. [PMID: 32046740 PMCID: PMC7011287 DOI: 10.1186/s12967-020-02256-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/01/2020] [Indexed: 12/28/2022] Open
Abstract
Background Translationally controlled tumor protein (TCTP) is linked to lung cancer. However, upon lung cancer carcinogens stimulation, there were no reports on the relationship between TCTP and lung cell carcinogenic epithelial–mesenchymal transition (EMT). This study was designed to investigate the molecular mechanism of regulation of TCTP expression and its role in lung carcinogens-induced EMT. Methods To study the role of TCTP in lung carcinogens [particulate matter 2.5 (PM2.5) or 4-methylnitrosamino-l-3-pyridyl-butanone (NNK)]-induced EMT, PM2.5/NNK-treated lung epithelial and non-small cell lung cancer (NSCLC) cells were tested. Cell derived xenografts, human lung cancer samples and online survival analysis were used to confirm the results. MassArray assay, Real-time PCR and Reporter assays were performed to elucidate the mechanism of regulation of TCTP expression. All statistical analyses were performed using GraphPad Prism version 6.0 or SPSS version 20.0. Results Translationally controlled tumor protein and vimentin expression were up-regulated in PM2.5/NNK-treated lung cells and orthotopic implantation tumors. TCTP expression was positively correlated with vimentin in human NSCLC samples. Patients with high expression of TCTP displayed reduced overall and disease-free survival. TCTP overexpression could increase vimentin expression and promote cell metastasis. Furthermore, PM2.5/NNK stimulation brought a synergistic effect on EMT in TCTP-transfected cells. TCTP knockdown blocked PM2.5/NNK carcinogenic effect. Mechanically, PM2.5/NNK-induced TCTP expression was regulated by one microRNA, namely miR-125a-3p, but not by methylation on TCTP gene promoter. The level of TCTP was regulated by its specific microRNA during the process of PM2.5/NNK stimulation, which in turn enhanced vimentin expression and played a permissive role in carcinogenic EMT. Conclusions Our results provided new insights into the mechanisms of TCTP regulatory expression in lung carcinogens-induced EMT. TCTP and miR-125a-3p might act as potential prognostic biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Li-Zhong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China.
| | - Menghuan Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Qihang Xin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Bowen Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Ming-Yue Li
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
24
|
Chen X, Jia Y, Zhang Y, Zhou D, Sun H, Ma X. α5-nAChR contributes to epithelial-mesenchymal transition and metastasis by regulating Jab1/Csn5 signalling in lung cancer. J Cell Mol Med 2020; 24:2497-2506. [PMID: 31930655 PMCID: PMC7028847 DOI: 10.1111/jcmm.14941] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Recent studies have showed that α5 nicotinic acetylcholine receptor (α5‐nAChR) is closely associated with nicotine‐related lung cancer. Our previous studies also demonstrated that α5‐nAChR mediates nicotine‐induced lung carcinogenesis. However, the mechanism by which α5‐nAChR functions in lung carcinogenesis remains to be elucidated. Jab1/Csn5 is a key regulatory factor in smoking‐induced lung cancer. In this study, we explored the underlying mechanisms linking the α5‐nAChR‐Jab1/Csn5 axis with lung cancer epithelial‐mesenchymal transition (EMT) and metastasis, which may provide potential therapeutic targets for future lung cancer treatments. Our results demonstrated that the expression of α5‐nAChR was correlated with the expression of Jab1/Csn5 in lung cancer tissues and lung cancer cells. α5‐nAChR expression is associated with Jab1/Csn5 expression in lung tumour xenografts in mice. In vitro, the expression of α5‐nAChR mediated Stat3 and Jab1/Csn5 expression, significantly regulating the expression of the EMT markers, N‐cadherin and Vimentin. In addition, the down‐regulation of α5‐nAChR or/and Stat3 reduced Jab1/Csn5 expression, while the silencing of α5‐nAChR or Jab1/Csn5 inhibited the migration and invasion of NSCLC cells. Mechanistically, α5‐nAChR contributes to EMT and metastasis by regulating Stat3‐Jab1/Csn5 signalling in NSCLC, suggesting that α5‐nAChR may be a potential target in NSCLC diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Xiaowei Chen
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | | | - Dajie Zhou
- Weifang Medical University, Weifang, China
| | - Haiji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, Jinan, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
25
|
Bronte G, Puccetti M, Crinò L, Bravaccini S. Epithelial-to-mesenchymal transition and EGFR status in NSCLC: the role of vimentin expression. Ann Oncol 2019; 30:339-340. [PMID: 30576405 DOI: 10.1093/annonc/mdy548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Affiliation(s)
- G Bronte
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - M Puccetti
- Azienda Unità Sanitaria Locale (AUSL) Imola, Imola, Italy
| | - L Crinò
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - S Bravaccini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|