1
|
Hernández-Morales C, Ngo A, Abdelhadi L, Schargel WE, Daza JD, Yánez-Muñoz MH, Smith EN. The skull of the semi-aquatic neotropical lizard Echinosaura horrida (Gymnophthalmidae: Cercosaurinae) reveals new synapomorphies within Gymnophthalmoidea. Anat Rec (Hoboken) 2025; 308:775-800. [PMID: 38965784 DOI: 10.1002/ar.25530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
The rough teiid or water cork lizard (Echinosaura horrida) is a small reptile from Colombia and Ecuador placed in a genus that contains eight species and well-known phylogenetic relationships. Here we provide a detailed description and illustrations, bone by bone, of its skull, while we discussed its intraspecific variation by comparing high-resolution computed tomography data from two specimens and the variation within the genus by including previously published data from Echinosaura fischerorum. This allowed to propose putative diagnostic character states for Echinosaura horrida and synapomorphies for Echinosaura. In addition, our discussion includes broader comparisons of new character transformations of the jugal, vomer, orbitosphenoid, and hyoid. These characters are important for diagnosing clades at different levels of the Gymnophthalmoidea phylogeny.
Collapse
Affiliation(s)
| | - Alison Ngo
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, USA
| | - Leila Abdelhadi
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, USA
| | - Walter E Schargel
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, USA
| | - Juan D Daza
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, USA
| | - Mario H Yánez-Muñoz
- Unidad de Investigación, Instituto Nacional de Biodiversidad (INABIO), Quito, Pichincha, Ecuador
| | - Eric N Smith
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
2
|
Fratani J, Fontanarrosa G, Duport-Bru AS, Russell A. Exploring the Influence of Neomorphic Gekkotan Paraphalanges on Limb Modularity and Integration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:14-28. [PMID: 39221754 DOI: 10.1002/jez.b.23275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/29/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Digital specializations of geckos are widely associated with their climbing abilities. A recurring feature that has independently emerged within the sister families Gekkonidae and Phyllodactylidae is the presence of neomorphic paraphalanges (PPEs), usually paired, paraxial skeletal structures lying adjacent to interphalangeal and metapodial-phalangeal joints. The incorporation of PPEs into gekkotan autopodia has the potential to modify the modularity and integration of the ancestral limb pattern by affecting information flow among skeletal limb parts. Here we explore the influence of PPEs on limb organization using anatomical networks. We modeled the fore- and hindlimbs in species ancestrally devoid of PPEs (Iguana iguana and Gekko gecko) and paraphalanx-bearing species (Hemidactylus mabouia and Uroplatus fimbriatus). To further clarify the impact of PPEs we also expunged PPEs from paraphalanx-bearing network models. We found that PPEs significantly increase modularity, giving rise to tightly integrated sub-modules along the digits, suggesting functional specialization. Species-specific singularities also emerged, such as the trade-off between the presence of PPEs favoring modularity (along the proximodistal axis) and the interdigital webbing favoring integration (across the lateromedial axis) in the limbs of U. fimbriatus. The PPEs are characterized by low connectivity compared with other skeletal elements; nevertheless, this varies based on their specific location and seemingly reflects developmental constraints. Our results also highlight the importance of the fifth metatarsal in generating a shift in lepidosaurian hindlimb polarity that contrasts with the more symmetrical bauplan of tetrapods. Our findings support extensive modification of the autopodial system in association with the addition of the neomorphic and intriguing PPEs.
Collapse
Affiliation(s)
- Jessica Fratani
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel, Tucumán, Argentina
| | - Gabriela Fontanarrosa
- Instituto de Biodiversidad Neotropical (IBN), CONICET-UNT, Yerba Buena, Tucumán, Argentina
| | - Ana Sofía Duport-Bru
- Instituto de Biodiversidad Neotropical (IBN), CONICET-UNT, Yerba Buena, Tucumán, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Anthony Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Ryskalin L, Fulceri F, Morucci G, Busoni F, Soldani P, Gesi M. Efficacy of focused extracorporeal shock wave therapy for fabella syndrome. PM R 2024; 16:1165-1167. [PMID: 38619105 DOI: 10.1002/pmrj.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Center for Rehabilitative Medicine "Sport and Anatomy", University of Pisa, Pisa, Italy
| | - Federica Fulceri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gabriele Morucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Center for Rehabilitative Medicine "Sport and Anatomy", University of Pisa, Pisa, Italy
| | - Francesco Busoni
- Center for Rehabilitative Medicine "Sport and Anatomy", University of Pisa, Pisa, Italy
| | - Paola Soldani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Center for Rehabilitative Medicine "Sport and Anatomy", University of Pisa, Pisa, Italy
| | - Marco Gesi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Center for Rehabilitative Medicine "Sport and Anatomy", University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Littlejohn GO. Bone and entheseal targets for growth factors in diffuse idiopathic skeletal hyperostosis. Semin Arthritis Rheum 2024; 68:152532. [PMID: 39146917 DOI: 10.1016/j.semarthrit.2024.152532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION Diffuse idiopathic skeletal hyperostosis (DISH) is a common condition of the adult skeleton where new bone growth occurs in entheseal and bony regions. The cause for the new bone growth is unclear but many lines of evidence point to a role for growth factors linked to abnormal metabolism in these patients. The bone targets for these presumed growth factors are poorly defined. This review summarises the clinical evidence relevant to the sites of origin of new bone formation in DISH to better define potential cellular targets for bone growth in DISH. METHODS This is a narrative review of relevant papers identified from searches of PubMed and online journals. RESULTS Sites of new bone growth in the enthesis were identified in patients with DISH, with likely cellular targets for growth factors being mesenchymal stem cells in the outer part of the enthesis. Similar undifferentiated skeletal stem cells are present in the outer annulus fibrosis and in the bony eminences of vertebral bodies and other bones, with the potential for response to growth factors. CONCLUSION Mesenchymal stem cells are present in specific entheseal and bony locations that are likely responsive to putative growth factors leading to new bone formation characteristic of DISH. Further study of these regions in the context of metabolic abnormalities in DISH will allow for better understanding of the pathophysiology of this common condition.
Collapse
Affiliation(s)
- Geoffrey Owen Littlejohn
- Adjunct Clinical Professor, Department of Medicine, Private Consulting Rooms, Monash Medical Centre, School of Clinical Sciences at Monash Health, Monash University, 246 Clayton Road, Victoria, Clayton 3168, Australia.
| |
Collapse
|
5
|
Fouquet A, Moraes LJCL, Grant T, Recoder R, Camacho A, Ghellere JM, Barutel A, Rodrigues MT. A new species of Neblinaphryne (Anura: Brachycephaloidea: Neblinaphrynidae) from Serra do Imeri, Amazonas state, Brazil. Zootaxa 2024; 5514:73-90. [PMID: 39647033 DOI: 10.11646/zootaxa.5514.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 12/10/2024]
Abstract
The highlands of the Guiana Shield (Pantepui) in northern South America harbor a unique fauna and flora. However, this diversity remains poorly documented, as many Pantepui massifs remain little explored or unexplored, mainly because their access is very challenging. Considering amphibians, 11 genera are endemic or sub-endemic to Pantepui, and one of them, Neblinaphryne, is monospecific and was recently described from the Neblina massif, at the border between Brazil and Venezuela. We recently undertook an expedition in the nearby, previously uninventoried Imeri massif and discovered a new species of this genus. We describe this new species herein as Neblinaphryne imeri sp. nov., combining molecular, external morphological, acoustic, osteological and myological data. The new species shares with the other Neblinaphryne species (N. mayeri) minuscule septomaxillae and pointed terminal phalanges, confirming the morphological diagnostic characters of the genus. Nevertheless, the new species can promptly be distinguished from N. mayeri by having the head wider than long, a distinct color pattern, and prominent tubercles on the eyelid and humeral region, as well as osteological and genetic differences. These two species are likely endemic to their respective massifs, providing a striking new example of speciation by isolation within Pantepui, which was possibly mediated by climate and elevation, as previously hypothesized for many other lineages endemic to this region.
Collapse
Affiliation(s)
- Antoine Fouquet
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE); UMR 5300 CNRS-IRD-TINP-UT3; Université Toulouse III - Paul Sabatier; Bât. 4R1; 118 route de Narbonne; 31062 Toulouse cedex 9; France.
| | - Leandro J C L Moraes
- Universidade de São Paulo; Instituto de Biociências; Departamento de Zoologia; São Paulo; SP; Brazil.
| | - Taran Grant
- Universidade de São Paulo; Instituto de Biociências; Departamento de Zoologia; São Paulo; SP; Brazil.
| | - Renato Recoder
- Universidade de São Paulo; Instituto de Biociências; Departamento de Zoologia; São Paulo; SP; Brazil.
| | - Agustín Camacho
- Universidad Autónoma de Madrid. Facultad de Ciencias (Edificio Biología). C. Darwin; 2; Fuencarral-El Pardo; 28049; Madrid.
| | - José Mário Ghellere
- Universidade de São Paulo; Instituto de Biociências; Departamento de Zoologia; São Paulo; SP; Brazil.
| | - Alexandre Barutel
- Universidade de São Paulo; Instituto de Biociências; Departamento de Zoologia; São Paulo; SP; Brazil.
| | - Miguel Trefaut Rodrigues
- Universidade de São Paulo; Instituto de Biociências; Departamento de Zoologia; São Paulo; SP; Brazil.
| |
Collapse
|
6
|
Jenkins KM, Foster W, Napoli JG, Meyer DL, Bever GS, Bhullar BAS. Cranial anatomy and phylogenetic affinities of Bolosaurus major, with new information on the unique bolosaurid feeding apparatus and evolution of the impedance-matching ear. Anat Rec (Hoboken) 2024. [PMID: 39072999 DOI: 10.1002/ar.25546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Resolving the phylogenetic relationships of early amniotes, in particular stem reptiles, remains a difficult problem. Three-dimensional morphological analysis of well-preserved stem-reptile specimens can reveal important anatomical data and clarify regions of phylogeny. Here, we present the first thorough description of the unusual early Permian stem reptile Bolosaurus major, including the first comprehensive description of a bolosaurid braincase. We describe previously obscured details of the palate, allowing for insight into bolosaurid feeding mechanics. Aspects of the rostrum, palate, mandible, and neurocranium suggest that B. major had a particularly strong bite. We additionally found B. major has a surprisingly slender stapes, similar to that of the middle Permian stem reptile Macroleter poezicus, which may suggest enhanced hearing abilities compared to other Paleozoic amniotes (e.g., captorhinids). We incorporated our new anatomical information into a large phylogenetic matrix (150 OTUs, 590 characters) to explore the relationship of Bolosauridae among stem reptiles. Our analyses generally recovered a paraphyletic "Parareptilia," and found Bolosauridae to diverge after Captorhinidae + Araeoscelidia. We also included B. major within a smaller matrix (10 OTUs, 27 characters) designed to explore the interrelationships of Bolosauridae and found all species of Bolosaurus to be monophyletic. While reptile relationships still require further investigation, our phylogeny suggests repeated evolution of impedance-matching ears in Paleozoic stem reptiles.
Collapse
Affiliation(s)
- Kelsey M Jenkins
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Yale Peabody Museum, New Haven, Connecticut, USA
| | - William Foster
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James G Napoli
- Division of Paleontology, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Division of Paleontology, American Museum of Natural History, New York, New York, USA
| | - Dalton L Meyer
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Gabriel S Bever
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Yale Peabody Museum, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Fouquet A, Kok PJR, Recoder RS, Prates I, Camacho A, Marques-Souza S, Ghellere JM, McDiarmid RW, Rodrigues MT. Relicts in the mist: Two new frog families, genera and species highlight the role of Pantepui as a biodiversity museum throughout the Cenozoic. Mol Phylogenet Evol 2024; 191:107971. [PMID: 38000706 DOI: 10.1016/j.ympev.2023.107971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The iconic mountains of the Pantepui biogeographical region host many early-diverging endemic animal and plant lineages, concurring with Conan Doyle's novel about an ancient "Lost World". While this is the case of several frog lineages, others appear to have more recent origins, adding to the controversy around the diversification processes in this region. Due to its remoteness, Pantepui is challenging for biological surveys, and only a glimpse of its biodiversity has been described, which hampers comprehensive evolutionary studies in many groups. During a recent expedition to the Neblina massif on the Brazil-Venezuela border, we sampled two new frog species that could not be assigned to any known genus. Here, we perform phylogenetic analyses of mitogenomic and nuclear loci to infer the evolutionary relationships of the new taxa and support their description. We find that both species represent single lineages deeply nested within Brachycephaloidea, a major Neotropical clade of direct-developing frogs. Both species diverged >45 Ma from their closest relatives: the first is sister to all other Brachycephaloidea except for Ceuthomantis, another Pantepui endemic, and the second is sister to Brachycephalidae, endemic to the Brazilian Atlantic Forest. In addition to these considerable phylogenetic and biogeographic divergences, external morphology and osteological features support the proposition of two new family and genus-level taxa to accommodate these new branches of the amphibian tree of life. These findings add to other recently described ancient vertebrate lineages from the Neblina massif, providing a bewildering reminder that our perception of the Pantepui's biodiversity remains vastly incomplete. It also provides insights into how these mountains acted as "museums" during the diversification of Brachycephaloidea and of Neotropical biotas more broadly, in line with the influential "Plateau theory". Finally, these discoveries point at the yet unknown branches of the tree of life that may go extinct, due to global climate change and zoonotic diseases, before we even learn about their existence, amphibians living at higher elevations being particularly at risk.
Collapse
Affiliation(s)
- Antoine Fouquet
- Laboratoire Évolution et Diversité Biologique, UMR 5174, CNRS, IRD, Université Paul Sabatier, Bâtiment 4R1 31062 cedex 9, 118 Route de Narbonne, 31077 Toulouse, France.
| | - Philippe J R Kok
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Str., Łódź 90-237, Poland; Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - Renato Sousa Recoder
- Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brazil.
| | - Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Agustin Camacho
- Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brazil
| | - Sergio Marques-Souza
- Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brazil
| | - José Mario Ghellere
- Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brazil
| | - Roy W McDiarmid
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013, USA
| | - Miguel Trefaut Rodrigues
- Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Fragoso Vargas NA, Berthaume MA. Easy to gain but hard to lose: the evolution of the knee sesamoid bones in Primates-a systematic review and phylogenetic meta-analysis. Proc Biol Sci 2024; 291:20240774. [PMID: 39255841 PMCID: PMC11387069 DOI: 10.1098/rspb.2024.0774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024] Open
Abstract
Sesamoids are variably present skeletal elements found in tendons and ligaments near joints. Variability in sesamoid size, location and presence/absence is hypothesized to enable skeletal innovation, yet sesamoids are often ignored. Three knee sesamoids-the cyamella, medial fabella and lateral fabella-are present in primates, but we know little about how they evolved, if they are skeletal innovations, or why they are largely missing from Hominoidea. Our phylogenetic comparative analyses suggest that sesamoid presence/absence is highly phylogenetically structured and contains phylogenetic signal. Models suggest that it is easy to gain but difficult/impossible to lose knee sesamoids and that the fabellae may have similar developmental/evolutionary pathways that are distinct from the cyamella. Sesamoid presence/absence is uncorrelated to the mode of locomotion, suggesting that sesamoid biomechanical function may require information beyond sesamoid presence, such as size and location. Ancestral state reconstructions were largely uninformative but highlighted how reconstructions using parsimony can differ from those that are phylogenetically informed. Interestingly, there may be two ways to evolve fabellae, with humans evolving fabellae differently from most other primates. We hypothesize that the 're-emergence' of the lateral fabella in humans may be correlated with the evolution of a unique developmental pathway, potentially correlated with the evolution of straight-legged, bipedal locomotion.
Collapse
|
9
|
Barak MM. The trabecular architecture of the popliteal sesamoid bone (cyamella) from a New Zealand white rabbit (Oryctolagus cuniculus). J Morphol 2024; 285:e21660. [PMID: 38100742 DOI: 10.1002/jmor.21660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Sesamoid bones are ossified structures that are embedded in tendons near articulation. They consist of an inner trabecular bone architecture surrounded by a thin cortical shell. While the formation of sesamoid bones is probably mainly controlled by genetic factors, the proper development and mineralization of a sesamoid bone depends also on mechanical stimulation. While most sesamoid bones are not loaded directly by other bones during locomotion, they still experience forces directed from the tendon in which they are embedded. In cases when the sesamoid bone is experiencing forces only from a single tendon, such as the cyamella in the rabbit, this may give us a tool to study bone functional adaptation in a relatively simple loading setting. This study investigates the internal trabecular architecture of the popliteal sesamoid bone (cyamellae) in New Zealand white (NZW) rabbits (Oryctolagus cuniculus). Five hind limbs of NZW rabbits were micro-computed tomography scanned and the cortical and trabecular architectures of the cyamellae were evaluated. The results revealed that similar to the patella, the cyamella has a thin cortex and a high trabecular bone volume fraction (BV/TV), which is derived mostly from the high trabecular thickness (Tb.Th). Trabecular BV/TV and Tb.Th were not distributed homogeneously, but they were lower at the periphery and higher closer to the proximal and middle of the cyamella, near the musculotendinous junction. The results also demonstrated that trabeculae tend to align along two recognizable orientations, one with the direction of tensile stresses, in line with the popliteal tendon, and the second bridging the narrow space between the cranial and caudal cortical faces of the bone.
Collapse
Affiliation(s)
- Meir M Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| |
Collapse
|
10
|
Kamali Y, Almasi R, Moradi HR, Fathollahi S. Intraspecific anatomical variations of the extensor tendons of the carpus and digits with a reexamination of their insertion sites in the domestic dog (Canis lupus familiaris): a cadaveric study. BMC Vet Res 2023; 19:197. [PMID: 37814315 PMCID: PMC10561507 DOI: 10.1186/s12917-023-03750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND The aim of the current study was to investigate the frequency of variations of the extensor tendons of the carpus and digits in the domestic dog (Canis lupus familiaris) with a reexamination of their insertions as well as the morphometric measurements of the tendons and the brachioradialis muscle. In total, we investigated 68 paired thoracic limbs of the domestic dog (16 females and 18 males) which were fixed in a 10% formalin solution. RESULTS The extensor carpi radialis (ECR) tendons showed striking variations in both splitting and insertion sites. In 4.4% of dissections, ECR had three tendons. Of these tendons, the extra tendon either attached independently on the fourth metacarpal bone (one right) or joined its counterpart tendon at the distal end (cross-connections) (one bilateral). It is worth mentioning that one of the ECR tendons split into two or three slips which inserted on the first, second, third, or fourth metacarpal bone in 11 (16.2%) of the specimens. In addition, we found a long tendinous slip originating from the ECR tendons to digit II or III in 7.4% of the distal limbs. The most common type of contribution to digit III was a third tendon of the extensor digiti I et II (ED III) joining the extensor digitorum lateralis (EDL III) with a frequency of 17.6%. In other types of variations, the contribution to digit III was incomplete. A part of the abductor pollicis longus (APL) deep to the superficial part of the flexor retinaculum seemed to continue up to the flexor digitorum superficialis (FDS) tendon. CONCLUSIONS The rare intraspecific variations of the extensor tendons of the manus described in the current research are valuable from both clinical and phylogenetic perspectives. Nonetheless, their functional importance needs more studies.
Collapse
Affiliation(s)
- Younes Kamali
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Reyhaneh Almasi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Hamid Reza Moradi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeid Fathollahi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
11
|
Manzano A, Abdala V. An overview of the osseous palmar sesamoid in Anura, with the particular case of some Rhinella species. PeerJ 2023; 11:e15063. [PMID: 37214098 PMCID: PMC10194070 DOI: 10.7717/peerj.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/22/2023] [Indexed: 05/24/2023] Open
Abstract
Background Sesamoids are generally regarded as structures that are not part of the tetrapod body plan. The presence of a palmar sesamoid is assumed to serve as a distribution point for the forces of the flexor digitorum communis muscle to the flexor tendons of the digits, which are embedded in the flexor plate. It has been considered that the palmar sesamoid is present in most anuran groups, and it has been suggested that it acts by inhibiting the closing of the palm, preventing grasping. Typical arboreal anuran groups lack a palmar sesamoid and flexor plate, a pattern shared with other tetrapod groups, which can retain a reduced sesamoid and flexor plate. We focus on the anatomical structure of the Rhinella group, which includes species that present an osseous palmar sesamoid and climb bushes or trees to avoid depredation or escape dangerous situations, and can exhibit scansorial and arboreal behaviors. We also add data on the bony sesamoids of 170 anuran species to study the anatomy and evolution of the osseous palmar sesamoid within this amphibian group. Our objective is to bring an overview of the osseous palmar sesamoid in anurans, unveiling the relationship between this element of the manus, its phylogeny, and the anuran habitat use. Methods Skeletal whole-mount specimens of Rhinella were cleared and double-dyed to describe the sesamoid anatomy and related tissues. We review and describe the palmar sesamoid of 170 anuran species from CT images downloaded from Morphosource.org, representing almost all Anuran families. We performed an standard ancestral state reconstruction by optimizing two selected characters (osseous palmar sesamoid presence, distal carpal palmar surface) along with the habitat use of the sampled taxa, using parsimony with Mesquite 3.7. Results Our primary finding is that sesamoid optimization in the anuran phylogeny revealed that its presence is associated with certain clades and not as widespread as previously anticipated. Additionally, we will also be delving into other important outcomes of our study that are relevant to those working in the field of anuran sesamoids. The osseous palmar sesamoid is present in the clade Bufonidae-Dendrobatidae-Leptodactylidae-Brachicephalidae that we named as PS clade, and also in the archeobatrachian pelobatoid Leptobranchium, all strongly terrestrial and burrowing species, though with exceptions. The osseous palmar sesamoid is always present in Bufonidae, but varies in form and size, depending on the mode that they use their manus, such as in the Rhinella margaritifera which has a cylindrical one and also grasping abilities that involve closing the manus. The scattered presence of the bony palmar sesamoid among anuran clades raises the question whether this sesamoid can be present with a different tissular composition in other groups.
Collapse
Affiliation(s)
- Adriana Manzano
- Cátedra de Embriología y Anatomía Animal. Facultad de Ciencias y Tecnología, Universidad Autónoma de Entre Ríos, Diamante, Entre Ríos, Argentina
- Laboratorio de Herpetología, CICyTTP- Consejo Nacional de Ciencia y Tecnología, Diamante, Entre Ríos, Argentina
| | - Virginia Abdala
- Facultad de Cs. Naturales e IML, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
- IBN CONICET-UNT, CONICET-UNT, Horco Molle - Yerba Buena, Tucumán, Argentina
| |
Collapse
|
12
|
Wang R, Hu D, Zhang M, Wang S, Zhao Q, Sullivan C, Xu X. A new confuciusornithid bird with a secondary epiphyseal ossification reveals phylogenetic changes in confuciusornithid flight mode. Commun Biol 2022; 5:1398. [PMID: 36543908 PMCID: PMC9772404 DOI: 10.1038/s42003-022-04316-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The confuciusornithids are the earliest known beaked birds, and constitute the only species-rich clade of Early Cretaceous pygostylian birds that existed prior to the cladogenesis of Ornithothoraces. Here, we report a new confuciusornithid species from the Lower Cretaceous of western Liaoning, northeastern China. Compared to other confuciusornithids, this new species and the recently reported Yangavis confucii both show evidence of stronger flight capability, although the wings of the two taxa differ from one another in many respects. Our aerodynamic analyses under phylogeny indicate that varying modes of flight adaptation emerged across the diversity of confuciusornithids, and to a lesser degree over the course of their ontogeny, and specifically suggest that both a trend towards improved flight capability and a change in flight strategy occurred in confuciusornithid evolution. The new confuciusornithid differs most saliently from other Mesozoic birds in having an extra cushion-like bone in the first digit of the wing, a highly unusual feature that may have helped to meet the functional demands of flight at a stage when skeletal growth was still incomplete. The new find strikingly exemplifies the morphological, developmental and functional diversity of the first beaked birds.
Collapse
Affiliation(s)
- Renfei Wang
- College of Earth Sciences, Jilin University, Changchun, China
- Shenyang Normal University, Paleontological Museum of Liaoning, Key Laboratory for Evolution of Past Life in Northeast Asia, Liaoning Province, Shenyang, China
| | - Dongyu Hu
- Shenyang Normal University, Paleontological Museum of Liaoning, Key Laboratory for Evolution of Past Life in Northeast Asia, Liaoning Province, Shenyang, China.
| | - Meisheng Zhang
- College of Earth Sciences, Jilin University, Changchun, China
| | - Shiying Wang
- Shenyang Normal University, Paleontological Museum of Liaoning, Key Laboratory for Evolution of Past Life in Northeast Asia, Liaoning Province, Shenyang, China
| | - Qi Zhao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Corwin Sullivan
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Philip J. Currie Dinosaur Museum, Wembley, AB, Canada
| | - Xing Xu
- Shenyang Normal University, Paleontological Museum of Liaoning, Key Laboratory for Evolution of Past Life in Northeast Asia, Liaoning Province, Shenyang, China.
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- Center for Vertebrate Evolutionary Biology, Yunnan University, Kunming, China.
| |
Collapse
|
13
|
Griffing AH, Gamble T, Bauer AM, Russell AP. Ontogeny of the paraphalanges and derived phalanges of Hemidactylus turcicus (Squamata: Gekkonidae). J Anat 2022; 241:1039-1053. [PMID: 35920508 PMCID: PMC9482705 DOI: 10.1111/joa.13735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Gekkotan lizards of the genus Hemidactylus exhibit derived digital morphologies. These include heavily reduced antepenultimate phalanges of digits III and IV of the manus and digits III-V of the pes, as well as enigmatic cartilaginous structures called paraphalanges. Despite this well-known morphological derivation, no studies have investigated the development of these structures. We aimed to determine if heterochrony underlies the derived antepenultimate phalanges of Hemidactylus. Furthermore, we aimed to determine if convergently evolved paraphalanges exhibit similar or divergent developmental patterns. Herein we describe embryonic skeletal development in the hands and feet of four gekkonid species, exhibiting a range of digital morphologies. We determined that the derived antepenultimate phalanges of Hemidactylus are the products of paedomorphosis. Furthermore, we found divergent developmental patterns between convergently evolved paraphalanges.
Collapse
Affiliation(s)
- Aaron H. Griffing
- Department of Biological SciencesMarquette UniversityMilwaukeeWisconsinUSA
- Milwaukee Public MuseumMilwaukeeWisconsinUSA
- Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonNew JerseyUSA
- Department of Molecular BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Tony Gamble
- Department of Biological SciencesMarquette UniversityMilwaukeeWisconsinUSA
- Milwaukee Public MuseumMilwaukeeWisconsinUSA
- Bell Museum of Natural HistoryUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Aaron M. Bauer
- Department of Biology and Center for Biodiversity and Ecosystem StewardshipVillanova UniversityVillanovaPennsylvaniaUSA
| | - Anthony P. Russell
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
14
|
Untangling the morphological contradiction: First ontogenetic description of the post-hatching skeleton of the direct-developing frog Brachycephalus garbeanus Miranda-Ribeiro, 1920 (Amphibia: Anura: Brachycephalidae) with comments on the genus miniaturization. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Wheelhouse J, Vogelnest L, Nicoll RG. Skeletal radiographic anatomy of echidnas: insights into unusual mammals. J Mammal 2021. [DOI: 10.1093/jmammal/gyab138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Long-beaked echidnas (Zaglossus spp.) have received less attention in the literature than Short-beaked echidnas (Tachyglossus aculeatus). Their natural history, anatomy, and physiology are poorly known. To improve our understanding of this unique group, we undertook a radiographic study of the Eastern long-beaked echidna (Zaglossus bartoni), and provide a comparative analysis of its radiographic skeletal anatomy with that of T. aculeatus. We examine conventional radiography and computed tomographic images of Zaglossus and Tachyglossus, describe the anatomical features of Zaglossus, and compare those with Tachyglossus. We provide evidence of epicoracoid overlap in echidnas, a feature not well documented in monotremes. The significance of epicoracoid overlap requires further investigation. Our study is intended as a reference for the radiographic anatomy of Z. bartoni.
Collapse
Affiliation(s)
| | - Larry Vogelnest
- Taronga Conservation Society Australia, Taronga Zoo, Mosman, New South Wales, Australia
| | - Robert G Nicoll
- Veterinary Imaging Associates, St. Leonards, New South Wales, Australia
| |
Collapse
|
16
|
Pinheiro PDP, Blotto BL, Ron SR, Stanley EL, Garcia PCA, Haddad CFB, Grant T, Faivovich J. Prepollex diversity and evolution in Cophomantini (Anura: Hylidae: Hylinae). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Several species of Cophomantini are known to have an enlarged prepollex, commonly modified as an osseous spine. We surveyed the osteology and myology of the prepollex and associated elements of 94 of the 190 species of Cophomantini, sampling all genera, except Nesorohyla. Two distinct prepollex morphologies were found: a blade-shaped and a spine-shaped morphology. We described the observed variation in 17 discrete characters to study their evolution in the most inclusive phylogenetic hypothesis for Cophomantini. Both morphologies evolved multiple times during the evolutionary history of this clade, but the origin of the spine-shaped distal prepollex in Boana and Bokermannohyla is ambiguous. The articulation of metacarpal II with the prepollex through a medial expansion of the metacarpal proximal epiphysis is a synapomorphy for Boana. The shape of the curve of the spine, and a large post-articular process of the distal prepollex, are synapomorphies for the Boana pulchella group, the latter being homoplastic in the Bokermannohyla martinsi group. Muscle character states associated with the spine-shaped prepollex are plesiomorphic for Cophomantini. We discuss evolution, function, behaviour and sexual dimorphism related to the prepollical elements. A bony spine is associated with fights between males, but forearm hypertrophy could be more related with habitat than with territorial combat.
Collapse
Affiliation(s)
- Paulo D P Pinheiro
- Laboratório de Anfíbios, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Boris L Blotto
- Laboratório de Anfíbios, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Laboratório de Herpetologia e Centro de Aquicultura (CAUNESP), Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, Gainesville, Florida, USA
| | - Paulo C A Garcia
- Laboratório de Herpetologia, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Célio F B Haddad
- Laboratório de Herpetologia e Centro de Aquicultura (CAUNESP), Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Taran Grant
- Laboratório de Anfíbios, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Angel Gallardo 470, C1405DJR, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Amador LI. Sesamoids and Morphological Variation: a Hypothesis on the Origin of Rod-like Skeletal Elements in Aerial Mammals. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Folly M, de Luna‐Dias C, Miguel IR, Ferreira JC, Machado A, Tadeu Lopes R, Pombal JP. Tiny steps towards greater knowledge: An osteological review with novel data on the Atlantic Forest toadlets of the
Brachycephalus ephippium
species group. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuella Folly
- Departamento de Vertebrados Museu Nacional Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Cyro de Luna‐Dias
- Laboratório de Anfíbios e Répteis Departamento de Zoologia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Ingrid R. Miguel
- Departamento de Vertebrados Museu Nacional Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Julio C. Ferreira
- Departamento de Vertebrados Museu Nacional Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Alessandra Machado
- Laboratório de Instrumentação Nuclear Instituto Alberto Luiz Coimbra de Pós‐graduação e Pesquisa em Engenharia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Ricardo Tadeu Lopes
- Laboratório de Instrumentação Nuclear Instituto Alberto Luiz Coimbra de Pós‐graduação e Pesquisa em Engenharia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - José P. Pombal
- Departamento de Vertebrados Museu Nacional Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
19
|
Berthaume MA, Bull AMJ. Cyamella (a popliteal sesamoid bone) prevalence: A systematic review, meta-analysis, and proposed classification system. Clin Anat 2021; 34:810-820. [PMID: 33905585 DOI: 10.1002/ca.23743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 01/05/2023]
Abstract
The cyamella is a rare, generally asymptomatic, knee sesamoid bone located in the proximal tendon of the popliteal muscle. Only two studies have investigated cyamella presence/absence in humans, putting ossified prevalence rates at 0.57%-1.8%. We aim to (a) determine cyamella prevalence in a Korean population, (b) examine coincident development of the cyamella and fabella, and (c) perform a systematic review and meta-analysis on the cyamella in humans. Medical computed tomography scans of 106 individuals were reviewed. A systematic review and meta-analysis were performed following PRISMA guidelines. Cyamellae were found in 3/212 knees (1.4%), and presence/absence was uncorrelated to height, age, and sex. The cyamella was not found coincidentally with the fabella, although the statistical power was low. Our systematic review/meta-analysis revealed cyamellae were generally asymptomatic and ossification could occur at 14 years. Cyamellae were equally likely to be found in both sexes, knees, one or both knees, and there appeared to be no global variation in prevalence rates. Cyamellae were found in three distinct locations. There is little support for the role of intrinsic genetic and/or environmental factors in cyamella development in humans. However, the apparent phylogenetic signal in Primates suggests genetics plays a role in cyamella development. We propose a cyamella classification system based on cyamella location (Class I, popliteal sulcus; Class II, tibial condyle; Class III, fibular head) and hypothesize locations may correspond to distinct developmental pathways, and cyamella function may vary with location.
Collapse
Affiliation(s)
- Michael A Berthaume
- Department of Bioengineering, Imperial College London, London, UK.,Division of Mechanical Engineering and Design, London South Bank University, London, UK
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
20
|
Van den Broeck M, Stock E, Duchateau L, Cornillie P. The sesamoid bone in the long abductor muscle tendon of the first digit in the dog. Anat Rec (Hoboken) 2021; 305:37-51. [PMID: 33943018 DOI: 10.1002/ar.24648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 01/27/2023]
Abstract
The sesamoid bone in the tendon of the m. abductor digiti primi longus is considered present in most dog breeds and is described to be radiologically detectable at the level of the carpus from the age of 4 months. However, an extensive investigation of this sesamoid bone has not been conducted before. The aim of this study was therefore to determine its prevalence in different dog breeds, to describe its histological development, and to determine the age at which it becomes radiologically visible. The prevalence of the sesamoid bone was assessed on radiographic images of the carpus or by dissection of the carpal region in 743 adult dogs of 115 breeds. Its development was studied by dissection and histological analysis in 45 puppies and its timing of radiological appearance was evaluated in 209 puppies. At least one sesamoid bone was present in all adult dogs, except for 14 dogs of six breeds of predominantly the small breed category. The lowest prevalence rate of 38.46% was exhibited in the French bulldog. The histological development could be divided into five stages. The first radiographic appearance corresponded to the coalescence of smaller ossification centers into one big nucleus (stage 4). The mean time of radiographic appearance was 108.4 days. This study provides extensive data on the prevalence and timing of the radiographic appearance of a sesamoid at the carpus of the dog. The data on radiographic appearance may be helpful in the age estimation of puppies.
Collapse
Affiliation(s)
- Martine Van den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Emmelie Stock
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Duchateau
- Biometrics Research Center, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Pieter Cornillie
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
21
|
Ponssa ML, Abdala V. Sesamoids in Caudata and Gymnophiona (Lissamphibia): absences and evidence. PeerJ 2021; 8:e10595. [PMID: 33384907 PMCID: PMC7751427 DOI: 10.7717/peerj.10595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/26/2020] [Indexed: 11/30/2022] Open
Abstract
An integrative definition of sesamoid bones has been recently proposed, highlighting their relationship with tendons and ligaments, their genetic origin, the influence of epigenetic stimuli on their development, and their variable tissue composition. Sesamoid bones occur mainly associated with a large number of mobile joints in vertebrates, most commonly in the postcranium. Here, we present a survey of the distribution pattern of sesamoids in 256 taxa of Caudata and Gymnophiona and 24 taxa of temnospondyls and lepospondyls, based on dissections, high-resolution X-ray computed tomography from digital databases and literature data. These groups have a pivotal role in the interpretation of the evolution of sesamoids in Lissamphibia and tetrapods in general. Our main goals were: (1) to contribute to the knowledge of the comparative anatomy of sesamoids in Lissamphibia; (2) to assess the evolutionary history of selected sesamoids. We formally studied the evolution of the observed sesamoids by optimizing them in the most accepted phylogeny of the group. We identified only three bony or cartilaginous sesamoids in Caudata: the mandibular sesamoid, which is adjacent to the jaw articulation; one located on the mandibular symphysis; and one located in the posterior end of the maxilla. We did not observe any cartilaginous or osseous sesamoid in Gymnophiona. Mapping analyses of the sesamoid dataset of urodeles onto the phylogeny revealed that the very conspicuous sesamoid in the mandibular symphysis of Necturus beyeri and Amphiuma tridactylum is an independent acquisition of these taxa. On the contrary, the sesamoid located between the maxilla and the lower jaw is a new synapomorphy that supports the node of Hydromantes platycephalus and Karsenia coreana. The absence of a mandibular sesamoid is plesiomorphic to Caudata, whereas it is convergent in seven different families. The absence of postcranial sesamoids in salamanders might reveal a paedomorphic pattern that would be visible in their limb joints.
Collapse
Affiliation(s)
- María Laura Ponssa
- Área Herpetología, Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel de Tucumán, Tucumán, Argentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical (IBN), UNT-CONICET. Cátedra de Biología General, Facultad de Ciencias Naturales e IML, UNT, Yerba Buena, Tucuman, Argentina
| |
Collapse
|
22
|
Fontanarrosa G, Fratani J, Vera MC. Delimiting the boundaries of sesamoid identities under the network theory framework. PeerJ 2020; 8:e9691. [PMID: 32874781 PMCID: PMC7439958 DOI: 10.7717/peerj.9691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/19/2020] [Indexed: 11/20/2022] Open
Abstract
Sesamoid identity has long been the focus of debate, and how they are linked to other elements of the skeleton has often been considered relevant to their definition. A driving hypothesis of our work was that sesamoids’ nature relies deeply on their connections, and thus we propose an explicit network framework to investigate this subject in Leptodactylus latinasus (Anura: Leptodactylidae). Through the dissection of L. latinasus’ skeleton, we modeled its anatomical network where skeletal elements were considered nodes while joints, muscles, tendons, and aponeurosis were considered links. The skeletal elements were categorized into canonical skeletal pieces, embedded sesamoids, and glide sesamoids. We inquired about the general network characterization and we have explored further into sesamoid connectivity behavior. We found that the network is structured in a modular hierarchical organization, with five modules on the first level and two modules on the second one. The modules reflect a functional, rather than a topological proximity clustering of the skeleton. The 25 sesamoid pieces are members of four of the first-level modules. Node parameters (centrality indicators) showed that: (i) sesamoids are, in general terms, peripheral elements of the skeleton, loosely connected to the canonical bone structures; (ii) embedded sesamoids are not significantly distinguishable from canonical skeletal elements; and (iii) glide sesamoids exhibit the lowest centrality values and strongly differ from both canonical skeletal elements and embedded sesamoids. The loose connectivity pattern of sesamoids, especially glides, could be related to their evolvability, which in turn seems to be reflected in their morphological variation and facultative expression. Based on the connectivity differences among skeletal categories found in our study, an open question remains: can embedded and glide sesamoids be defined under the same criteria? This study presents a new approach to the study of sesamoid identity and to the knowledge of their morphological evolution.
Collapse
Affiliation(s)
- Gabriela Fontanarrosa
- Instituto de Biodiversidad Neotropical (IBN), CONICET-UNT, Yerba Buena, Tucumán, Argentina
| | - Jessica Fratani
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel, Tucumán, Argentina
| | - Miriam C Vera
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS), CONICET-UNaM, Posadas, Misiones, Argentina
| |
Collapse
|
23
|
Denyer AL, Regnault S, Hutchinson JR. Evolution of the patella and patelloid in marsupial mammals. PeerJ 2020; 8:e9760. [PMID: 32879804 PMCID: PMC7443095 DOI: 10.7717/peerj.9760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
The musculoskeletal system of marsupial mammals has numerous unusual features beyond the pouch and epipubic bones. One example is the widespread absence or reduction (to a fibrous “patelloid”) of the patella (“kneecap”) sesamoid bone, but prior studies with coarse sampling indicated complex patterns of evolution of this absence or reduction. Here, we conducted an in-depth investigation into the form of the patella of extant marsupial species and used the assembled dataset to reconstruct the likely pattern of evolution of the marsupial patella. Critical assessment of the available literature was followed by examination and imaging of museum specimens, as well as CT scanning and histological examination of dissected wet specimens. Our results, from sampling about 19% of extant marsupial species-level diversity, include new images and descriptions of the fibrocartilaginous patelloid in Thylacinus cynocephalus (the thylacine or “marsupial wolf”) and other marsupials as well as the ossified patella in Notoryctes ‘marsupial moles’, Caenolestes shrew opossums, bandicoots and bilbies. We found novel evidence of an ossified patella in one specimen of Macropus rufogriseus (Bennett’s wallaby), with hints of similar variation in other species. It remains uncertain whether such ossifications are ontogenetic variation, unusual individual variation, pathological or otherwise, but future studies must continue to be conscious of variation in metatherian patellar sesamoid morphology. Our evolutionary reconstructions using our assembled data vary, too, depending on the reconstruction algorithm used. A maximum likelihood algorithm favours ancestral fibrocartilaginous “patelloid” for crown clade Marsupialia and independent origins of ossified patellae in extinct sparassodonts, peramelids, notoryctids and caenolestids. A maximum parsimony algorithm favours ancestral ossified patella for the clade [Marsupialia + sparassodonts] and subsequent reductions into fibrocartilage in didelphids, dasyuromorphs and diprotodonts; but this result changed to agree more with the maximum likelihood results if the character state reconstructions were ordered. Thus, there is substantial homoplasy in marsupial patellae regardless of the evolutionary algorithm adopted. We contend that the most plausible inference, however, is that metatherians independently ossified their patellae at least three times in their evolution. Furthermore, the variability of the patellar state we observed, even within single species (e.g. M. rufogriseus), is fascinating and warrants further investigation, especially as it hints at developmental plasticity that might have been harnessed in marsupial evolution to drive the complex patterns inferred here.
Collapse
Affiliation(s)
- Alice L Denyer
- Structure & Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Sophie Regnault
- Structure & Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom.,Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States of America
| | - John R Hutchinson
- Structure & Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| |
Collapse
|
24
|
Nasoori A. Formation, structure, and function of extra-skeletal bones in mammals. Biol Rev Camb Philos Soc 2020; 95:986-1019. [PMID: 32338826 DOI: 10.1111/brv.12597] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
This review describes the formation, structure, and function of bony compartments in antlers, horns, ossicones, osteoderm and the os penis/os clitoris (collectively referred to herein as AHOOO structures) in extant mammals. AHOOOs are extra-skeletal bones that originate from subcutaneous (dermal) tissues in a wide variety of mammals, and this review elaborates on the co-development of the bone and skin in these structures. During foetal stages, primordial cells for the bony compartments arise in subcutaneous tissues. The epithelial-mesenchymal transition is assumed to play a key role in the differentiation of bone, cartilage, skin and other tissues in AHOOO structures. AHOOO ossification takes place after skeletal bone formation, and may depend on sexual maturity. Skin keratinization occurs in tandem with ossification and may be under the control of androgens. Both endochondral and intramembranous ossification participate in bony compartment formation. There is variation in gradients of density in different AHOOO structures. These gradients, which vary according to function and species, primarily reduce mechanical stress. Anchorage of AHOOOs to their surrounding tissues fortifies these structures and is accomplished by bone-bone fusion and Sharpey fibres. The presence of the integument is essential for the protection and function of the bony compartments. Three major functions can be attributed to AHOOOs: mechanical, visual, and thermoregulatory. This review provides the first extensive comparative description of the skeletal and integumentary systems of AHOOOs in a variety of mammals.
Collapse
Affiliation(s)
- Alireza Nasoori
- School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|