1
|
Lalande LD, Bourgoin G, Carbillet J, Cheynel L, Debias F, Ferté H, Gaillard JM, Garcia R, Lemaître JF, Palme R, Pellerin M, Peroz C, Rey B, Vuarin P, Gilot-Fromont E. Early-life glucocorticoids accelerate lymphocyte count senescence in roe deer. Gen Comp Endocrinol 2024; 357:114595. [PMID: 39059616 DOI: 10.1016/j.ygcen.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Immunosenescence corresponds to the progressive decline of immune functions with increasing age. Although it is critical to understand what modulates such a decline, the ecological and physiological drivers of immunosenescence remain poorly understood in the wild. Among them, the level of glucocorticoids (GCs) during early life are good candidates to modulate immunosenescence patterns because these hormones can have long-term consequences on individual physiology. Indeed, GCs act as regulators of energy allocation to ensure allostasis, are part of the stress response triggered by unpredictable events and have immunosuppressive effects when chronically elevated. We used longitudinal data collected over two decades in two populations of roe deer (Capreolus capreolus) to test whether higher baseline GC levels measured within the first year of life were associated with a more pronounced immunosenescence and parasite susceptibility. We first assessed immunosenescence trajectories in these populations facing contrasting environmental conditions. Then, we found that juvenile GC levels can modulate lymphocyte trajectory. Lymphocyte depletion was accelerated late in life when GCs were elevated early in life. Although the exact mechanism remains to be elucidated, it could involve a role of GCs on thymic characteristics. In addition, elevated GC levels in juveniles were associated with a higher abundance of lung parasites during adulthood for individuals born during bad years, suggesting short-term negative effects of GCs on juvenile immunity, having in turn long-lasting consequences on adult parasite load, depending on juvenile environmental conditions. These findings offer promising research directions in assessing the carry-over consequences of GCs on life-history traits in the wild.
Collapse
Affiliation(s)
- Lucas D Lalande
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France.
| | - Gilles Bourgoin
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France
| | - Jeffrey Carbillet
- Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Louise Cheynel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire d'Écologie des Hydrosystèmes Naturels et Anthropisés UMR 5023, F-69622 Villeurbanne, France
| | - François Debias
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Hubert Ferté
- Université de Reims, Épidémio-Surveillance et Circulation de Parasites dans les Environnements UR 7510, 55100 Reims, France
| | - Jean-Michel Gaillard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rebecca Garcia
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Jean-François Lemaître
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Maryline Pellerin
- Office Français de la Biodiversité, Direction de la Recherche et de l'Appui Scientifique, Service Conservation et Gestion Durable des Espèces Exploités, 52210 Châteauvillain, France
| | - Carole Peroz
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France
| | - Benjamin Rey
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Pauline Vuarin
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France.
| |
Collapse
|
2
|
Veloso-Frías J, Soto-Gamboa M, Mastromonaco G, Acosta-Jamett G. Seasonal Hair Glucocorticoid Fluctuations in Wild Mice ( Phyllotis darwini) within a Semi-Arid Landscape in North-Central Chile. Animals (Basel) 2024; 14:1260. [PMID: 38731264 PMCID: PMC11083726 DOI: 10.3390/ani14091260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Mammals in drylands face environmental challenges exacerbated by climate change. Currently, human activity significantly impacts these environments, and its effects on the energy demands experienced by individuals have not yet been determined. Energy demand in organisms is managed through elevations in glucocorticoid levels, which also vary with developmental and health states. Here, we assessed how anthropization, individual characteristics, and seasonality influence hair glucocorticoid concentration in the Darwin's leaf-eared mouse (Phyllotis darwini) inhabiting two areas with contrasting anthropogenic intervention in a semi-arid ecosystem of northern Chile. Hair samples were collected (n = 199) to quantify hair corticosterone concentration (HCC) using enzyme immunoassays; additionally, sex, body condition, and ectoparasite load were recorded. There were no differences in HCC between anthropized areas and areas protected from human disturbance; however, higher concentrations were recorded in females, and seasonal fluctuations were experienced by males. The results indicate that animals inhabiting semi-arid ecosystems are differentially stressed depending on their sex. Additionally, sex and season have a greater impact on corticosterone concentration than anthropogenic perturbation, possibly including temporal factors, precipitation, and primary production. The influence of sex and seasonality on HCC in P. darwini make it necessary to include these variables in future stress assessments of this species.
Collapse
Affiliation(s)
- Joseline Veloso-Frías
- Institute of Preventive Veterinary Medicine, Austral University of Chile, Valdivia 5090000, Chile;
| | - Mauricio Soto-Gamboa
- Institute of Environmental and Evolutionary Sciences, Austral University of Chile, Valdivia 5090000, Chile;
| | | | - Gerardo Acosta-Jamett
- Institute of Preventive Veterinary Medicine, Austral University of Chile, Valdivia 5090000, Chile;
- Center for Surveillance and Evolution of Infectious Diseases (CSEID), Austral University of Chile, Valdivia 5090000, Chile
| |
Collapse
|
3
|
Pokharel SS, Brown JL. Physiological plasticity in elephants: highly dynamic glucocorticoids in African and Asian elephants. CONSERVATION PHYSIOLOGY 2023; 11:coad088. [PMCID: PMC10673820 DOI: 10.1093/conphys/coad088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 09/27/2024]
Abstract
Slowly reproducing and long-lived terrestrial mammals are often more at risk from challenges that influence fitness and survival. It is, therefore, important to understand how animals cope with such challenges and how coping mechanisms translate over generations and affect phenotypic plasticity. Rapidly escalating anthropogenic challenges may further diminish an animal’s ability to reinstate homeostasis. Research to advance insights on elephant stress physiology has predominantly focused on relative or comparative analyses of a major stress response marker, glucocorticoids (GCs), across different ecological, anthropogenic, and reproductive contexts. This paper presents an extensive review of published findings on Asian and African elephants from 1980 to 2023 (May) and reveals that stress responses, as measured by alterations in GCs in different sample matrices, often are highly dynamic and vary within and across individuals exposed to similar stimuli, and not always in a predictable fashion. Such dynamicity in physiological reactivity may be mediated by individual differences in personality traits or coping styles, ecological conditions, and technical factors that often are not considered in study designs. We describe probable causations under the ‘Physiological Dynamicity Model’, which considers context–experience–individuality effects. Highly variable adrenal responses may affect physiological plasticity with potential fitness and survival consequences. This review also addresses the significance of cautious interpretations of GCs data in the context of normal adaptive stress versus distress. We emphasize the need for long-term assessments of GCs that incorporate multiple markers of ‘stress’ and ‘well-being’ to decipher the probable fitness consequences of highly dynamic physiological adrenal responses in elephants. Ultimately, we propose that assessing GC responses to current and future challenges is one of the most valuable and informative conservation tools we have for guiding conservation strategies.
Collapse
Affiliation(s)
- Sanjeeta Sharma Pokharel
- Center for Species Survival, Smithsonian National Zoo Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA
| | - Janine L Brown
- Center for Species Survival, Smithsonian National Zoo Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA
| |
Collapse
|
4
|
Pérez-Ortega B, Hendry AP. A meta-analysis of human disturbance effects on glucocorticoid hormones in free-ranging wild vertebrates. Biol Rev Camb Philos Soc 2023; 98:1459-1471. [PMID: 37095625 DOI: 10.1111/brv.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
Free-ranging wild vertebrates need to cope with natural and anthropogenic stressors that cause short and/or long-term behavioural and physiological responses. In areas of high human disturbance, the use of glucocorticoid (GC) hormones as biomarkers to measure stress responses is an increasingly common tool for understanding how animals cope with human disturbance. We conducted a meta-analysis to investigate how human disturbances such as habitat conversion, habitat degradation, and ecotourism influence baseline GC hormones of free-ranging wild vertebrates, and we further test the role of protected areas in reducing the impact of such disturbances on these hormones. A total of 58 studies met the inclusion criteria, providing 152 data points for comparing levels of GC hormones under disturbed and undisturbed conditions. The overall effect size suggests that human disturbance does not cause a consistent increase in levels of GC hormones (Hedges' g = 0.307, 95% CI = -0.062 to 0.677). However, when the data were analysed by disturbance type, living in unprotected areas or in areas with habitat conversion were found to increase GC hormone levels compared to living in protected or undisturbed areas. By contrast, we found no evidence that ecotourism or habitat degradation generates a consistent increase in baseline GC hormone levels. Among taxonomic groups, mammals appeared more sensitive to human disturbance than birds. We advocate the use of GC hormones for inferring major human-caused contributors to the stress levels of free-ranging wild vertebrates - although such information needs to be combined with other measures of stress and interpreted in the context of an organism's life history, behaviour, and history of interactions with human disturbance.
Collapse
Affiliation(s)
- Betzi Pérez-Ortega
- McGill University, Redpath Museum and Department of Biology, 859 Sherbrooke Street West, Montreal, Quebec, H3A 0C4, Canada
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Panama, Republic of Panama
| | - Andrew P Hendry
- McGill University, Redpath Museum and Department of Biology, 859 Sherbrooke Street West, Montreal, Quebec, H3A 0C4, Canada
| |
Collapse
|
5
|
Madelaire CB, Gomes FR. Relationships between hormone levels, metabolism and immune response in toads from a semi-arid region. Gen Comp Endocrinol 2023; 338:114263. [PMID: 36931441 DOI: 10.1016/j.ygcen.2023.114263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Steroid hormones (e.g. androgens [AN] and corticosterone [CORT]) modulate complex physiological functions such as reproduction, energy mobilization, metabolism, and immunity. Fluctuations in environmental resource availability along with other factors, such as parasitism, can interact with the effects of these steroids, modifying aspects of immunocompetence and its metabolic costs. To understand these possible interactions, we studied AN and CORT, immune response [swelling response to phytohemagglutinin (PHA) injection and bacterial killing ability (BKA)], parasite load, resting metabolic rate (RMR) and rates of oxygen consumption after PHA injection, in two different phases of the annual cycle of a toad (Rhinella jimi) from a highly seasonal environment (Brazilian semi-arid, Caatinga). We observed increased rates of O2 consumption after both PHA and the control (saline) injection, indicating a metabolic response to adverse stimuli but not the immune challenge. Toads showing higher RMR and VO2 after the adverse stimuli (PHA/saline injection) had lower field AN and CORT plasma levels, suggesting these hormones might mediate a metabolic energy conservation strategy both at baseline levels and after adverse stimuli. Parasite load seem to impose an energetic constrain to the metabolic response to PHA and saline injection. Also, individuals showing higher PHA swelling response had higher field CORT plasma levels (particularly when males are breeding) which opposes the idea of a possible trade-off between reproductive activity and other physiological traits and indicate the immunoenhancing effects CORT elevated at physiological levels. BKA did not show a seasonal variation or correlation with body condition nor hormone levels, indicating that the immune surveillance mediated by the complement remains constant despite other ecological and physiological changes.
Collapse
Affiliation(s)
- Carla B Madelaire
- Biodiversity and Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA, 92027, United States.
| | - Fernando R Gomes
- University of São Paulo, Institute of Biosciences, Trav. 14 da Rua do Matão, 321, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
6
|
Shanebeck KM, Besson AA, Lagrue C, Green SJ. The energetic costs of sub-lethal helminth parasites in mammals: a meta-analysis. Biol Rev Camb Philos Soc 2022; 97:1886-1907. [PMID: 35678252 DOI: 10.1111/brv.12867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
Abstract
Parasites, by definition, have a negative effect on their host. However, in wild mammal health and conservation research, sub-lethal infections are commonly assumed to have negligible health effects unless parasites are present in overwhelming numbers. Here, we propose a definition for host health in mammals that includes sub-lethal effects of parasites on the host's capacity to adapt to the environment and maintain homeostasis. We synthesized the growing number of studies on helminth parasites in mammals to assess evidence for the relative magnitude of sub-lethal effects of infection across mammal taxa based on this expanded definition. Specifically, we develop and apply a framework for organizing disparate metrics of parasite effects on host health and body condition according to their impact on an animal's energetic condition, defined as the energetic burden of pathogens on host physiological and behavioural functions that relate directly to fitness. Applying this framework within a global meta-analysis of helminth parasites in wild, laboratory and domestic mammal hosts produced 142 peer-reviewed studies documenting 599 infection-condition effects. Analysing these data within a multiple working hypotheses framework allowed us to evaluate the relative weighted contribution of methodological (study design, sampling protocol, parasite quantification methods) and biological (phylogenetic relationships and host/parasite life history) moderators to variation in the magnitude of health effects. We found consistently strong negative effects of infection on host energetic condition across taxonomic groups, with unusually low heterogeneity in effect sizes when compared with other ecological meta-analyses. Observed effect size was significantly lower within cross-sectional studies (i.e. observational studies that investigated a sub-set of a population at a single point in time), the most prevalent methodology. Furthermore, opportunistic sampling led to a weaker negative effect compared to proactive sampling. In the model of host taxonomic group, the effect of infection on energetic condition in carnivores was not significant. However, when sampling method was included, it explained substantial inter-study variance; proactive sampling showing a strongly significant negative effect while opportunistic sampling detected only a weak, non-significant effect. This may partly underlie previous assumptions that sub-lethal parasites do not have significant effects on host health. We recommend future studies adopt energetic condition as the framework for assessing parasite effects on wildlife health and provide guidelines for the selection of research protocols, health proxies, and relating infection to fitness.
Collapse
Affiliation(s)
- Kyle M Shanebeck
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| | - Anne A Besson
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand
| | - Clement Lagrue
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada.,Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand.,Department of Conservation, 265 Princes Street, Dunedin, 9016, New Zealand
| | - Stephanie J Green
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Di Francesco J, Kwong GPS, Deardon R, Checkley SL, Mastromonaco GF, Mavrot F, Leclerc LM, Kutz S. Qiviut cortisol is associated with metrics of health and other intrinsic and extrinsic factors in wild muskoxen ( Ovibos moschatus). CONSERVATION PHYSIOLOGY 2022; 10:coab103. [PMID: 35492408 PMCID: PMC9040286 DOI: 10.1093/conphys/coab103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/03/2021] [Accepted: 12/27/2021] [Indexed: 05/21/2023]
Abstract
Glucocorticoid (GC) levels are increasingly and widely used as biomarkers of hypothalamic-pituitary-adrenal (HPA) axis activity to study the effects of environmental changes and other perturbations on wildlife individuals and populations. However, identifying the intrinsic and extrinsic factors that influence GC levels is a key step in endocrinology studies to ensure accurate interpretation of GC responses. In muskoxen, qiviut (fine woolly undercoat hair) cortisol concentration is an integrative biomarker of HPA axis activity over the course of the hair's growth. We gathered data from 219 wild muskoxen harvested in the Canadian Arctic between October 2015 and May 2019. We examined the relationship between qiviut cortisol and various intrinsic (sex, age, body condition and incisor breakage) and extrinsic biotic factors (lungworm and gastrointestinal parasite infections and exposure to bacteria), as well as broader non-specific landscape and temporal features (geographical location, season and year). A Bayesian approach, which allows for the joint estimation of missing values in the data and model parameters estimates, was applied for the statistical analyses. The main findings include the following: (i) higher qiviut cortisol levels in males than in females; (ii) inter-annual variations; (iii) higher qiviut cortisol levels in a declining population compared to a stable population; (iv) a negative association between qiviut cortisol and marrow fat percentage; (v) a relationship between qiviut cortisol and the infection intensity of the lungworm Umingmakstrongylus pallikuukensis, which varied depending on the geographical location; and (vi) no association between qiviut cortisol and other pathogen exposure/infection intensity metrics. This study confirmed and further identified important sources of variability in qiviut cortisol levels, while providing important insights on the relationship between GC levels and pathogen exposure/infection intensity. Results support the use of qiviut cortisol as a tool to monitor temporal changes in HPA axis activity at a population level and to inform management and conservation actions.
Collapse
Affiliation(s)
- Juliette Di Francesco
- Corresponding author: Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada.
| | - Grace P S Kwong
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada
| | - Rob Deardon
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Sylvia L Checkley
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada
| | - Gabriela F Mastromonaco
- Reproductive Physiology Unit, Toronto Zoo, 361A Old Finch Avenue, Scarborough, Ontario M1B 5K7, Canada
| | - Fabien Mavrot
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada
| | - Lisa-Marie Leclerc
- Department of Environment, Government of Nunavut, P.O. Box 377, Kugluktuk, Nunavut X0B 0E0, Canada
| | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
8
|
Shutt-Phillips K, Pafčo B, Heistermann M, Kasim A, Petrželková KJ, Profousová-Pšenková I, Modrý D, Todd A, Fuh T, Dicky JF, Bopalanzognako JB, Setchell JM. Fecal glucocorticoids and gastrointestinal parasite infections in wild western lowland gorillas (Gorilla gorilla gorilla) involved in ecotourism. Gen Comp Endocrinol 2021; 312:113859. [PMID: 34298054 DOI: 10.1016/j.ygcen.2021.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Wildlife ecotourism can offer a source of revenue which benefits local development and conservation simultaneously. However, habituation of wildlife for ecotourism can cause long-term elevation of glucocorticoid hormones, which may suppress immune function and increase an animal's vulnerability to disease. We have previously shown that western lowland gorillas (Gorilla gorilla gorilla) undergoing habituation in Dzanga-Sangha Protected Areas, Central African Republic, have higher fecal glucocorticoid metabolite (FGCM) levels than both habituated and unhabituated gorillas. Here, we tested the relationship between FGCM levels and strongylid infections in the same gorillas. If high FGCM levels suppress the immune system, we predicted that FGCM levels will be positively associated with strongylid egg counts and that gorillas undergoing habituation will have the highest strongylid egg counts, relative to both habituated and unhabituated gorillas. We collected fecal samples over 12 months in two habituated gorilla groups, one group undergoing habituation and completely unhabituated gorillas. We established FGCM levels and fecal egg counts of Necator/Oesophagostomum spp. and Mammomonogamus sp. Controlling for seasonal variation and age-sex category in strongylid infections we found no significant relationship between FGCMs and Nectator/Oesophagostomum spp. or Mammomonogamus sp. egg counts in a within group comparison in either a habituated group or a group undergoing habituation. However, across groups, egg counts of Nectator/Oesophagostomum spp. were lowest in unhabituated animals and highest in the group undergoing habituation, matching the differences in FGCM levels among these gorilla groups. Our findings partially support the hypothesis that elevated glucocorticoids reduce a host's ability to control the extent of parasitic infections, and show the importance of non-invasive monitoring of endocrine function and parasite infection in individuals exposed to human pressure including habituation process and ecotourism.
Collapse
Affiliation(s)
- Kathryn Shutt-Phillips
- Department of Anthropology, Durham University, Durham, UK; UN Environment Programme World Conservation Monitoring Center, Cambridge, UK
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Czech Republic.
| | | | - Adetayo Kasim
- Wolfson Research Institute for Health and Wellbeing, Durham University Queen's Campus University Boulevard, Thornaby, UK
| | - Klára J Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Liberec Zoo, Liberec, Czech Republic.
| | | | - David Modrý
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences, Prague, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Terence Fuh
- WWF-CAR, BP 1053 Bangui, Central African Republic
| | | | | | | |
Collapse
|
9
|
Zúñiga-Vega JJ, Pruett JA, Ossip-Drahos AG, Campos SM, Seddon RJ, Price SL, Romero-Diaz C, Rivera JA, Vital-García C, Hews DK, Martins EP. Information out of the blue: phenotypic correlates of abdominal color patches in Sceloporus lizards. ZOOLOGY 2021; 149:125961. [PMID: 34592493 DOI: 10.1016/j.zool.2021.125961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
Colorful ornaments are important visual signals for animal communication that can provide critical information about the quality of the signaler. In this study, we focused on different color characteristics of the abdominal patches of males of six lizard species from the genus Sceloporus. We addressed three main objectives. First, we examined if size, brightness, saturation, and conspicuousness of these ornaments are indicative of body size, condition, immune function, or levels of testosterone and corticosterone. Second, we evaluated if the distinct components of these abdominal patches (blue or green patches and black stripes) transmit similar information about the signaler, which would support the redundant signal hypothesis, or if these components are related to different phenotypic traits, which would support the multiple message hypothesis. Third, we compared the phenotypic correlates of these ornaments among our six species to understand the degree of conservatism in the signaling patterns or to find species-specific signals. Using data collected from males in natural conditions and a multi-model inference framework, we found that in most species the area of the patches and the brightness of the blue component are positively related to body size. Thus, these color characteristics are presumably indicative of the physical strength and competitive ability of males and these shared signals were likely inherited from a common ancestor. In half of the species, males in good body condition also exhibit relatively larger blue and black areas, suggesting that the expression of these ornaments is condition-dependent. Abdominal patches also provide information about immunocompetence of the males as indicated by different correlations between certain color characteristics and ectoparasite load, counts of heterophils, and the heterophil:lymphocyte ratio. Our findings reveal that area and brightness of the abdominal patches signal the size and body condition of males, whereas blue saturation and conspicuousness with respect to the surrounding substrate are indicative of immune condition, thus supporting the multiple message hypothesis. However, some of these correlations were not shared by all species and, hence, point to intriguing species-specific signals.
Collapse
Affiliation(s)
- J Jaime Zúñiga-Vega
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Mexico City, 04510, Mexico.
| | - Jake A Pruett
- Department of Biology, Indiana State University, Science Building Room 283, 600 North Chestnut Street, Terre Haute, IN 47809, USA; Department of Biological Sciences, Southeastern Oklahoma State University, 425 W. University Boulevard, Durant, OK 74701, USA.
| | - Alison G Ossip-Drahos
- Department of Chemistry and Physical Sciences, Marian University, 3200 Cold Springs Road, Indianapolis, IN 46222, USA.
| | - Stephanie M Campos
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA.
| | - Ryan J Seddon
- Department of Biology, Indiana State University, Science Building Room 283, 600 North Chestnut Street, Terre Haute, IN 47809, USA; Center for Global Communication Strategies, University of Tokyo, 3-8-4 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Savannah L Price
- Department of Biology, Indiana State University, Science Building Room 283, 600 North Chestnut Street, Terre Haute, IN 47809, USA.
| | - Cristina Romero-Diaz
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA.
| | - Julio A Rivera
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA.
| | - Cuauhcihuatl Vital-García
- Departamento de Ciencias Veterinarias, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente y Estocolmo s/n, Colonia Progresista, Ciudad Juárez, Chihuahua, 32310, Mexico.
| | - Diana K Hews
- Department of Biology, Indiana State University, Science Building Room 283, 600 North Chestnut Street, Terre Haute, IN 47809, USA.
| | - Emília P Martins
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA.
| |
Collapse
|
10
|
Stress hormone level and the welfare of captive European bison (Bison bonasus): the effects of visitor pressure and the social structure of herds. Acta Vet Scand 2021; 63:24. [PMID: 34112211 PMCID: PMC8193117 DOI: 10.1186/s13028-021-00589-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background Captive European bison (Bison bonasus) play an active role in conservation measures for this species; this includes education, which may conflict with these animals’ welfare. The effect of the presence of visitors on the welfare of captive animals can be negative, positive or neutral. However, the response of a given species to visitors is difficult to predict, since even closely related species display varying levels of tolerance to captivity. The aim of the study was to compare immunoreactive fecal cortisol levels (regarded as an indicator of the level of physiological stress) in groups of captive European bison that differed in terms of their social structure and the level of visitor pressure. The second aim was to determine if there was a correlation between intestinal parasitic burden and immunoreactive fecal cortisol levels. Results Immunoreactive fecal cortisol levels were not influenced by sex or age. However, study site and the interaction between study site and visitor pressure were statistically significant. European bison in one enclosure presented higher levels of immunoreactive fecal cortisol on weekdays than at weekends. In the other two study sites, the levels did not differ between weekdays and weekends. No correlation was found between parasitological infestation and immunoreactive fecal cortisol levels. Conclusions Measurement of fecal cortisol metabolites could be a valuable method for further research into the welfare of European bison in captivity. More subtle factors such as individual animal characteristics, feeding systems, and the arrangement of enclosures can be of great importance in terms of the effect of visitors on animals. The results of this study can be used in guidelines for the management of European bison populations. Supplementary Information The online version contains supplementary material available at 10.1186/s13028-021-00589-9.
Collapse
|
11
|
McMahon EK, Cavigelli SA. Gaps to Address in Ecological Studies of Temperament and Physiology. Integr Comp Biol 2021; 61:1917-1932. [PMID: 34097030 DOI: 10.1093/icb/icab118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ecology is a diverse field with many researchers interested in drivers and consequences of variability within populations. Two aspects of variability that have been addressed are behavioral and physiological. While these have been shown to separately influence ecological outcomes such as survival, reproductive success and fitness, combined they could better predict within-population variability in survival and fitness. Recently there has been a focus on potential fitness outcomes of consistent behavioral traits that are referred to as personality or temperament (e.g. boldness, sociability, exploration, etc.). Given this recent focus, it is an optimal time to identify areas to supplement in this field, particularly in determining the relationship between temperament and physiological traits. To maximize progress, in this perspective paper we propose that the following two areas be addressed: (1) increased diversity of species, and (2) increased number of physiological processes studied, with an eye toward using more representative and relatively consistent measures across studies. We first highlight information that has been gleaned from species that are frequently studied to determine how animal personality relates to physiology and/or survival/fitness. We then shine a spotlight on important taxa that have been understudied and that can contribute meaningful, complementary information to this area of research. And last, we propose a brief array of physiological processes to relate to temperament, and that can significantly impact fitness, and that may be accessible in field studies.
Collapse
Affiliation(s)
- Elyse K McMahon
- Ecology Graduate Program, Pennsylvania State University, University Park, PA 16802, USA.,Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Sonia A Cavigelli
- Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
Habig B, Chowdhury S, Monfort SL, Brown JL, Swedell L, Foerster S. Predictors of helminth parasite infection in female chacma baboons ( Papio ursinus). Int J Parasitol Parasites Wildl 2021; 14:308-320. [PMID: 33898232 PMCID: PMC8056146 DOI: 10.1016/j.ijppaw.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022]
Abstract
Helminth parasite infection can impose major consequences on host fitness. Several factors, including individual characteristics of hosts, environmental conditions, and patterns of coinfection, are thought to drive variation in parasite risk. Here, we report on four key drivers of parasite infection-phase of reproduction, steroid hormone profiles, rainfall, and patterns of coinfection-in a population of wild female chacma baboons (Papio ursinus) in South Africa. We collected data on reproductive state and hormone profiles over a 3-year span, and quantified helminth parasite burdens in 2955 fecal samples from 24 female baboons. On a host level, we found that baboons are sensitive to parasite infection during the costliest phases of the reproductive cycle: pregnant females harbored higher intensities of Protospirura eggs than cycling and lactating females; lactating and cycling females had a higher probability of Oesophagostomum infection than pregnant females; and cycling females exhibited lower Trichuris egg counts than pregnant and lactating females. Steroid hormones were associated with both immunoenhancing and immunosuppressive properties: females with high glucocorticoid concentrations exhibited high intensities of Trichuris eggs but were at low risk of Oesophagostomum infection; females with high estrogen and progestagen concentrations exhibited high helminth parasite richness; and females with high progestagen concentrations were at high risk of Oesophagostomum infection but exhibited low Protospirura egg counts. We observed an interaction between host reproductive state and progestagen concentrations in infection intensity of Protospirura: pregnant females exhibited higher intensities and non-pregnant females exhibited lower intensities of Protospirura eggs with increasing progestagen concentrations. At a population level, rainfall patterns were dominant drivers of parasite risk. Lastly, helminth parasites exhibited positive covariance, suggesting that infection probability increases if a host already harbors one or more parasite taxa. Together, our results provide a holistic perspective of factors that shape variation in parasite risk in a wild population of animals.
Collapse
Affiliation(s)
- Bobby Habig
- Department of Biology, Queens College, City University of New York, 65-30 Kissena Blvd. Flushing, NY, 11367, USA
| | - Shahrina Chowdhury
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Ave, Brooklyn, NY, 11210, USA
- Anthropology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York NY, 10016, USA
- New York Consortium in Evolutionary Primatology, Anthropology Program, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Steven L. Monfort
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Janine L. Brown
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Larissa Swedell
- Anthropology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York NY, 10016, USA
- New York Consortium in Evolutionary Primatology, Anthropology Program, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Anthropology, Queens College, City University of New York, 65-30 Kissena Blvd. Flushing, NY, 11367, USA
- Department of Archaeology, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa
| | - Steffen Foerster
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
13
|
Association between social factors and gastrointestinal parasite product excretion in a group of non-cooperatively breeding carrion crows. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Veitch JSM, Bowman J, Mastromonaco G, Schulte-Hostedde AI. Corticosterone response by Peromyscus mice to parasites, reproductive season, and age. Gen Comp Endocrinol 2021; 300:113640. [PMID: 33017585 DOI: 10.1016/j.ygcen.2020.113640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 01/15/2023]
Abstract
A common response to parasite infestations is increased production of glucocorticoid hormones that regulate immune function. We examined relationships between ectoparasite infestations and fecal corticosterone metabolites (FCM) in deer mice (Peromyscus maniculatus). Furthermore, we experimentally removed fleas to determine if reductions in ectoparasites affected FCM production. Individuals were assigned to control (no flea removal) or treatment (anti-flea application, physical combing) groups and individuals were recaptured to assess changes in FCM concentrations. There was a significant and negative effect of number of anti-flea treatment applications on FCM concentrations of deer mice. However, models including host biology traits and environmental predictors had a better model fit compared to models containing ectoparasite predictors. In particular, there was a significant relationship of deer mouse FCM with date and host age, where glucocorticoid production decreased towards the end of the breeding season and increased with age. Overall, adverse events associated with reproduction and age class, rather than ectoparasites, may be more important to variation in glucocorticoids of deer mice.
Collapse
Affiliation(s)
- Jasmine S M Veitch
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada. https://www.0000-0003-0010-3475
| | - Jeff Bowman
- Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section, 2140 East Bank Drive, DNA Building, Peterborough, ON K9L 0G2, Canada; Trent University, 1600 East Bank Drive, Peterborough, ON K9L 0G2, Canada
| | - Gabriela Mastromonaco
- Reproductive Sciences, Toronto Zoo, 361A Old Finch Avenue, Toronto, ON M1B 5K7, Canada
| | - Albrecht I Schulte-Hostedde
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada. https://www.0000-0001-7263-4764
| |
Collapse
|
15
|
Gliga DS, Petrova N, Linnell JDC, Salemgareyev AR, Zuther S, Walzer C, Kaczensky P. Dynamics of Gastro-Intestinal Strongyle Parasites in a Group of Translocated, Wild-Captured Asiatic Wild Asses in Kazakhstan. Front Vet Sci 2020; 7:598371. [PMID: 33363236 PMCID: PMC7759666 DOI: 10.3389/fvets.2020.598371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
Asiatic wild ass (Kulan, Equus hemionus) population range and numbers became severely reduced and a reintroduction project is currently aiming to re-establish a population in the Central Steppe of Kazakhstan. Pre-emptive deworming is often recommended for equid translocations but eliminating parasites prior to translocation could cause disruptions in a balanced host-parasite relationship, adding an additional stressor to an already stressful intervention involving capture, transport, and adaptation to a new environment. Following a disease risk assessment, we decided against pre-emptive deworming and focused on monitoring the first group of nine translocated kulan in a large acclimatization enclosure prior to release. Over the 5-month acclimatization period, we regularly collected fecal samples and analyzed the shedding intensity of gastro-intestinal parasite eggs, obtained time budgets through behavioral observations, and visually assessed body condition. We identified strongyles (Strongylinae and Cyathostominae) and pinworms (Oxyuris equi) in fecal samples. All individuals shed strongyle eggs and two of the nine individuals had higher shedding intensities, but rarely reached levels for which deworming is recommended. All kulan appeared healthy throughout the observation period, aggressive interactions were very rare, and time budgets were very similar and dominated by feeding. Our results suggest that in translocation projects where the risk of introducing new parasites is minimal, pre-emptive treatment in wild equids can be replaced with non-invasive monitoring during the acclimatization period. We acknowledge that the small number of kulan, the large size of the enclosure, and the low temperatures during the animals stay in the acclimatization enclosure may all have reduced infestation pressure.
Collapse
Affiliation(s)
- Diana S. Gliga
- Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Natalia Petrova
- Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| | | | | | - Steffen Zuther
- Association for the Conservation of Biodiversity of Kazakhstan, Nur-Sultan, Kazakhstan
- Frankfurt Zoological Society, Frankfurt, Germany
| | - Chris Walzer
- Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Wildlife Conservation Society, New York, NY, United States
| | - Petra Kaczensky
- Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Norwegian Institute for Nature Research, Trondheim, Norway
| |
Collapse
|