1
|
Islek Z, Ucisik MH, Sahin F. Astrocytes Can Be Key Players Against Cerebral Leishmaniasis: In Vitro Co-Culture Model for the Assessment of Infection. Parasite Immunol 2024; 46:e13071. [PMID: 39449623 DOI: 10.1111/pim.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Leishmaniasis is a neglected tropical disease, caused by protozoan parasites of Leishmania (L.), and is transmitted by bite of phlebotomine sandflies. There are several studies on central nervous system infection to indicate that Leishmania can cross the blood-brain barrier, resulting in neurological manifestations, known as "cerebral leishmaniasis." This study highlighted the notions: (i) polarisation of bone marrow-derived macrophages (BMDM) incubated following stimulation with lipopolysaccharide (LPS) or soluble Leishmania antigen (SLA), (ii) quantification of parasites within co-culture of Leishmania-infected macrophages, and astrocytes, and (iii) effect of interferon-gamma (IFN-γ) on the infection rate of co-culture populations. Accordingly, 83% of overall macrophage population was identified on day 7 for CD11b and F4/80 macrophage markers. Flow cytometry analysis revealed significant increases in CD11b and F4/80 surface markers in LPS and SLA-stimulated BMDMs at 24 h, compared to untreated cells. TNF-α levels increased significantly in both LPS and SLA-treated BMDMs after 48 h. Additionally, SLA treatment induced a more elongated, spindle-like shape in the cells, indicative of M2 macrophage polarisation over the M1 phenotype. When non-infected astrocytes with/without stimulation with IFN-γ before co-culture, gp63 FITC-labelled parasite populations (%) in co-culture decreased to 25% at 72 h, thus indicating a lower infection rate in a time-dependent manner. IFN-γ and IL-6 levels significantly increased to 71.66 ± 3.51 and 184 ± 14.42 pg/mL, resulting in the inflammatory response in the co-culture system at 48 h (p ≤ 0.0001), when compared to the control (30 ± 2.52 pg/mL for IFN-γ and 8.66 ± 2.37 pg/mL for IL-6) at 0 h of the incubation. It is the first study to emphasize the communication between Leishmania-infected macrophages and astrocytes regarding Leishmania parasite load. The results suggest that astrocytes can lead to the reduction in Leishmania parasites, thereby controlling the incidence of cerebral leishmaniasis.
Collapse
Affiliation(s)
- Zeynep Islek
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Ataşehir/Istanbul, Turkey
| | - Mehmet Hikmet Ucisik
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Ataşehir/Istanbul, Turkey
| | - Fikrettin Sahin
- Faculty of Engineering, Department of Genetics and Bioengineering, Yeditepe University, Ataşehir/Istanbul, Turkey
| |
Collapse
|
2
|
Gaio P, Cramer A, de Melo Oliveira NF, Porto S, Kramer L, Nonato Rabelo RA, Pereira RDD, de Oliveira Santos LL, Nascimento Barbosa CL, Silva Oliveira FM, Martins Teixeira M, Castro Russo R, Matos MJ, Simão Machado F. N-(coumarin-3-yl)cinnamamide Promotes Immunomodulatory, Neuroprotective, and Lung Function-Preserving Effects during Severe Malaria. Pharmaceuticals (Basel) 2023; 17:46. [PMID: 38256880 PMCID: PMC10821074 DOI: 10.3390/ph17010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Plasmodium berghei ANKA (PbA) infection in mice resembles several aspects of severe malaria in humans, such as cerebral malaria and acute respiratory distress syndrome. Herein, the effects of N-(coumarin-3-yl)cinnamamide (M220) against severe experimental malaria have been investigated. Treatment with M220 proved to protect cognitive abilities and lung function in PbA-infected mice, observed by an object recognition test and spirometry, respectively. In addition, treated mice demonstrated decreased levels of brain and lung inflammation. The production and accumulation of microglia, and immune cells that produce the inflammatory cytokines TNF and IFN-γ, decreased, while the production of the anti-inflammatory cytokine IL-10 by innate and adaptive immune cells was enhanced. Treatment with M220 promotes immunomodulatory, neuroprotective, and lung function-preserving effects during experimental severe malaria. Therefore, it may be an interesting therapeutic candidate to treat severe malaria effects.
Collapse
Affiliation(s)
- Paulo Gaio
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Allysson Cramer
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Natália Fernanda de Melo Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Samuel Porto
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Lucas Kramer
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Rayane Aparecida Nonato Rabelo
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Rafaela das Dores Pereira
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Laura Lis de Oliveira Santos
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - César Luís Nascimento Barbosa
- Program in Health Sciences, Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil;
| | - Fabrício Marcus Silva Oliveira
- Cellular and Molecular Immunology Group, René Rachou Institute, Oswald o Cruz Foundation—FIOCRUZ, Belo Horizonte 30190-002, MG, Brazil;
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
- Program in Health Sciences, Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil;
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Maria João Matos
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
- Program in Health Sciences, Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil;
| |
Collapse
|
3
|
Olmedillas M, Brawek B, Li K, Richter C, Garaschuk O. Plaque vicinity as a hotspot of microglial turnover in a mouse model of Alzheimer's disease. Glia 2023; 71:2884-2901. [PMID: 37596829 DOI: 10.1002/glia.24458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Microglia, the major immune cells of the brain, are functionally heterogeneous but in vivo functional properties of these cells are rarely studied at single-cell resolution. By using microRNA-9 regulated viral vectors for multicolor labeling and longitudinal in vivo monitoring of individual microglia, we followed their fate in the cortex of healthy adult mice and at the onset of amyloidosis in a mouse model of Alzheimer's disease. In wild-type mice, microglia were rather mobile (16% of the cells migrated at least once in 10-20 days) but had a low turnover as documented by low division and death rates. Half of the migratory events were tightly associated with blood vessels. Surprisingly, basic migration properties of microglia (i.e., fraction of migrating cells, saltatory migration pattern, speed of migration, translocation distance, and strong association with blood vessels) were preserved in amyloid-depositing brains, despite amyloid plaques becoming the major destination of migration. Besides, amyloid deposition significantly increased microglial division and death rates. Moreover, the plaque vicinity became a hotspot of microglial turnover, harboring 33% of all migration, 70% of death and 54% of division events.
Collapse
Affiliation(s)
- Maria Olmedillas
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Bianca Brawek
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Kaizhen Li
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Cris Richter
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Benichou Haziot C, Birak KS. Therapeutic Potential of Microbiota Modulation in Alzheimer's Disease: A Review of Preclinical Studies. J Alzheimers Dis Rep 2023; 7:415-431. [PMID: 37220623 PMCID: PMC10200201 DOI: 10.3233/adr-220097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, yet it currently lacks effective treatment due to its complex etiology. The pathological changes in AD have been linked to the neurotoxic immune responses following aggregation of Aβ and phosphorylated tau. The gut microbiota (GM) is increasingly studied for modulating neuroinflammation in neurodegenerative diseases and in vivo studies emerge for AD. This critical review selected 7 empirical preclinical studies from 2019 onwards assessing therapy approaches targeting GM modulating microglia neuroinflammation in AD mouse models. Results from probiotics, fecal microbiota transplantation, and drugs were compared and contrasted, including for cognition, neuroinflammation, and toxic aggregation of proteins. Studies consistently reported significant amelioration or prevention of cognitive deficits, decrease in microglial activation, and lower levels of pro-inflammatory cytokines, compared to AD mouse models. However, there were differences across papers for the brain regions affected, and changes in astrocytes were inconsistent. Aβ plaques deposition significantly decreased in all papers, apart from Byur dMar Nyer lNga Ril Bu (BdNlRB) treatment. Tau phosphorylation significantly declined in 5 studies. Effects in microbial diversity following treatment varied across studies. Findings are encouraging regarding the efficacy of study but information on the effect size is limited. Potentially, GM reverses GM derived abnormalities, decreasing neuroinflammation, which reduces AD toxic aggregations of proteins in the brain, resulting in cognitive improvements. Results support the hypothesis of AD being a multifactorial disease and the potential synergies through multi-target approaches. The use of AD mice models limits conclusions around effectiveness, as human translation is challenging.
Collapse
Affiliation(s)
- Carla Benichou Haziot
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Kulbir Singh Birak
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
5
|
Argolo DS, Borges JMP, Freitas LDS, Pina GA, Grangeiro MS, da Silva VDA, Pinheiro AM, Souza Conceição R, Branco A, Guillemin G, Costa SL, Costa MDFD. Activation of the Kynurenine Pathway and Production of Inflammatory Cytokines by Astrocytes and Microglia Infected With Neospora caninum. Int J Tryptophan Res 2022; 15:11786469211069946. [PMID: 35125873 PMCID: PMC8808026 DOI: 10.1177/11786469211069946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/11/2021] [Indexed: 12/03/2022] Open
Abstract
In the central nervous system, astrocytes and microglia contribute to homeostasis, regulating the immune response to infectious agents. Neospora caninum is an obligate intracellular protozoan that infects different animal species and it is encysted in their nervous tissue while triggering an immune response modulated by glia. This study aimed to evaluate the infection of primary cultures of rat glial cells by N. caninum through the catabolites of tryptophan, the expression of inflammatory mediators and the integrity of neural tissue. Infection with this coccidium resulted in morphological and functional changes, particularly astrogliosis and microgliosis, and increased the expression of the inflammatory mediators TNF, IL1β, IL-10, and arginase, as well as mRNA for CCL5 and CCL2, molecules involved in the CNS chemotaxis. The infection with N. caninum in glial cells also triggered the activation of the tryptophan pathway, characterized by increased kynurenine 2,3 monooxygenase (KMO) mRNA expression, and by the production of the excitotoxin quinolinic acid (QUIN). Moreover, glia-neuron co-cultures, when exposed to the secretome derived from N. caninum infected glial cells, presented greater neurons distribution and formation of neurite extensions, associated to morphological changes in astrocytes compatible with neuro-preservation. Considering that the tryptophan catabolism is associated to immune response, these findings suggest that glial activation in N. caninum infection should be responsible for modulating the inflammatory status in an attempt to restore the nervous system homeostasis, since excessive inflammatory response can cause irreversible damage to tissue preservation.
Collapse
Affiliation(s)
- Deivison Silva Argolo
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA); National Institute of Translational Neuroscience (INCT-CNPq), Brazil
| | - Julita Maria Pereira Borges
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA); National Institute of Translational Neuroscience (INCT-CNPq), Brazil
- Department of Science and Technologies University of Southwest of Bahia, Brazil
| | | | - Gizelle Alves Pina
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA); National Institute of Translational Neuroscience (INCT-CNPq), Brazil
| | - Maria Socorro Grangeiro
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA); National Institute of Translational Neuroscience (INCT-CNPq), Brazil
| | - Victor Diógenes Amaral da Silva
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA); National Institute of Translational Neuroscience (INCT-CNPq), Brazil
| | - Alexandre Moraes Pinheiro
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA); National Institute of Translational Neuroscience (INCT-CNPq), Brazil
- Laboratory of Biochemistry and Veterinary Immunology Federal University of Recôncavo of Bahia, Brazil
| | - Rodrigo Souza Conceição
- Laboratory of Phytochemistry, Department of Health, State University of Feira de Santana (UEFS), Brazil
| | - Alexsandro Branco
- Laboratory of Phytochemistry, Department of Health, State University of Feira de Santana (UEFS), Brazil
| | - Gilles Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA); National Institute of Translational Neuroscience (INCT-CNPq), Brazil
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA); National Institute of Translational Neuroscience (INCT-CNPq), Brazil
| |
Collapse
|
6
|
Rodríguez AM, Rodríguez J, Giambartolomei GH. Microglia at the Crossroads of Pathogen-Induced Neuroinflammation. ASN Neuro 2022; 14:17590914221104566. [PMID: 35635133 PMCID: PMC9158411 DOI: 10.1177/17590914221104566] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Microglia are the resident tissue macrophages of the central nervous system (CNS). Recent findings point out that in the steady state the major role of microglia, is to instruct and regulate the correct function of the neuronal networks and different components of the neurovascular unit in the adult CNS, while providing immune surveillance. Paradoxically, during CNS infection immune activation of microglia generates an inflammatory milieu that contributes to the clearance of the pathogen but can, in the process, harm nearby cells of CNS. Most of the knowledge about the harmful effects of activated microglia on CNS has arisen from studies on neurodegenerative diseases. In this review we will focus on the beneficial role and detrimental functions of microglial cells on the neighboring cells of the CNS upon infection.
Collapse
Affiliation(s)
- Ana María Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julia Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Andoh NE, Gyan BA. The Potential Roles of Glial Cells in the Neuropathogenesis of Cerebral Malaria. Front Cell Infect Microbiol 2021; 11:741370. [PMID: 34692564 PMCID: PMC8529055 DOI: 10.3389/fcimb.2021.741370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023] Open
Abstract
Cerebral malaria (CM) is a severe neurological complication of malaria caused by the Plasmodium falciparum parasite. It is one of the leading causes of death in children under 5 years of age in Sub-Saharan Africa. CM is associated with blood-brain barrier disruption and long-term neurological sequelae in survivors of CM. Despite the vast amount of research on cerebral malaria, the cause of neurological sequelae observed in CM patients is poorly understood. In this article, the potential roles of glial cells, astrocytes, and microglia, in cerebral malaria pathogenesis are reviewed. The possible mechanisms by which glial cells contribute to neurological damage in CM patients are also examined.
Collapse
Affiliation(s)
- Nana Efua Andoh
- Noguchi Memorial Institute for Medical Research, Department of Parasitology, University of Ghana, Accra, Ghana
| | - Ben Adu Gyan
- Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| |
Collapse
|