1
|
Feng Z, Zhang L, Tang N, Li X, Xing W. Ensemble modeling of aquatic plant invasions and economic cost analysis in China under climate change scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177444. [PMID: 39522784 DOI: 10.1016/j.scitotenv.2024.177444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Pistia stratiotes, Eichhornia crassipes, Alternanthera philoxeroides, and Cabomba caroliniana are officially recognized as invasive aquatic plants in China. Accurately predicting their invasion dynamics under climate change is crucial for the future safety of aquatic ecosystems. Compared to single prediction models, ensemble models that integrate multiple algorithms provide more accurate forecasts. However, there has been a notable lack of research utilizing ensemble models to collectively predict the invasive regions of these four species in China. To address this gap, we collected and analyzed comprehensive data on species distribution, climate, altitude, population density, and the normalized difference vegetation index to accurately predict the future invasive regions and potential warnings for aquatic systems concerning these species. Our results indicate that suitable areas for invasive aquatic plants in China are primarily located in the southeastern region. Significant differences exist in the suitable habitats for each species: P. stratiotes and E. crassipes have broad distribution areas, covering most water systems in southeastern China, while C. caroliniana is concentrated in the middle and lower reaches of the Yangtze River and the estuaries of the Yangtze and Pearl Rivers. A. philoxeroides has an extensive invasion area, with the North China Plain projected to become a suitable invasion region in the future. The main factors influencing future invasions are human activities and climate change. In addition, under climate change, the suitable habitats for these invasive aquatic plants are expected to expand towards higher latitudes. We also estimated the economic costs associated with invasive aquatic plants in China using the Invacost database, revealing cumulative costs of US$5525.17 million, where damage costs (89.70%) significantly exceed management costs (10.30%). Our innovative approach, employing various ensemble algorithms and water system invasion forecasts, aims to effectively mitigate the future invasions and economic impacts of these species.
Collapse
Affiliation(s)
- Zixuan Feng
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lei Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Na Tang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
2
|
Roe AD, Greenwood LF, Coyle DR. Catching invasives with curiosity: the importance of passive biosecurity surveillance systems for invasive forest pest detection. ENVIRONMENTAL ENTOMOLOGY 2024; 53:881-893. [PMID: 39513514 DOI: 10.1093/ee/nvae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
First detections of nonnative insect species are often made by curious members of the public rather than by specialists or trained professionals. Passive surveillance is a crucial component of national biosecurity surveillance, highlighted by early detection case studies of several prominent nonnative arthropod pests (e.g., Asian longhorned beetle [ALB], Jorō spider, spotted lanternfly). These examples demonstrate that curiosity and the recognition of novelty in the natural world, along with enabling technology and systems, are a critical part of early detection and effective invasive species management. This is particularly impactful when dealing with conspicuous pests or for new and emerging nonnative species that have yet to be detected in a new location. Data from historical and recent accounts of first detections of ALB incursions and other invasive forest pests underscore the need to invest in passive surveillance reporting systems and fully integrate public observations into existing surveillance frameworks. New automated approaches streamline the assessment of public observations and can generate pest alerts to initiate a formal regulatory assessment. Biodiversity monitoring platforms, such as iNaturalist, provide a focal point for community engagement and aggregate verified public observations. Empowering proactive reporting of biological novelty provides needed support for early detection of invasive species. Embracing the public as active members of the surveillance community can be cost effective and lead to the greatest gains in the proactive management of invasive species around the world.
Collapse
Affiliation(s)
- Amanda D Roe
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada
| | - Leigh F Greenwood
- Forest Pest and Pathogen Program, North America Region, The Nature Conservancy, Missoula, MT, USA
| | - David R Coyle
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| |
Collapse
|
3
|
Atsawawaranunt K, Stuart KC, Whibley A, Ewart KM, Major RE, Johnson RN, Santure AW. Parallel Signatures of Diet Adaptation in the Invasive Common Myna Genome. Mol Ecol 2024:e17607. [PMID: 39670972 DOI: 10.1111/mec.17607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Invasive species offer uniquely replicated model systems to study rapid adaptation. The common myna (Acridotheres tristis) has been introduced to over a dozen countries and is classified as one of the most invasive birds in the world. Their multiple invasions provide an opportunity to identify repeated adaptation, as invasive populations originated from multiple source populations. We compared whole-genome resequencing data from 80 individuals from four native and seven invasive populations, representing two independent introduction pathways. Results from two different selection scan methods were combined and identified a strongly selected region on chromosome 8 that spans two copies of AMY2A, part of the alpha-amylase gene family, a putative ncRNA and an insertion-deletion structural variant (SV) that contains an ERVK transposable element (TE). Outlier SNPs and the SV are polymorphic in native populations, but fixed or close-to-fixed in the two invasive pathways, with the fixation of the same alleles in two independent lineages providing evidence for parallel selection on standing variation. Intriguingly, the second copy of AMY2A has a non-conservative missense mutation at a phylogenetically conserved site. This mutation, alongside variation in the SV, TE and ncRNA, provide possible routes for changes to protein function or expression. AMY2A has been associated with human commensalism in house sparrows, and genes in this family have been linked to adaptation to high-starch diets in humans and dogs. This study illustrates the value of replicated analyses within and across species to understand rapid adaptation at the molecular level.
Collapse
Affiliation(s)
| | - Katarina C Stuart
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Grapevine Improvement, Bragato Research Institute, Lincoln, New Zealand
| | - Kyle M Ewart
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Richard E Major
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Rebecca N Johnson
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Huang L, Wang H, Liu H, A Z, Guo W. Quantitatively linking ecosystem service functions with soil moisture and ecohydrology regimes in watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176866. [PMID: 39414029 DOI: 10.1016/j.scitotenv.2024.176866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The ecohydrological processes of terrestrial and riverine systems in watershed under changing environments exerted significant pressure on ecosystem service functions. However, the response directions of these functions to the magnitude, frequency, duration, timing, and rate of change in ecohydrological conditions remain largely unknown. Beginning with the water yield and confluence mechanism of the terrestrial system in the watershed, we integrated ecohydrological theory with apportionment entropy theory to establish linkages between ecohydrological processes and ecosystem service indicators. Coupling physical hydrological models with machine learning methods, we quantified the differences in the contributions of driving forces to hydrological conditions at seasonal and monthly scales. At the grid scale, the study determined that human activities enhanced the correlation between water levels and soil moisture by affecting the water yield and runoff processes in the watershed. The dynamic characteristics of the interaction types of climatic factors deepened the spatial heterogeneity of water yield functions. Additionally, the flattening process of water level fluctuations under changing environments had varying impacts on different ecosystem service functions. The water level duration and timing corresponding to ecosystem service functions in the current watershed required urgent attention. Notably, the changes in the five sets of established ecosystem service function parameters were 13.16 %, 7.42 %, 66.47 %, 33.99 %, and 24.47 %, respectively. Human activities accounted for 51 % of water level changes on an annual scale, 65 % during the second quarter of the year, and reached 86 % in September. The emptying effect caused by reservoir storage must not be overlooked in its impact on ecosystem service functions. This study, which focuses on the response mechanisms between hydrological processes and watershed ecosystem service functions, establishes a quantitative evaluation framework for assessing the impact of water level changes on ecosystem services, thereby providing a foundation for future exploration of the cascading effects of ecosystem services centered on ecohydrological processes.
Collapse
Affiliation(s)
- Lintong Huang
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| | - Hongxiang Wang
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| | - Huifeng Liu
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Zhangsong A
- Yunnan Water Resources and Hydropower Survey and Design Institute Co, Ltd., Kunming 650021, China
| | - Wenxian Guo
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| |
Collapse
|
5
|
Sellamuthu G, Chakraborty A, Vetukuri RR, Sarath S, Roy A. RNAi-biofungicides: a quantum leap for tree fungal pathogen management. Crit Rev Biotechnol 2024:1-28. [PMID: 39647992 DOI: 10.1080/07388551.2024.2430478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amrita Chakraborty
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saravanasakthi Sarath
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
6
|
Gil-Tapetado D, Polidori C, Gómez JF, Nieves-Aldrey JL. A snapshot in time: composition of native primary fauna of gall wasps in Spanish contact zones with chestnut trees infested by Dryocosmus kuriphilus. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-12. [PMID: 39635769 DOI: 10.1017/s0007485324000774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
One of the most prominent problems related to biological invasions is the variation of local species composition, which often leads to ex novo interspecific interactions. Here, we explored and analysed the native species composition of gall inducers and their associated parasitoids and inquilines in Spanish areas invaded by Dryocosmus kuriphilus Yasumatsu 1951 (Hymenoptera: Cynipidae), an invasive pest of chestnut trees. After a quantitative description of these species' assemblages, we analysed through bipartite networks the level of the trophic specialisation of parasitoids and inquilines when considering either the host taxonomic identity, the host plant species or the host gall morphological type. We sampled galls of D. kuriphilus and native species of Cynipidae in different Spanish areas, including those where the exotic parasitoid Torymus sinensis Kamijo 1982 (Hymenoptera: Torymidae) had been released for D. kuriphilus biological control. The results indicate that the native parasitoids recruited by D. kuriphilus come almost exclusively from native communities on Quercus galls, except for one species from Rosa. Galls of D. kuriphilus had the second most diverse species composition; despite this species assemblage arose ex novo in less than a decade. The bipartite networks resulted more specialised when considering host plant taxa than when gall types and the host taxa were accounted. In such trophic webs, there were few parasitoid/inquiline specialist and many generalist species, which agrees with the rapid recruitment by D. kuriphilus. Higher parasitoid species richness in D. kuriphilus galls is likely due to their being a largely unexploited available resource for the native natural enemies of cynipid wasps.
Collapse
Affiliation(s)
- Diego Gil-Tapetado
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Calle José Antonio Nováis 12, 28040 Madrid, Spain
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Carlo Polidori
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Jose F Gómez
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Calle José Antonio Nováis 12, 28040 Madrid, Spain
| | - Jose Luis Nieves-Aldrey
- Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
7
|
Moyle DM, Deslippe JR. Invasion alters plant and mycorrhizal communities in an alpine tussock grassland. Oecologia 2024; 206:317-333. [PMID: 39499271 PMCID: PMC11599339 DOI: 10.1007/s00442-024-05632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/18/2024] [Indexed: 11/07/2024]
Abstract
Plant invasions are impacting alpine zones, altering key mutualisms that affect ecosystem functions. Plant-mycorrhizal associations are sensitive to invasion, but previous studies have been limited in the types of mycorrhizas examined. Consequently, little is known about how invaders that host rarer types of mycorrhizas may affect community and ecosystem properties. We studied invasion by an ericoid mycorrhizal host plant (Calluna vulgaris L., heather) in alpine tussock grasslands in New Zealand. We investigate the effects of increasing C. vulgaris density on the plant and soil microbial community and on mycorrhization in the dominant native species (Chionochloa rubra Z., red tussock), an arbuscular mycorrhizal host. We show that variation in plant community composition was primarily driven by invader density. High invader densities were associated with reductions in C. rubra diameter and in the cover, richness and diversity of the subordinate plant community. Belowground, we show that higher invader densities were associated with lower rates of mycorrhization in C. rubra and higher proportional abundance of the fungal lipid biomarker 18:2ω6 but had little effect on total microbial biomass, which may suggest increased ericoid mycorrhizal and fine root biomass in high C. vulgaris density stands. Our data suggest that disruption of native plant-arbuscular mycorrhizal networks may contribute to the competitive success of C. vulgaris, and that the dramatic decline of C. rubra with invasion reflects its relatively high mycorrhizal dependence. By exploring invasion of a plant with a less common mycorrhizal type, our study expands knowledge of the ecosystem consequences of biological invasions.
Collapse
Affiliation(s)
- Darby M Moyle
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Julie R Deslippe
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.
- Centre for Biodiversity and Restoration Ecology, Victoria University of Wellington, Wellington, 6012, New Zealand.
| |
Collapse
|
8
|
Faulkner KT, Hulme PE, Wilson JRU. Harder, better, faster, stronger? Dispersal in the Anthropocene. Trends Ecol Evol 2024; 39:1130-1140. [PMID: 39271414 DOI: 10.1016/j.tree.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
The dispersal of organisms in the Anthropocene has been profoundly altered by human activities, with far-reaching consequences for humans, biodiversity, and ecosystems. Managing such dispersal effectively is critical to achieve the 2030 targets of the Kunming-Montreal Global Biodiversity Framework. Here, we bring together insights from invasion science, movement ecology, and conservation biology, and extend a widely used classification framework for the introduction pathways of alien species to encompass other forms of dispersal. We develop a simple, global scheme for classifying the movement of organisms into the types of dispersal that characterise the Anthropocene. The scheme can be used to improve our understanding of dispersal, provide policy relevant advice, inform conservation and biosecurity actions, and enable monitoring and reporting towards conservation targets.
Collapse
Affiliation(s)
- Katelyn T Faulkner
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, 7735, South Africa; Department of Zoology and Entomology, University of Pretoria, Pretoria, 0028, South Africa.
| | - Philip E Hulme
- Bioprotection Aotearoa, Lincoln University, Canterbury, 7647, New Zealand
| | - John R U Wilson
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, 7735, South Africa; Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602, South Africa
| |
Collapse
|
9
|
Zhang J, Ning Y, Li J, Shi Z, Zhang Q, Li L, Kang B, Du Z, Luo J, He M, Li H. Invasion stage and competition intensity co-drive reproductive strategies of native and invasive saltmarsh plants: Evidence from field data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176383. [PMID: 39312978 DOI: 10.1016/j.scitotenv.2024.176383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Biological invasion poses a significant threat to biodiversity conservation and also results in substantial economic loss including the excessive cost of management to control it. Still, its impact on plant sexual reproduction strategies remains underexplored in natural settings. We conducted a field experiment on native Phragmites australis and invasive Spartina alterniflora in Bohai Bay and assessed plant size (aboveground biomass and height) and sexual reproduction (ear biomass, reproductive allocation, etc.) in conjunction with water and soil properties. The results showed that during the early stage of invasion, the two species declined in size and sexual reproduction, with S. alterniflora showing a lesser decline than P. australis. However, in the late stage of invasion, S. alterniflora maintained its plant size by reducing its investment in sexual reproduction. Moreover, significant reproductive allometries were demonstrated by S. alterniflora under different competition intensities. P. australis displayed heightened sensitivity to water properties and soil non-resource conditions, while S. alterniflora adapted its inherent traits and environmental tolerance. S. alterniflora allocated more resources to thriving as an individual, while P. australis prioritized reproduction by increasing seed production. Overall, this study revealed the reproductive strategies that invasive and native species employ in response to competition and environmental factors, thereby offering crucial insights for conservation and management efforts.
Collapse
Affiliation(s)
- Jingya Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuanli Ning
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiaxu Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zilin Shi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qinze Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Longqin Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Binyue Kang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhibo Du
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Luo
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mengxuan He
- Faculty of Geography, Tianjin Normal University, Tianjin 300387, China.
| | - Hongyuan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Galanidis A, Bazos I, Dimitrakopoulos PG. Non-Native Flora of the Mediterranean Lesvos Island (East Aegean, Greece): Floristic Analysis, Traits, and Assessment. PLANTS (BASEL, SWITZERLAND) 2024; 13:3375. [PMID: 39683168 DOI: 10.3390/plants13233375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
A checklist of Lesvos Island's non-native vascular flora is presented. Through the literature and a roadside survey, we recorded 187 non-native plant taxa, representing 12% of the total regional flora. A total of 37 taxa were reported for the first time for Lesvos, including three taxa that are also new to the Greek non-native flora. The dominant families were Fabaceae, Asteraceae, Poaceae, Amaranthaceae, and Solanaceae. Amaranthus, Oxalis, Solanum, Opuntia, and Prunus were the most species rich genera. Most taxa were neophytes, naturalized and perennial, while phanerophytes and therophytes were the predominant life forms. Animal (insect) pollination was the principal pollination mode, whereas the main dispersal mechanism was zoochory, with most taxa forming a capsule. The majority of the taxa preferred agricultural and ruderal habitats and originated from the Americas and Asia. The primary introduction pathway was escape from confinement, concerning taxa introduced for ornamental and agricultural purposes.
Collapse
Affiliation(s)
- Alexandros Galanidis
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| | - Ioannis Bazos
- Department of Ecology and Systematics, Faculty of Biology, School of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Panayiotis G Dimitrakopoulos
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| |
Collapse
|
11
|
Wang J, Gao S, Hong H, Xue W, Yuan J, Wang XY, van Kleunen M, Li J. Herbivory and allelopathy contribute jointly to the diversity-invasibility relationship. Ecology 2024:e4490. [PMID: 39604040 DOI: 10.1002/ecy.4490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 11/29/2024]
Abstract
Although herbivory and allelopathy play important roles in plant invasions, their roles in mediating the effect of plant diversity on invasion resistance remain unknown. In a 2-year field experiment, we constructed native plant communities with four levels of species richness (one, two, four, and eight species) and used a factorial combination of insecticide and activated carbon applications to reduce herbivory and allelopathy, respectively. We then invaded the communities with the introduced plant Solidago canadensis L. One year after the start of the experiment, there was no statistically significant net effect of species richness on biomass of the invader. However, a structural equation model showed that species richness had a positive direct effect on invader biomass that was partially balanced out by a negative indirect effect of species richness via increased light interception. In the second year, the relationship between invader biomass and species richness was negative when we analyzed the treatment combination with herbivory and allelopathy separately. Therefore, we conclude that joint effects of herbivory and allelopathy may play major roles in driving the diversity-invasibility relationship and should be considered in future studies.
Collapse
Affiliation(s)
- Jiang Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
| | - Song Gao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
| | - Hefang Hong
- Linhai Branch of Taizhou Ecological Environment Bureau, Linhai, China
| | - Wei Xue
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
| | - Jiwei Yuan
- Taizhou Ecological and Environmental Monitoring Center, Taizhou, China
| | - Xiao-Yan Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
| | - Mark van Kleunen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
- School of Advanced Study, Taizhou University, Taizhou, China
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, China
- School of Advanced Study, Taizhou University, Taizhou, China
| |
Collapse
|
12
|
Fang XH, Chen XM, Liu RL, Zhang SH, Gao JQ, Dong BC, Yu FH. Effects of alligator weed invasion on wetlands in protected areas: A case study of Lishui Jiulong National Wetland Park. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176230. [PMID: 39270876 DOI: 10.1016/j.scitotenv.2024.176230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Wetlands are one of the ecosystems most easily and severely invaded by alien species. Biological invasions can have significant impacts on local plant communities and ecosystem functioning. While numerous studies have assessed the impacts of biological invasions on wetlands, relatively few have been conducted in protected areas such as national wetland parks. We conducted a field survey to investigate the effects of the invasive herb Alternanthera philoxeroides (alligator weed) on the productivity and structure of plant communities and soil microbial communities in the Lishui Jiulong National Wetland Park in Zhejiang, China. We also examined the potential influence of the distance to the river edge on the impact of the alligator weed invasion. The alligator weed invasion significantly altered the plant community structure. It reduced the coverage of co-occurring plant species, including native (-31.2 %), invasive (-70.1 %), and non-invasive alien plants (-58.4 %). However, it increased species richness by 50 %, Pielou's evenness by 20 %, and Simpson's diversity index by 29.1 % for the overall plant community. Furthermore, within the community not invaded by alligator weed, increasing the distance to the river edge decreased the number of native plants by 57.0 % and the aboveground biomass of other invasive plants by 78.6 %. Contrary to expectations, no effects of the alligator weed invasion were observed on soil fungal and bacterial communities. Therefore, the impacts of the alligator weed invasion varied with spatial context and plant category, emphasizing the need to consider multiple scales and environmental factors when assessing the effects of invasive species on plant biodiversity. These insights enhance our understanding of plant invasions in wetlands and can guide the development of effective management strategies for these important ecosystems.
Collapse
Affiliation(s)
- Xiang-Hua Fang
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui 323000, Zhejiang, China.
| | - Xuan-Ming Chen
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ri-Lin Liu
- Center of Ecological Forestry Development of Jingning She Nationality Autonomous County, Lishui 323500, Zhejiang, China
| | - Si-Hai Zhang
- College of Liangshan, Lishui University, Lishui 323000, Zhejiang, China
| | - Jun-Qin Gao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Bi-Cheng Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Fei-Hai Yu
- Institute of Wetland & Clone Ecology, Taizhou University, Taizhou 318000, Zhejiang, China
| |
Collapse
|
13
|
Gómez AE, Ipenburg C, Candolin U. Greater risk-taking by non-native than native shrimp: an advantage in a human-disturbed environment? BMC Ecol Evol 2024; 24:143. [PMID: 39558248 PMCID: PMC11574993 DOI: 10.1186/s12862-024-02330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The invasion of non-native species into ecosystems is a growing human-induced problem. To control their spread and population growth, knowledge is needed on the factors that facilitate or impede their invasions. In animals, traits often associated with invasion success are high activity, boldness, and aggression. However, these traits also make individuals susceptible to predation, which could curb population growth. We investigated if a recent invader into the Baltic Sea, the shrimp Palaemon elegans, differs in risk-taking from a native shrimp, P. adspersus. We recorded activity, habitat choice, and response to perceived predation threat of both species. RESULTS We found the invading shrimp to take greater risks than the native one; while the native shrimp adjusted its behaviour to habitat structure and exposure to a perceived predator, the non-native shrimp did not, and it resumed normal activity sooner after a perceived predation threat. Despite the greater risk taking by the non-native shrimp, its population has grown rapidly during the last two decades in the investigated area and is now larger than that of the native shrimp. CONCLUSIONS We discuss plausible explanations for the population growth of the invader, including the recent decline in predatory fishes that could have reduced the cost of risk-taking, and anthropogenic eutrophication that has increased food abundance could have allowed the population growth. These results stress the need to assess the optimality of the behaviours of both native and non-native species when investigating the factors that influence invasion success in human-disturbed environments.
Collapse
Affiliation(s)
- Alfredo Escanciano Gómez
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Charlotte Ipenburg
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Ulrika Candolin
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Michel T, Overbeck G. Review of Ecological Restoration in the Brazilian Pampa. AN ACAD BRAS CIENC 2024; 96:e20231283. [PMID: 39570165 DOI: 10.1590/0001-3765202420231283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/18/2024] [Indexed: 11/22/2024] Open
Abstract
Ecological restoration is crucial to counter global ecosystem degradation. The Brazilian Pampa, home to significant biodiversity, has been overlooked in research and conservation policies. This study involved a comprehensive literature review of 26 articles on restoration in the Brazilian Pampa, including 17 on grasslands and nine on forests, to understand the current state of knowledge on the subject. In grassland areas, the primary challenges were the invasion of exotic species and the lack of native seed or plant material. For forest restoration, the main issue was the conversion of forested areas to pastures, with challenges including the limited availability of nurseries for native species seedlings. Despite recent increases in research and some promising results, effectively guiding restoration efforts requires more research across the ecosystems of the Pampa, stronger networks for seedling and seed production, and concrete actions to achieve national restoration policy goals. The Pampa's potential for sustainable grassland use offers a unique opportunity to promote biodiversity conservation alongside economic development, making restoration efforts especially attractive.
Collapse
Affiliation(s)
- Thais Michel
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ecologia, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Gerhard Overbeck
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ecologia, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Cheng C, Song W, Liu Z, Li B, van Kleunen M, Wu J. Intraspecific diversity mitigates the negative soil-legacy impacts of an invasive plant. THE NEW PHYTOLOGIST 2024. [PMID: 39526440 DOI: 10.1111/nph.20261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Elton's biotic resistance hypothesis predicts that biodiversity can resist the establishment of invasive plants. However, whether and how within-species diversity mediates the impacts of successfully established invaders is poorly understood, particularly in the face of climate change. We used an experimental system to test the effect of intraspecific diversity of a native foundation species, Scirpus mariqueter, on the soil-legacy impacts of a global plant invader, Spartina alterniflora, under well-watered and drought conditions. We found that more diverse populations of the native plant buffered against the negative soil-legacy impacts of the invader on the native plant. This intraspecific diversity effect was due to a complementarity effect triggered by invader-shaped soil biota, and emerged in both well-watered and drought conditions. Compared with the previous finding that intraspecific diversity of the native plant can reduce the performance of the invader through soil biotic feedbacks, this study provides further evidence that it helps to mitigate the negative soil-derived impacts of the invader. These findings together emphasize the need for management measures that promote and restore native intraspecific diversity in a changing world.
Collapse
Affiliation(s)
- Cai Cheng
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station of Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wei Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station of Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zekang Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station of Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bo Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Mark van Kleunen
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Jihua Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
16
|
Yuan C, Gao J, Huang L, Jian S. Chromolaena odorata affects soil nitrogen transformations and competition in tropical coral islands by altering soil ammonia oxidizing microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175196. [PMID: 39097027 DOI: 10.1016/j.scitotenv.2024.175196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Invasive plants can change the community structure of soil ammonia-oxidizing microbes, affect the process of soil nitrogen (N) transformation, and gain a competitive advantage. However, the current researches on competition mechanism of Chromolaena odorata have not involved soil nitrogen transformation. In this study, we compared the microbially mediated soil transformations of invasive C. odorata and natives (Pisonia grandis and Scaevola taccada) of tropical coral islands. We assessed how differences in plant biomass and tissue N contents, soil nutrients, N transformation rates, microbial biomass and activity, and diversity and abundance of ammonia oxidizing microbes associated with these species impact their competitiveness. The results showed that C. odorata outcompeted both native species by allocating more proportionally biomass to aboveground parts in response to interspecific competition (12.92 % and 22.72 % more than P. grandis and S. taccada, respectively). Additionally, when C. odorata was planted with native plants, the available N and net mineralization rates in C. odorata rhizosphere soil were higher than in native plants rhizosphere soils. Higher abundance of ammonia-oxidizing bacteria in C. odorata rhizosphere soil confirmed this, being positively correlated with soil N mineralization rates and available N. Our findings help to understand the soil N acquisition and competition strategies of C. odorata, and contribute to improving evaluations and predictions of invasive plant dynamics and their ecological effects in tropical coral islands.
Collapse
Affiliation(s)
- Chengzhi Yuan
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Gao
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luping Huang
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China.
| |
Collapse
|
17
|
Pritchard Cairns J, de Bragança PHN, South J. A systematic review of poeciliid fish invasions in Africa. BMC Ecol Evol 2024; 24:136. [PMID: 39506681 PMCID: PMC11539733 DOI: 10.1186/s12862-024-02321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND This review compiles and synthesises the existing information concerning non-native poeciliid introductions to Africa. The recent upsurge in research on invasive poeciliids has revealed their widespread occurrence in Africa. RESULTS Within the 87 relevant articles, 74% reported on the presence of Gambusia spp., 33% on P. reticulata, 19% on X. hellerii, 11% on X. maculatus, and 5% on other ornamental poeciliids. Overall, poeciliids have been documented as introduced to 25 different countries in Africa. With Gambusia spp. being introduced to 16 countries and P. reticulata to 19 countries. Our results are representative of the current state of research on invasive poeciliids in Africa. There was a concentration of studies in South Africa, with limited research elsewhere. Current distribution data is relatively patchy, although widespread surveys of multiple river systems in Morocco and South Africa, confirmed widespread and abundant established poeciliid populations. The ecological impacts of invasive poeciliids in Africa remain understudied but evidence indicates deleterious effects on native fish, invertebrates, and amphibians, many of which are critically endangered or endemic. CONCLUSION Current research is limited in reporting from certain countries and ecological impacts. An increased effort to monitor species composition in vulnerable waterbodies, especially in the many African countries where invasive poeciliids are reported, should be completed to reveal further established populations. Future research should prioritise quantifying the ecological impacts of invasive poeciliids in the field and identifying both vulnerable and resistant native ecosystems to guide future management decisions.
Collapse
Affiliation(s)
- Joshua Pritchard Cairns
- Water@Leeds, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Pedro Henrique Negreiros de Bragança
- South African Institute for Aquatic Biodiversity, Private Bag 1015, Makhanda, Eastern Cape, 6140, South Africa
- Department of Ichthyology, American Museum of Natural History, New York, NY, 10024-5102, USA
| | - Josie South
- Water@Leeds, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- South African Institute for Aquatic Biodiversity, Private Bag 1015, Makhanda, Eastern Cape, 6140, South Africa.
| |
Collapse
|
18
|
Calderisi G, Cogoni D, Fenu G. Unravelling the Nexus of Beach Litter and Plant Species and Communities Along the Mediterranean Coasts: A Critical Literature Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:3125. [PMID: 39599334 PMCID: PMC11597917 DOI: 10.3390/plants13223125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Beach litter, an anthropogenic and hazardous component, can interact with psammophilous plant species and communities. These are particularly prominent in the Mediterranean Basin, renowned for its highly specialized and unique flora but recognized as one of the areas that is globally most severely affected by marine litter. To provide a comprehensive picture and outline possible future directions, data on beach litter in the Mediterranean coastal ecosystems were collected through a bibliographic research. Overall, 103 studies investigated the presence of beach litter on the Mediterranean coasts, of which only 18 considered its relationship with psammophilous plant species and communities. Our research highlights that this topic is rather underexplored in the Mediterranean Basin and the need to develop a standardized protocol for the assessment of beach litter that can be applied consistently across different beaches and countries. Information collected through a standardized protocol might improve the management and conservation strategies for these fragile ecosystems.
Collapse
Affiliation(s)
| | | | - Giuseppe Fenu
- Department of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (G.C.); (D.C.)
| |
Collapse
|
19
|
Santos VACL, Garcia ACL, Montes MA. Adaptation to different temperatures results in wing size divergence of the invading species Drosophila nasuta (Diptera: Drosophilidae) in Brazil. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-7. [PMID: 39494803 DOI: 10.1017/s0007485324000580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Invasive species threaten biodiversity on a global scale. The success of invasions depends on the species' adaptation to the different environmental conditions of new territories. Studies show that invasive insects present evolutionary changes in wing morphology in areas they are introduced to in response to abiotic conditions. In the last decade, the Asian Drosophila nasuta fly invaded and spread widely throughout Brazil. This insect has preferences for conserved environments and is related to the likely reduction in the abundance of native drosophilids in the Atlantic Forest. Ecological niche modelling analyses showed that rainfall and temperature are the main factors which delimit the geographic distribution of this species. Herein, we verified the existence of significant differences in the wing sizes of D. nasuta in Brazil and evaluated the influence of abiotic factors (rainfall and temperature) on the observed patterns. We conducted 11 measurements on the right-side wings of 240 D. nasuta males collected in the Amazon Forest, Caatinga, Cerrado and Atlantic Forest. Statistical analyses revealed the existence of two groups: one with larger wings, which brought together samples from locations with the lowest temperatures; and one with smaller wings, which corresponded to places with a hotter climate. One explanation for this result is the fact that large wings favour greater heat capture by flies in colder climates, increasing their survival chances in these environments. These rapid evolutionary changes in D. nasuta in this first decade of invasion in Brazil reveal the enormous adaptive potential of this species in this megadiverse country.
Collapse
Affiliation(s)
| | - Ana Cristina Lauer Garcia
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Vitória de Santo Antão, Pernambuco, Brazil
| | - Martín Alejandro Montes
- Universidade Federal Rural de Pernambuco, Campus Dois Irmãos, Departamento de Biologia, Recife, Pernambuco, Brazil
| |
Collapse
|
20
|
Haubrock PJ, Kurtul I, Macêdo RL, Mammola S, Franco ACS, Soto I. Competency in invasion science: addressing stagnation challenges by promoting innovation and creative thinking. ENVIRONMENTAL MANAGEMENT 2024; 74:916-927. [PMID: 39235460 PMCID: PMC11438655 DOI: 10.1007/s00267-024-02035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
In today's ever-evolving scientific landscape, invasion science faces a plethora of challenges, such as terminological inconsistency and the rapidly growing literature corpus with few or incomplete syntheses of knowledge, which may be perceived as a stagnation in scientific progress. We explore the concept of 'competency', which is extensively debated across disciplines such as psychology, philosophy, and linguistics. Traditionally, it is associated with attributes that enable superior performance and continuous ingenuity. We propose that the concept of competency can be applied to invasion science as the ability to creatively and critically engage with global challenges. For example, competency may help develop innovative strategies for understanding and managing the multifaceted, unprecedented challenges posed by the spread and impacts of non-native species, as well as identifying novel avenues of inquiry for management. Despite notable advancements and the exponential increase in scholarly publications, invasion science still encounters obstacles such as insufficient interdisciplinary collaboration paralleled by a lack of groundbreaking or actionable scientific advancements. To enhance competency in invasion science, a paradigm shift is needed. This shift entails fostering interdisciplinary collaboration, nurturing creative and critical thinking, and establishing a stable and supportive environment for early career researchers, thereby promoting the emergence of competency and innovation. Embracing perspectives from practitioners and decision makers, alongside diverse disciplines beyond traditional ecological frameworks, can further add novel insights and innovative methodologies into invasion science. Invasion science must also address the ethical implications of its practices and engage the public in awareness and education programs. Such initiatives can encourage a more holistic understanding of invasions, attracting and cultivating competent minds capable of thinking beyond conventional paradigms and contributing to the advancement of the field in a rapidly changing world.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum, Frankfurt, Gelnhausen, Germany.
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Al-Abdullah, Kuwait.
| | - Irmak Kurtul
- Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, İzmir, Türkiye
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, UK
| | - Rafael L Macêdo
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
- Graduate Program in Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, UFSCar, São Carlos, Brazil
| | - Stefano Mammola
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council (CNR), Corso Tonolli, 50, Verbania, 28922, Italy
- Finnish Museum of Natural History (LUOMUS), University of Helsinki, Pohjoinen Rautatiekatu 13, Helsinki, 00100, Finland
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Ana Clara S Franco
- Institute of Aquatic Ecology, University of Girona, 17003, Girona, Catalonia, Spain
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
21
|
Taormina B, Leclerc JC, Rusig AM, Navon M, Deloor M, Claquin P, Dauvin JC. Diversity and structure of epibenthic communities across subtidal artificial hard habitats in the Bay of Cherbourg (English Channel). BIOFOULING 2024; 40:847-861. [PMID: 39450610 DOI: 10.1080/08927014.2024.2419572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
To inform the performance of ecological engineering designs for artificial structures at sea, it is essential to characterise their impacts on the epibenthic communities colonising them. In this context, the present study aims to compare the community structure among natural and four different artificial hard habitats with different ages and features installed in the Bay of Cherbourg (English Channel): i) cinder blocks and ii) boulders, both installed six years prior to the study, and iii) smooth and iv) rugous concrete dykes, both installed one year prior to this study. Results showed that artificial habitats installed six years ago harboured communities with functional and taxonomic diversity characteristic of mature communities but were still different from those of natural habitat. Conversely, the two dyke habitats installed one year prior to this study presented a poorly diversified community dominated by opportunistic taxa. Furthermore, while the concrete used for the two dyke habitats presented different rugosity properties, both habitats supported similar communities, suggesting that such eco-engineering measures did not affect the settlement of early colonisers. Overall, this study highlights the need for long-term monitoring to comprehensively evaluate epibenthic colonisation of artificial structures.
Collapse
Affiliation(s)
- Bastien Taormina
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), Normandie Université, UNICAEN, Caen, France
- Laboratoire Morphodynamique Continentale et Côtière, CNRS UMR 6143 M2C, Normandie Université, UNICAEN, Caen, France
- Institute of Marine Research, Bergen, Norway
| | - Jean-Charles Leclerc
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), Normandie Université, UNICAEN, Caen, France
- Laboratoire Morphodynamique Continentale et Côtière, CNRS UMR 6143 M2C, Normandie Université, UNICAEN, Caen, France
- UMR 7144AD2M, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Anne-Marie Rusig
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), Normandie Université, UNICAEN, Caen, France
| | - Maxime Navon
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), Normandie Université, UNICAEN, Caen, France
| | - Maël Deloor
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), Normandie Université, UNICAEN, Caen, France
| | - Pascal Claquin
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), Normandie Université, UNICAEN, Caen, France
| | - Jean-Claude Dauvin
- Laboratoire Morphodynamique Continentale et Côtière, CNRS UMR 6143 M2C, Normandie Université, UNICAEN, Caen, France
| |
Collapse
|
22
|
Ciceu A, Bălăcenoiu F, de Groot M, Chakraborty D, Avtzis D, Barta M, Blaser S, Bracalini M, Castagneyrol B, Chernova UA, Çota E, Csóka G, Dautbasic M, Glavendekic M, Gninenko YI, Hoch G, Hradil K, Husemann M, Meshkova V, Mujezinovic O, Mutun S, Panzavolta T, Paulin M, Riba-Flinch JM, Simov N, Sotirovski K, Vasilciuc S, Zúbrik M, Schueler S. The ongoing range expansion of the invasive oak lace bug across Europe: current occurrence and potential distribution under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174950. [PMID: 39067588 DOI: 10.1016/j.scitotenv.2024.174950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the oak lace bug, Corythucha arcuata, has emerged as a significant threat to European oak forests. This species, native to North America, has in the last two decades rapidly extended its range in Europe, raising concerns about its potential impact on the continent's invaluable oak populations. To address this growing concern, we conducted an extensive study to assess the distribution, colonization patterns, and potential ecological niche of the oak lace bug in Europe. We gathered 1792 unique presence coordinates from 21 Eurasian countries, utilizing diverse sources such as research observations, citizen science initiatives, GBIF database, and social media reports. To delineate the realized niche and future distribution, we employed an ensemble species distribution modelling (SDM) framework. Two future greenhouse gas scenarios (RCP 4.5 and RCP 8.5) were considered across three-time intervals (2021-2040, 2061-2080, and 2081-2100) to project and evaluate the species' potential distribution in the future. Our analysis revealed that significant hotspots rich in host species occurrence for this invasive insect remain uninvaded so far, even within its suitable habitat. Furthermore, the native ranges of Turkey oak (Quercus cerris L.) and Hungarian oak (Quercus frainetto L.) species offer entirely suitable environments for the oak lace bug. In contrast, the pedunculate oak and sessile oak distribution ranges currently show only 40 % and 50 % suitability for colonization, respectively. However, our predictive models indicate a significant transformation in the habitat suitability of the oak lace bug, with suitability for these two oak species increasing by up to 90 %. This shift underlines an evolving landscape where the oak lace bug may exploit more of its available habitats than initially expected. It emphasises the pressing need for proactive measures to manage and stop its expanding presence, which may lead to a harmful impact on the oak population across the European landscape.
Collapse
Affiliation(s)
- Albert Ciceu
- Austrian Research Centre for Forests BFW, Austria
| | - Flavius Bălăcenoiu
- National Institute for Research and Development in Forestry "Marin Drăcea", Romania.
| | | | | | - Dimitrios Avtzis
- Forest Research Institute, Hellenic Agricultural Organization Demeter, Greece
| | - Marek Barta
- Institute of Forest Ecology, Slovak Academy of Sciences, Slovakia
| | - Simon Blaser
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Forest Health and Biotic Interactions, Switzerland
| | - Matteo Bracalini
- University of Florence, DAGRI, Plant Pathology and Entomology, Italy
| | | | - Ulyana A Chernova
- Russian Research Institute of Forestry and Forestry Mechanization, Russia
| | - Ejup Çota
- Agricultural University of Tirana, Faculty of Agriculture and Environment, Albania
| | - György Csóka
- University of Sopron, Forest Research Institute, Hungary
| | - Mirza Dautbasic
- University of Sarajevo Faculty of Forestry, Bosnia and Herzegovina
| | - Milka Glavendekic
- University of Belgrade-Faculty of Forestry, Department of Landscape Architecture and Horticulture, Serbia
| | - Yuri I Gninenko
- Russian Research Institute of Forestry and Forestry Mechanization, Russia
| | - Gernot Hoch
- Austrian Research Centre for Forests BFW, Austria
| | - Karel Hradil
- Central Institute for Supervising and Testing in Agriculture, Czech Republic
| | | | - Valentyna Meshkova
- Ukrainian Research Institute of Forestry & Forest Melioration, Ukraine; Czech University of Life Sciences Prague, Czech Republic
| | | | - Serap Mutun
- Bolu Abant İzzet Baysal University, Fac. of Science & Arts, Dept. of Biology, Turkey
| | | | - Márton Paulin
- University of Sopron, Forest Research Institute, Hungary
| | | | - Nikolay Simov
- National Museum of Natural History at the Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Kiril Sotirovski
- Ss. Cyril and Methodius University in Skopje, Hans Em Faculty of Forest Sciences, Landscape Architecture and Environmental Engineering, North Macedonia
| | | | - Milan Zúbrik
- National Forest Centre - Forest Research Institute, Slovakia
| | | |
Collapse
|
23
|
Cui M, Roe AD, Boyle B, Keena M, Wu Y, Braswell WE, Smith MT, Gasman B, Shi J, Javal M, Roux G, Turgeon JJ, Hamelin R, Porth I. Tracking the North American Asian Longhorned Beetle Invasion With Genomics. Evol Appl 2024; 17:e70036. [PMID: 39568689 PMCID: PMC11576519 DOI: 10.1111/eva.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024] Open
Abstract
Biological invasions pose significant threats to ecological and economic stability, with invasive pests like the Asian longhorned beetle (Anoplophora glabripennis Motschulsky, ALB) causing substantial damage to forest ecosystems. Effective pest management relies on comprehensive knowledge of the insect's biology and invasion history. This study uses genomics to address these knowledge gaps and inform existing biosurveillance frameworks. We used 2768 genome-wide single nucleotide polymorphisms to compare invasive A. glabripennis populations in North America, using genomic variation to trace their sources of invasion and spread patterns, thereby refining our understanding of this species' invasion history. We found that most North American A. glabripennis infestations were distinct, resulting from multiple independent introductions from the native range. Following their introduction, all invasive populations experienced a genetic bottleneck which was followed by a population expansion, with a few also showing secondary spread to satellite infestations. Our study provides a foundation for a genome-based biosurveillance tool that can be used to clarify the origin of intercepted individuals, allowing regulatory agencies to strengthen biosecurity measures against this invasive beetle.
Collapse
Affiliation(s)
- Mingming Cui
- Institut de Biologie Intégrative et des Systèmes Université Laval Quebec City Quebec Canada
- Département des sciences du bois et de la forêt Université Laval Quebec City Quebec Canada
| | - Amanda D Roe
- Natural Resources Canada, Canadian Forest Service Great Lakes Forestry Centre Sault Ste. Marie Ontario Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes Université Laval Quebec City Quebec Canada
| | - Melody Keena
- Northern Research Station, Forest Service United States Department of Agriculture Hamden Connecticut USA
| | - Yunke Wu
- Forest Pest Methods Laboratory, Plant Protection and Quarantine Science and Technology, Animal and Plant Health Inspection Service United States Department of Agriculture Buzzards Bay Massachusetts USA
| | - W Evan Braswell
- Insect Management and Molecular Diagnostics Laboratory, Plant Protection and Quarantine Science and Technology, Animal and Plant Health Inspection Service United States Department of Agriculture Edinburg Texas USA
| | - Michael T Smith
- Beneficial Insects Introduction Research Lab, Agricultural Research Service United States Department of Agriculture Newark Delaware USA
| | - Ben Gasman
- Canadian Food Inspection Agency Toronto Ontario Canada
| | - Juan Shi
- Key Laboratory for Silviculture and Conservation of Ministry of Education Beijing Forestry University Beijing China
| | - Marion Javal
- Institut National de la Recherche Agronomique, UR633 Zoologie Forestière Orléans France
- CBGP, IRD, CIRAD, INRAE, Institut Agro Montpellier Université de Montpellier Montpellier France
| | - Geraldine Roux
- Institut National de la Recherche Agronomique, UR633 Zoologie Forestière Orléans France
- Laboratoire Physiologie, Ecologie et Environnement P2E Université d'Orléans Orléans France
| | - Jean J Turgeon
- Natural Resources Canada, Canadian Forest Service Great Lakes Forestry Centre Sault Ste. Marie Ontario Canada
| | - Richard Hamelin
- Department of Forest & Conservation Sciences The University of British Columbia Vancouver British Columbia Canada
| | - Ilga Porth
- Institut de Biologie Intégrative et des Systèmes Université Laval Quebec City Quebec Canada
- Département des sciences du bois et de la forêt Université Laval Quebec City Quebec Canada
| |
Collapse
|
24
|
Song T, Huang Y, Fang L, Li Y, Li J, Chang J. Non-native species in marine protected areas: Global distribution patterns. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100453. [PMID: 39175512 PMCID: PMC11338962 DOI: 10.1016/j.ese.2024.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/24/2024]
Abstract
Marine protected areas (MPAs) across various countries have contributed to safeguarding coastal and marine environments. Despite these efforts, marine non-native species (NNS) continue to threaten biodiversity and ecosystems, even within MPAs. Currently, there is a lack of comprehensive studies on the inventories, distribution patterns, and effect factors of NNS within MPAs. Here we show a database containing over 15,000 occurrence records of 2714 marine NNS across 16,401 national or regional MPAs worldwide. To identify the primary mechanisms driving the occurrence of NNS, we utilize model selection with proxies representing colonization pressure, environmental variables, and MPA characteristics. Among the environmental predictors analyzed, sea surface temperature emerged as the sole factor strongly associated with NNS richness. Higher sea surface temperatures are linked to increased NNS richness, aligning with global marine biodiversity trends. Furthermore, human activities help species overcome geographical barriers and migration constraints. Consequently, this influences the distribution patterns of marine introduced species and associated environmental factors. As global climate change continues to alter sea temperatures, it is crucial to protect marine regions that are increasingly vulnerable to intense human activities and biological invasions.
Collapse
Affiliation(s)
- Tianjian Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuxin Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lei Fang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yonghua Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Junsheng Li
- Command Center for Comprehensive Survey of Natural Resources, China Geological Survey Bureau, Beijing, 100055, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
25
|
Douard M, Fernandez S, Garcia-Vazquez E, Planes S. Rapid expansion and ecosystem health risk of invasive biopollutants dispersed by maritime traffic in French Polynesia. MARINE POLLUTION BULLETIN 2024; 208:116927. [PMID: 39255672 DOI: 10.1016/j.marpolbul.2024.116927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
The introduction of biopollutant species challenge ecosystem health and economy in remote islands. Here we checked the advance of invasive fouling species in five French Polynesian islands. Expansion of invasive species (Acantophora spicifera, Bugula neritina, Chthamalus proteus, Dendostrea frons) was detected using individual barcoding (COI for animals, RBLC for algae), and metabarcoding on biofouling (COI and 18S sequences). They were especially abundant in Port Phaeton (Tahiti), Bora Bora and Rangiroa atoll. Chthamalus proteus is a vector of bacterial diseases and may harm native French Polynesian mollusks. Dendostrea frons is a vector of Perkinsus, a parasite to which black pearl oysters, the mainstay of the Polynesian economy, are susceptible. High ecological and epidemiological risks were estimated for C. proteus and D. frons, and ecological risks also for A. spicifera and especially for B. neritina. Strengthening marine biosecurity measures is highly recommended to conserve these unique ecosystems and their associated services.
Collapse
Affiliation(s)
- Margaux Douard
- Centre de Recherche Insulaire et Observatoire de l'Environnement, Moorea, French Polynesia
| | - Sara Fernandez
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006 Oviedo, Spain
| | - Eva Garcia-Vazquez
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006 Oviedo, Spain.
| | - Serge Planes
- Centre de Recherche Insulaire et Observatoire de l'Environnement, Moorea, French Polynesia; USR3278 CRIOBE EPHE-CNRS-UPVD, 66860 Perpignan, France
| |
Collapse
|
26
|
Walusiak E, Cieślak E, Wilk-Woźniak E, Szczepaniak M, Herrmann A, Petrulaitis L, Rašomavičius V, Uogintas D, Krztoń W. A wide range of abiotic habitat factors and genetic diversity facilitate expansion of Trapa natans within its native range. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122468. [PMID: 39276652 DOI: 10.1016/j.jenvman.2024.122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Climate change and intense human activity are exacerbating changes in species' ranges. While the rapid spread of invasive alien species is well documented worldwide, the phenomenon of the spread of native species is poorly understood. To explain the problem of rapidly spreading species in the changing world, it is necessary to understand their ecology, genetic diversity and habitat limitation. The aim of our study was to analyze the ecological requirements and genetic diversity in the population of the macrophyte Trapa natans s. l., an invasive alien species in North America but native in Europe and Asia. We investigated the populations in its native range (Central and Northeastern Europe), where the species is defined as rare or extinct. We found the occurrence of T. natans in Northeastern Europe aquatic habitats where, up to now, it was described as an extinct species. The results of our environmental studies showed that the species has a wide range of tolerance to habitat conditions and lives in medium to highly nutrient-rich water with low and high salinity. Using Amplified Fragment Length Polymorphism (AFLP) analysis, we revealed high genetic variability within populations with relatively limited differentiation between populations. We showed that some populations are highly diverse (possibly refugia; Central Europe) and others are homogeneous (new sites, commercial reintroduction; Northeastern Europe). Conservation status of T. natans in its native range should be reconsidered, as the species has spread rapidly in recent decades and could be detrimental to aquatic habitats. The conclusion is that expansion/invasion can start from small populations, but under favorable conditions these populations spread rapidly. The introduction of species (even native) should be done carefully, if at all, as uncontrolled introduction to new locations, e.g. private ponds, could be the start of dispersal (native habitats) or invasion (non-native area).
Collapse
Affiliation(s)
- Edward Walusiak
- Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Elżbieta Cieślak
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Elżbieta Wilk-Woźniak
- Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Magdalena Szczepaniak
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Armin Herrmann
- Independent Researcher, Weserstr. 6, 12047, Berlin, Germany.
| | - Lukas Petrulaitis
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 47, 12200, Vilnius, Lithuania.
| | - Valerijus Rašomavičius
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 47, 12200, Vilnius, Lithuania.
| | - Domas Uogintas
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 47, 12200, Vilnius, Lithuania.
| | - Wojciech Krztoń
- Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
27
|
Cooper RD, Luckau TK, Toffelmier E, Cook DG, Martinelli S, Fawcett MH, Shaffer HB. A novel genetic strategy to enable rapid detection of rare non-native alleles. Sci Rep 2024; 14:26027. [PMID: 39472468 PMCID: PMC11522522 DOI: 10.1038/s41598-024-76149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Established invasive species represent one of the most harmful and challenging threats to native biodiversity, necessitating methods for Early Detection and Rapid Response. Cryptic invasions are particularly challenging and often require expensive and time-consuming molecular surveys which limits their usefulness for management. We present a novel application of the Fluidigm SNP-Type Assay to identify rare non-native alleles that significantly reduces the cost and time to generate diagnostic results. We demonstrate the efficacy of this method using experimental Fluidigm pools (99% accuracy) and sequence data (96% accuracy). We apply our novel methodology to an endangered population of California tiger salamanders in Sonoma County where two individual non-native tiger salamander hybrids have previously been detected since 2008. We screened 5805 larvae in 387 sample-pools containing 15 larvae each. We did not detect any non-native hybrids in the population, a result that was verified with sequence data, though we strongly recommend additional years of sampling to confirm hybrid absence. Our success with a challenging, large-genome amphibian suggests this method may be applied to any system, and would be particularly useful when it is necessary for conservation practitioners to rapidly identify rare taxa or genes of interest.
Collapse
Affiliation(s)
- Robert D Cooper
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA.
| | - Tara K Luckau
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Erin Toffelmier
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA
| | - Dave G Cook
- , 3003 Magowan Drive, Santa Rosa, CA, 95405, USA
| | - Stacy Martinelli
- California Department of Fish and Wildlife, Wildlife and Lands Management Program, Santa Rosa, CA, 95403, USA
| | - Michael H Fawcett
- Fawcett Environmental Consulting, 598 South First Street, Dunsmuir, CA, 96025, USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
28
|
Lemos MFL. Beyond Earth: Harnessing Marine Resources for Sustainable Space Colonization. Mar Drugs 2024; 22:481. [PMID: 39590761 PMCID: PMC11595546 DOI: 10.3390/md22110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
The quest for sustainable space exploration and colonization is a challenge in its infancy, which faces scarcity of resources and an inhospitable environment. In recent years, advancements in space biotechnology have emerged as potential solutions to the hurdles of prolonged space habitation. Taking cues from the oceans, this review focuses on the sundry types of marine organisms and marine-derived chemicals that have the potential of sustaining life beyond planet Earth. It addresses how marine life, including algae, invertebrates, and microorganisms, may be useful in bioregenerative life support systems, food production, pharmaceuticals, radiation shielding, energy sources, materials, and other applications in space habitats. With the considerable and still unexplored potential of Earth's oceans that can be employed in developing space colonization, we allow ourselves to dream of the future where people can expand to other planets, not only surviving but prospering. Implementing the blend of marine and space sciences is a giant leap toward fulfilling man's age-long desire of conquering and colonizing space, making it the final frontier.
Collapse
Affiliation(s)
- Marco F L Lemos
- MARE-Marine and Environmental Sciences Centre, ARNET-Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
29
|
Mayer K, Garrett DL, Haukenes AH. Native and non-native species response to the colonization and subsequent suppression of northern pike Esox lucius. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39417307 DOI: 10.1111/jfb.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
The expansion of northern Pike Esox lucius outside its native range into the western states of North America is a growing problem due to their negative effects on fish communities. Illegally introduced E. lucius were first detected in Box Canyon Reservoir in northeast Washington in 2004. By 2010, the E. lucius population was estimated at more than 10,000 individuals. Between 2012 and 2019, a gillnet suppression programme was conducted, which reduced the E. lucius catch per unit effort in Box Canyon Reservoir by 97% and their biomass by 98%. Between 2004 and 2019, four standardized surveys were conducted to characterize changes in the Box Canyon Reservoir fish community. Even after E. lucius were effectively suppressed, native species showed no signs of recovery during the study. The relative abundance of all native species decreased 82% in total number and 56% in total biomass between 2004 and 2019. Conversely, the relative abundance of non-native species increased 26% in total number and 33% in total biomass over the same period. As an apex predator, E. lucius had a significant impact on the fish community in Box Canyon Reservoir over a relatively short period of time (7 years), and appeared to act as a catalyst to increase the rate of replacement of native species with non-native species, which likely increased the pace of taxonomic homogenization in the reservoir.
Collapse
Affiliation(s)
- Kent Mayer
- Washington Department of Fish and Wildlife, Olympia, USA
| | | | - Alf H Haukenes
- Washington Department of Fish and Wildlife, Olympia, USA
| |
Collapse
|
30
|
Marino C, Soares FC, Bellard C. Conservation priorities for functionally unique and specialized terrestrial vertebrates threatened by biological invasions. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14401. [PMID: 39417612 DOI: 10.1111/cobi.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 10/19/2024]
Abstract
Invasive non-native species (INS) continue to pose a significant threat to biodiversity, including native population declines, which can ultimately disrupt ecosystem processes. Although there is growing evidence of the impacts of INS on functional diversity, most of the existing approaches to prioritization of species for conservation still focus on taxonomic diversity, neglecting the ecological role of species. We developed the functionally unique, specialized, and endangered by invasive non-native species (FUSE INS) score to fill this gap by combining functional irreplaceability (i.e., uniqueness and specialization) of species with their extinction risk due to INS. We calculated this score for 3642 terrestrial vertebrates exposed to INS by assessing how INS affected them based on the IUCN Red List and by evaluating their specialization and uniqueness in a multidimensional functional space. Thirty-eight percent of native species were both at high extinction risk because of INS and functionally unique and specialized, making them priority species for INS impact mitigation. Priority species of amphibians concentrated in Central America and Madagascar and of lizards in the Caribbean islands, northern Australia, New Zealand, and New Caledonia. Priority bird and mammal species were more widespread (birds, mostly in coastal areas, on Pacific islands, and in northern India and New Zealand; mammals, in southwestern Europe, Central Africa, East Africa, Southern Africa, Southeast Asia, and eastern Australia). Seventy-eight species were also highly irreplaceable but not yet threatened by INS, suggesting that preventive conservation measures may help protect these species. For the 50 birds of the highest priority, 64% required conservation actions to mitigate the INS threat. The FUSE INS score can be used to help prioritize indigenous species representing large amounts of functional diversity. Incorporating functional diversity into the conservation prioritization of species and associated areas is key to accurately reducing and mitigating the impacts of INS on native biodiversity.
Collapse
Affiliation(s)
- Clara Marino
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Gif-sur-Yvette, France
- FRB - CESAB, Montpellier, France
| | - Filipa Coutinho Soares
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum National d'Histoire Naturelle, Paris, France
| | - Céline Bellard
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Gif-sur-Yvette, France
| |
Collapse
|
31
|
Zhou Y, Lan W, Yang F, Zhou Q, Liu M, Li J, Yang H, Xiao Y. Invasive Amaranthus spp. for heavy metal phytoremediation: Investigations of cadmium and lead accumulation and soil microbial community in three zinc mining areas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117040. [PMID: 39270476 DOI: 10.1016/j.ecoenv.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Amaranthus spp. are a group of strongly invasive and vigorous plants, and heavy metal phytoremediation using alien invasive Amaranthus spp. has been a popular research topic. In this study, the bioconcentration factor (BCF) and translocation factor (TF) of Amaranthus spp. were evaluated, focusing on the accumulation potential of cadmium (Cd) and lead (Pb) by plants from three different zinc mining areas, namely Huayuan (HYX), Yueyang (LYX), and Liuyang (LYX). The HYX area has the most severe Cd contamination, while the LYX area has the most apparent Pb contamination. The results showed that Amaranthus spp. had a strong Cd and Pb enrichment capacity in low-polluted areas. To elucidate the underlying mechanisms, we used high-throughput sequencing of 16S rRNA and internal transcribed spacer (ITS) regions to analyze rhizosphere bacterial and fungal communities in three areas. The results showed significant differences in the structure, function, and composition of microbial communities and complex interactions between plants and their microbes. The correlation analysis revealed that some key microorganisms (e.g., Amycolatopsis, Bryobacterium, Sphingomonas, Flavobacterium, Agaricus, Nigrospora, Humicola) could regulate several soil factors such as soil pH, organic matter (OM), available nitrogen (AN), and available phosphorus (AP) to affect the heavy metal enrichment capacity of plants. Notably, some enzymes (e.g., P-type ATPases, Cysteine synthase, Catalase, Acid phosphatase) and genes (e.g., ZIP gene family, and ArsR, MerR, Fur, NikR transcription regulators) have been found to be involved in promoting Cd and Pb accumulation in Amaranthus spp. This study can provide new ideas for managing heavy metal-contaminated soils and new ways for the ecological resource utilization of invasive plants in phytoremediation.
Collapse
Affiliation(s)
- Yu Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wendi Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Fan Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qingfan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Analysis Technology Department, Xiangxi Ecological Environment Monitoring Center, Jishou 416000, China
| | - Mingxin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jian Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China.
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China.
| |
Collapse
|
32
|
Ion MC, Bloomer CC, Bărăscu TI, Oficialdegui FJ, Shoobs NF, Williams BW, Scheers K, Clavero M, Grandjean F, Collas M, Baudry T, Loughman Z, Wright JJ, Ruokonen TJ, Chucholl C, Guareschi S, Koese B, Banyai ZM, Hodson J, Hurt M, Kaldre K, Lipták B, Fetzner JW, Cancellario T, Weiperth A, Birzaks J, Trichkova T, Todorov M, Balalaikins M, Griffin B, Petko ON, Acevedo-Alonso A, D’Elía G, Śliwińska K, Alekhnovich A, Choong H, South J, Whiterod N, Zorić K, Haase P, Soto I, Brady DJ, Haubrock PJ, Torres PJ, Şadrin D, Vlach P, Kaya C, Woo Jung S, Kim JY, Vermeersch XH, Bonk M, Guiaşu R, Harlioğlu MM, Devlin J, Kurtul I, Błońska D, Boets P, Masigol H, Cabe PR, Jussila J, Vrålstad T, Beresford DV, Reid SM, Patoka J, Strand DA, Tarkan AS, Steen F, Abeel T, Harwood M, Auer S, Kelly S, Giantsis IA, Maciaszek R, Alvanou MV, Aksu Ö, Hayes DM, Kawai T, Tricarico E, Chakandinakira A, Barnett ZC, Kudor ŞG, Beda AE, Vîlcea L, Mizeranschi AE, Neagul M, Licz A, Cotoarbă AD, Petrusek A, Kouba A, Taylor CA, Pârvulescu L. World of Crayfish™: a web platform towards real-time global mapping of freshwater crayfish and their pathogens. PeerJ 2024; 12:e18229. [PMID: 39421415 PMCID: PMC11485098 DOI: 10.7717/peerj.18229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Freshwater crayfish are amongst the largest macroinvertebrates and play a keystone role in the ecosystems they occupy. Understanding the global distribution of these animals is often hindered due to a paucity of distributional data. Additionally, non-native crayfish introductions are becoming more frequent, which can cause severe environmental and economic impacts. Management decisions related to crayfish and their habitats require accurate, up-to-date distribution data and mapping tools. Such data are currently patchily distributed with limited accessibility and are rarely up-to-date. To address these challenges, we developed a versatile e-portal to host distributional data of freshwater crayfish and their pathogens (using Aphanomyces astaci, the causative agent of the crayfish plague, as the most prominent example). Populated with expert data and operating in near real-time, World of Crayfish™ is a living, publicly available database providing worldwide distributional data sourced by experts in the field. The database offers open access to the data through specialized standard geospatial services (Web Map Service, Web Feature Service) enabling users to view, embed, and download customizable outputs for various applications. The platform is designed to support technical enhancements in the future, with the potential to eventually incorporate various additional features. This tool serves as a step forward towards a modern era of conservation planning and management of freshwater biodiversity.
Collapse
Affiliation(s)
- Mihaela C. Ion
- Institute of Biology Bucharest, Romanian Academy, Bucharest, Romania
| | - Caitlin C. Bloomer
- Illinois Natural History Survey, Prairie Research Institute, Champaign, IL, United States of America
| | | | - Francisco J. Oficialdegui
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Nathaniel F. Shoobs
- Museum of Biological Diversity, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States of America
| | - Bronwyn W. Williams
- Research Laboratory, North Carolina Museum of Natural Sciences, Raleigh, NC, United States of America
| | - Kevin Scheers
- Unit Freshwater habitats, Research Institute for Nature and Forest, Brussels, Belgium
| | | | - Frédéric Grandjean
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Laboratoire EBI - Equipe Ecologie Evolution Symbiose - Batiment B31, Université de Poitiers, Poitiers, France
| | - Marc Collas
- Office Français de la Biodiversité, Epinal, France
| | - Thomas Baudry
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Laboratoire EBI - Equipe Ecologie Evolution Symbiose - Batiment B31, Université de Poitiers, Poitiers, France
| | - Zachary Loughman
- Department of Organismal Biology, Ecology, and Zoo Science, West Liberty University, West Liberty, WV, United States of America
| | | | | | | | - Simone Guareschi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Bram Koese
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - Zsombor M. Banyai
- Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - James Hodson
- School of Biology, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Margo Hurt
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Katrin Kaldre
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Boris Lipták
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
- Slovak Environment Agency, Banská Bystrica, Slovakia
| | - James W. Fetzner
- Section of Invertebrate Zoology, Carnegie Museum of Natural History, Pittsburgh, PA, United States of America
| | - Tommaso Cancellario
- Balearic Biodiversity Centre, Department of Biology, University of the Balearic Islands, Palma, Spain
| | - András Weiperth
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Jạnis Birzaks
- Institute of Life Sciences and Technology, Department of Biodiversity, Daugavpils University, Daugavpils, Latvia
| | - Teodora Trichkova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Milcho Todorov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maksims Balalaikins
- Institute of Life Sciences and Technology, Department of Biodiversity, Daugavpils University, Daugavpils, Latvia
| | | | - Olga N. Petko
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | | | - Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Karolina Śliwińska
- Scientific and Practical Center for Biological Resources of the National Academy of Science of Belarus, Minsk, Belarus
| | - Anatoly Alekhnovich
- Scientific and Practical Center for Biological Resources of the National Academy of Science of Belarus, Minsk, Belarus
| | - Henry Choong
- Royal British Columbia Museum, Victoria, British Columbia, Canada
| | - Josie South
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Water@Leeds, School of Biology, Faculty of Biological Sciences, Leeds, United Kingdom
| | - Nick Whiterod
- Nature Glenelg Trust, South Australia, Australia
- CLLMM Research Centre, Goyder Institute for Water Research, Goolwa, South Australia, Australia
| | - Katarina Zorić
- Department of Hydroecology and Water Protection, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Peter Haase
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Daniel J. Brady
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
| | - Phillip J. Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Pedro J. Torres
- Biology Department, College of the Holy Cross, Worcester, MA, United States of America
| | - Denis Şadrin
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | - Pavel Vlach
- Center of Biology, Geosciences and Environmental Education, Faculty of Education, University of West Bohemia, Plzeň, Czech Republic
| | - Cüneyt Kaya
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sang Woo Jung
- DASARI Research Institute of BioResources, Daejeon, Republic of Korea
| | - Jin-Young Kim
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| | | | - Maciej Bonk
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Radu Guiaşu
- Biology Program, Glendon College, York University, Toronto, Ontario, Canada
| | | | - Jane Devlin
- Ontario Ministry of Natural Resources, Peterborough, Ontario, Canada
| | - Irmak Kurtul
- Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, Izmir, Turkey
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Bournemouth, United Kingdom
| | - Dagmara Błońska
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Pieter Boets
- Provincial Centre of Environmental Research, Ghent, Belgium
| | - Hossein Masigol
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | - Paul R. Cabe
- Biology Department, Washington and Lee University, Lexington, VA, United States of America
| | - Japo Jussila
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Trude Vrålstad
- Department of Aquatic Animal Health, Norwegian Veterinary Institute, Ås, Norway
| | - David V. Beresford
- Biology and Trent School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Scott M. Reid
- Ontario Ministry of Natural Resources, Peterborough, Ontario, Canada
| | - Jiří Patoka
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - David A. Strand
- Department of Aquatic Animal Health, Norwegian Veterinary Institute, Ås, Norway
| | - Ali S. Tarkan
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Frédérique Steen
- Unit Freshwater habitats, Research Institute for Nature and Forest, Brussels, Belgium
| | - Thomas Abeel
- Agro- and Biotechnology, Odisee University of Applied Sciences, Sint-Niklaas, Belgium
| | - Matthew Harwood
- Water@Leeds, School of Biology, Faculty of Biological Sciences, Leeds, United Kingdom
| | | | - Sandor Kelly
- University of Central Florida, Orlando, FL, United States of America
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
- Laboratory of Ichthyology & Fisheries, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Rafał Maciaszek
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Maria V. Alvanou
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Önder Aksu
- Department of Aquaculture of Fisheries Faculty, Munzur University, Tunceli, Turkey
| | - David M. Hayes
- Eastern Kentucky University, Richmond, KY, United States of America
| | - Tadashi Kawai
- Hokkaido Research Organization, Central Fisheries Research Institute, Yoichi Hokkaido, Japan
| | - Elena Tricarico
- Dipartimento di Biologia, Università di Firenze, Sesto Fiorentino, Italy
| | - Adroit Chakandinakira
- Lake Kariba Fisheries Research Institute, Zimbabwe Parks and Wildlife Management Authority, Kariba, Zimbabwe
| | - Zanethia C. Barnett
- USDA Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, Clemson, SC, United States of America
| | - Ştefan G. Kudor
- “Simion Mehedinţi - Nature and Sustainable Development” Doctoral School, University of Bucharest, Bucharest, Romania
| | - Andreea E. Beda
- Department of Computer Science and Information Technology, Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, Bucharest, Romania
| | - Lucian Vîlcea
- Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, Bucharest, Romania
| | - Alexandru E. Mizeranschi
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
- Research and Development Station for Bovine - Arad, Arad, Romania
| | - Marian Neagul
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | - Anton Licz
- Information Technology & Communications Department, West University of Timisoara, Timisoara, Romania
| | - Andra D. Cotoarbă
- Department of Biology, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Adam Petrusek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Christopher A. Taylor
- Illinois Natural History Survey, Prairie Research Institute, Champaign, IL, United States of America
| | - Lucian Pârvulescu
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
- Department of Biology, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| |
Collapse
|
33
|
Blattner LA, Kulanek D, Ruffener S, Ziegler H, Wymann HP, Wiemers M, Michalik P, Berner D. Urbanization-associated range expansion genetically homogenizes a butterfly species. Curr Biol 2024; 34:4589-4595.e4. [PMID: 39321794 DOI: 10.1016/j.cub.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
Human-induced environmental change and globalization facilitate biological invasions, which can lead to the displacement of native species by non-native ones.1,2,3,4 Analogously, biodiversity loss may occur within species when habitat modifications facilitate the expansion of a specific population's range, leading to genetic admixture with native local populations. We demonstrate such intraspecific loss in population-level diversity in the Southern Small White (Pieris mannii), an originally sedentary butterfly5 that recently expanded its range across Central Europe due to urbanization.6,7,8 Using genome-wide markers from historical museum specimens and contemporary samples, we identify a distinct population initiating this expansion and reveal the genetic homogenization of native local populations by admixture with the expansive one. Our study illustrates how human-made environmental change can simultaneously benefit a species by permitting range expansion and drive cryptic biodiversity loss through the genetic homogenization of conspecific populations.
Collapse
Affiliation(s)
- Lucas A Blattner
- Department of Environmental Sciences, Zoology & Evolution, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Dustin Kulanek
- Zoological Institute & Museum, University of Greifswald, Loitzer Strasse 26, 17489 Greifswald, Germany
| | - Simona Ruffener
- Department of Environmental Sciences, Zoology & Evolution, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | | | - Hans-Peter Wymann
- Natural History Museum Bern, Bernastrasse 15, 3005 Bern, Switzerland
| | - Martin Wiemers
- Senckenberg German Entomological Institute, Eberswalder Strasse 90, 15374 Müncheberg, Germany
| | - Peter Michalik
- Zoological Institute & Museum, University of Greifswald, Loitzer Strasse 26, 17489 Greifswald, Germany
| | - Daniel Berner
- Department of Environmental Sciences, Zoology & Evolution, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.
| |
Collapse
|
34
|
Pili A, Schumaker N, Camacho‐Cervantes M, Tingley R, Chapple D. Landscape Heterogeneity and Environmental Dynamics Improve Predictions of Establishment Success of Colonising Small Founding Populations. Evol Appl 2024; 17:e70027. [PMID: 39439435 PMCID: PMC11493551 DOI: 10.1111/eva.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
In long-distance dispersal events, colonising species typically begin with a small number of founding individuals. A growing body of research suggests that establishment success of small founding populations can be determined by the context of the colonisation event and the new environment. Here, we illuminate the importance of these sources of context dependence. Using a spatially explicit, temporally dynamic, mechanistic, individual-based simulator of a model amphibian species, the cane toad (Rhinella marina), we simulated colonisation scenarios to investigate how (1) the number of founding individuals, (2) the number of dispersal events, (3) landscape's spatial composition and configuration of habitats ('spatially heterogeneous landscapes') and (4) the timing of arrival with regards to dynamic environmental conditions ('dynamic environmental conditions') influence the establishment success of small founding populations. We analysed the dynamic effects of these predictors on establishment success using running-window logistic regression models. We showed establishment success increases with the number of founding individuals, whereas the number of dispersal events had a weak effect. At ≥ 20 founding individuals, propagule size swamps the effects of other factors, to whereby establishment success is near-certain (≥ 90%). But below this level, confidence in establishment success dramatically decreases as number of founding individuals decreases. At low numbers of founding individuals, the prominent predictors are landscape spatial heterogeneity and dynamic environmental conditions. For instance, compared to the annual mean, founding populations with ≤ 5 individuals have up to 18% higher establishment success when they arrive in 'packed' landscapes with relatively limited and clustered essential habitats and right before the breeding season. Accounting for landscape spatial heterogeneity and dynamic environmental conditions is integral in understanding and predicting population establishment and species colonisation. This additional complexity is necessary for advancing biogeographical theory and its application, such as in guiding species reintroduction efforts and invasive alien species management.
Collapse
Affiliation(s)
- Arman N. Pili
- School of Biological Sciences, Faculty of ScienceMonash UniversityClayton3800VictoriaAustralia
- Macroecology, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdam14469BrandenburgGermany
| | - Nathan H. Schumaker
- US Environmental Protection AgencyPacific Ecological Systems DivisionCorvallisOregonUSA
| | | | - Reid Tingley
- School of Biological Sciences, Faculty of ScienceMonash UniversityClayton3800VictoriaAustralia
| | - David G. Chapple
- School of Biological Sciences, Faculty of ScienceMonash UniversityClayton3800VictoriaAustralia
| |
Collapse
|
35
|
Novoa A, Jarić I, Pipek P, Pyšek P. Culturomics and iEcology provide novel opportunities to study human and social dimensions of alien species introductions. Trends Ecol Evol 2024:S0169-5347(24)00221-0. [PMID: 39358047 DOI: 10.1016/j.tree.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
Invasive alien species negatively impact ecosystems, biodiversity, human societies, and economies. To prevent future invasions, it is crucial to understand both the ecological and the human and social factors determining whether a species is picked up, transported, and introduced beyond their native range. However, we often have little or no information on key human and social factors. Here, we explore how alien species introductions are shaped by a combination of ecological and human and social factors and highlight the potential of the emerging fields of conservation culturomics and iEcology for disentangling their relative importance. We argue that quantifying and assessing the relative importance of the human and social dimensions of alien species introductions can substantially improve our understanding of the invasion process.
Collapse
Affiliation(s)
- Ana Novoa
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic; Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Almería, Spain.
| | - Ivan Jarić
- CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France; Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Pavel Pipek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic; Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic; Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| |
Collapse
|
36
|
Ackland S, Richardson D, Robinson T. A Method for Conveying Confidence in iNaturalist Observations: A Case Study Using Non-Native Marine Species. Ecol Evol 2024; 14:e70376. [PMID: 39385842 PMCID: PMC11461752 DOI: 10.1002/ece3.70376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Concerns and limitations relating to data quality, reliability and accuracy hamper the use of citizen science initiatives in research and conservation. Valued for their cost-effective and large data acquisition potential, citizen science platforms such as iNaturalist have been highlighted as beneficial tools to supplement monitoring using traditional data sources. However, intrinsic uncertainties in unverified observations stem from the nature of species being identified, the quality of uploaded media and georeferencing; these factors can limit the value of the data as they can result in inaccurate records. Verification of data prior to use is critical. This process can, however, be laborious and time-consuming, with bias associated with the individual responsible for the task. To address this challenge this study developed a protocol for assigning confidence in iNaturalist observations, using marine alien and cryptogenic species observations from South Africa as a case study. A positive relationship was found between the accuracy of observations and confidence score. The inherent data quality assessment in iNaturalist, termed quality grade, was found to be an inadequate proxy for accuracy. The results of this study highlight the importance of the expert verification phase when using citizen science data. The confidence score facilitates a streamlined approach to the verification process by reducing the time taken to validate records, while assessing the three levels of uncertainty within observations and reducing researcher bias. It is recommended that this confidence score be used as an essential tool when using citizen science derived data.
Collapse
Affiliation(s)
- Sarah J. Ackland
- Department of Botany and Zoology, Centre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa
| | - David M. Richardson
- Department of Botany and Zoology, Centre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa
| | - Tamara B. Robinson
- Department of Botany and Zoology, Centre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
37
|
Simard N, Weise AM, Rochon A, Briski E, MacIsaac HJ, McKindsey CW. Discharge of ballast residual sediments during de-ballasting procedures: A more realistic estimate of propagule pressure. MARINE POLLUTION BULLETIN 2024; 207:116716. [PMID: 39222553 DOI: 10.1016/j.marpolbul.2024.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Ship ballast residual sediments are an important vector of introduction for non-indigenous species. We evaluated the proportion of residual sediments and associated organisms released during de-ballasting operations of a commercial bulk carrier and estimated a total residual sediment accumulation of ∼13 t, with accumulations of up to 20 cm in some tank areas that had accumulated over 11 years. We observed interior hull-fouling (anemones, hydrozoans, and bryozoans) and high abundances of viable invertebrate resting stages and dinoflagellate cysts in sediments. Although we determined that <1 % of residual sediments and associated resting stages were resuspended and released into the environment during individual de-ballasting events, this represents a substantial inoculum of 21 × 107 viable dinoflagellate cysts and 7.5 × 105 invertebrate resting stages with many taxa being nonindigenous, cryptogenic, or toxic/harmful species. The methods used and results will help estimate propagule pressure associated with this pathway and will be relevant for residual sediments and nonindigenous species management.
Collapse
Affiliation(s)
- Nathalie Simard
- Maurice-Lamontagne Institute, Fisheries and Oceans Canada, 850 route de la Mer, Mont-Joli, QC G5H 3Z4, Canada
| | - Andrea M Weise
- Maurice-Lamontagne Institute, Fisheries and Oceans Canada, 850 route de la Mer, Mont-Joli, QC G5H 3Z4, Canada
| | - André Rochon
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Elizabeta Briski
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Christopher W McKindsey
- Maurice-Lamontagne Institute, Fisheries and Oceans Canada, 850 route de la Mer, Mont-Joli, QC G5H 3Z4, Canada.
| |
Collapse
|
38
|
Woo S, Kim T, Kim Y, Jeong S, Kim E. Inter- and Intraspecific Competition in Invasive Lactuca serriola and Co-Occurring Weedy Plant Species. Ecol Evol 2024; 14:e70496. [PMID: 39478980 PMCID: PMC11522139 DOI: 10.1002/ece3.70496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
While invasive success of alien plant species is often attributed to their superior competitive abilities, it is also suggested that competitive ability depends on the target species of competition and resource availability. In addition, it remains unclear whether invaders and co-occurring plants in the introduced area exhibit distinctive inter- and intraspecific competitive intensities. This study aimed to evaluate the competitive ability of a successful invader, Lactuca serriola, through a combination of field surveys and a growth chamber experiment. First, we assessed biodiversity and the biomass of co-occurring plants in both L. serriola-invaded and uninvaded plots across nine sites in South Korea. Subsequently, a pairwise competition experiment was conducted between L. serriola and three weedy plant species commonly found in the invaded plots, Chenopodium album, Erigeron canadensis, and Oenothera biennis, under differential nutrient levels. Diversity indices of plant communities and the biomass of most co-occurring plants showed no significant difference between invaded and uninvaded plots. L. serriola and testing weedy plants exhibited mutually negative effects on biomass when grown together in the same pot, with the intensity of interspecific competition being comparable across nutrient treatments. Notably, intraspecific competition of L. serriola was weaker than testing weedy plants, particularly manifest in the high-nutrient treatment. The results of both field and growth-chamber studies demonstrated that L. serriola was not a particularly strong competitor compared to its neighboring weedy plants. Its successful invasion can be partially attributed to its weak intraspecific competition intensity, which potentially facilitate successful establishment with high density.
Collapse
Affiliation(s)
- Sohyun Woo
- School of Earth Sciences and Environmental EngineeringGwangju Institute of Science and TechnologyGwangjuKorea
| | - Tae‐Min Kim
- School of Earth Sciences and Environmental EngineeringGwangju Institute of Science and TechnologyGwangjuKorea
| | - Yousuk Kim
- School of Earth Sciences and Environmental EngineeringGwangju Institute of Science and TechnologyGwangjuKorea
| | - Seorin Jeong
- School of Earth Sciences and Environmental EngineeringGwangju Institute of Science and TechnologyGwangjuKorea
| | - Eunsuk Kim
- School of Earth Sciences and Environmental EngineeringGwangju Institute of Science and TechnologyGwangjuKorea
| |
Collapse
|
39
|
Baek HJ, Cheong E, Kim Y, Koo KS, Kim SH, Park CD, Yoon JD. Geographical Distribution of Mauremys sinensis, Mauremys reevesii, and Their Hybrids in South Korea. Animals (Basel) 2024; 14:2626. [PMID: 39335217 PMCID: PMC11428876 DOI: 10.3390/ani14182626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The Chinese striped-necked turtle Mauremys sinensis, introduced into South Korea presumably in 2012, is considered an invasive alien species owing to its devastating impact, including hybridization with the native protected species Reeves' turtle M. reevesii. Recently, the presence of M. sinensis has been confirmed throughout the country, and several sympatric areas with M. reevesii have been reported. Thus, field surveys were conducted at 47 sites across M. sinensis and M. reevesii habitats in South Korea to determine the extent of hybridization. Five sympatric sites were confirmed, and hybrid individuals were identified at four sites. Genetic analyses (COI and R35) of two individuals from Jeju Island confirmed maternal M. reevesii and paternal M. sinensis lineages. Hybridization presumably does not occur under natural conditions, and the hybrids likely originated from captive breeding. This study identifies for the first time the habitats of M. sinensis and its hybrids in the wild of South Korea. The management measures proposed in the current study could be of value for the conservation of the native species; however, our study did not include reproductive monitoring, and there is a need for such surveys as well as for systematic management of non-native turtles introduced into South Korea.
Collapse
Affiliation(s)
- Hae-Jun Baek
- Invasive Alien Species Team, Bureau of Survey and Safety Research, National Institute of Ecology, Seocheon 33657, Republic of Korea
| | - Eujin Cheong
- National Migratory Birds Center, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Youngha Kim
- National Ecosystem Survey Team, Bureau of Survey and Safety Research, National Institute of Ecology, Seocheon 33657, Republic of Korea
| | - Kyo Soung Koo
- Korean Environmental Geography Institute, Sejong 30141, Republic of Korea
| | - Su-Hwan Kim
- Wetland Research Team, Wetland Center, National Institute of Ecology (NIE), Changnyeong 50303, Republic of Korea
| | - Chang-Deuk Park
- Research Center for Endangered Species, National Institute of Ecology (NIE), Yeongyang 36531, Republic of Korea
| | - Ju-Duk Yoon
- Research Center for Endangered Species, National Institute of Ecology (NIE), Yeongyang 36531, Republic of Korea
| |
Collapse
|
40
|
Sun Y, Ren ZK, Müller-Schärer H, Callaway RM, van Kleunen M, Huang W. Increasing and fluctuating resource availability enhances invasional meltdown. Ecology 2024; 105:e4387. [PMID: 39016245 DOI: 10.1002/ecy.4387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 07/18/2024]
Abstract
Exotic plant invaders can promote others via direct or indirect facilitation, known as "invasional meltdown." Increased soil nutrients can also promote invaders by increasing their competitive impacts, but how this might affect meltdown is unknown. In a mesocosm experiment, we evaluated how eight exotic plant species and eight Eurasian native species responded individually to increasing densities of the invasive plant Conyza canadensis, while varying the supply and fluctuations of nutrients. We found that increasing density of C. canadensis intensified competitive suppression of natives but intensified facilitation of other exotics. Higher and fluctuating nutrients exacerbated the competitive effects on natives and facilitative effects on exotics. Overall, these results show a pronounced advantage of exotics over native target species with increased relative density of C. canadensis under high nutrient availability and fluctuation. We integrate these results with the observation that exotic species commonly drive increases in soil resources to suggest the Resource-driven Invasional Meltdown and Inhibition of Natives hypothesis in which biotic acceleration of resource availability promotes other exotic species over native species, leading to invasional meltdown.
Collapse
Affiliation(s)
- Yan Sun
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Kun Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Heinz Müller-Schärer
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ragan M Callaway
- Division of Biological Sciences and Wildlife Biology, University of Montana, Missoula, Montana, USA
| | - Mark van Kleunen
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Wei Huang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
41
|
Li H, Liang X, Peng Y, Liu Z, Zhang L, Wang P, Jin M, Wilson K, Garvin MR, Wu K, Xiao Y. Novel Mito-Nuclear Combinations Facilitate the Global Invasion of a Major Agricultural Crop Pest. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305353. [PMID: 38965806 PMCID: PMC11425838 DOI: 10.1002/advs.202305353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/24/2024] [Indexed: 07/06/2024]
Abstract
A fundamental understanding of the underlying mechanisms involved in biological invasions is crucial to developing effective risk assessment and control measures against invasive species. The fall armyworm (FAW), Spodoptera frugiperda, is a highly invasive pest that has rapidly spread from its native Americas into much of the Eastern Hemisphere, with a highly homogeneous nuclear genetic background. However, the exact mechanism behind its rapid introduction and propagation remains unclear. Here, a systematic investigation is conducted into the population dynamics of FAW in China from 2019 to 2021 and found that FAW individuals carrying "rice" mitochondria (FAW-mR) are more prevalent (>98%) than that with "corn" mitochondria (FAW-mC) at the initial stage of the invasion and in newly-occupied non-overwintering areas. Further fitness experiments show that the two hybrid-strains of FAW exhibit different adaptions in the new environment in China, and this may have been facilitated by amino acid changes in mitochondrial-encoded proteins. FAW-mR used increases energy metabolism, faster wing-beat frequencies, and lower wing loadings to drive greater flight performance and subsequent rapid colonization of new habitats. In contrast, FAW-mC individuals adapt with more relaxed mitochondria and shuttle energetics into maternal investment, observed as faster development rate and higher fecundity. The presence of two different mitochondria types within FAW has the potential to significantly expand the range of damage and enhance competitive advantage. Overall, the study describes a novel invasion mechanism displayed by the FAW population that facilitates its expansion and establishment in new environments.
Collapse
Affiliation(s)
- Hongran Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xinyue Liang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Zhenxing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Ping Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Kenneth Wilson
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Michael R Garvin
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, 37830, USA
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| |
Collapse
|
42
|
Lečić S, Wolfe T, Ghosh A, Satar S, Souza Beraldo C, Smith E, Dombroskie J, Jernigan E, Hood G, Schuler H, Stauffer C. Spatially Varying Wolbachia Frequencies Reveal the Invasion Origin of an Agricultural Pest Recently Introduced From Europe to North America. Evol Appl 2024; 17:e70016. [PMID: 39310793 PMCID: PMC11413411 DOI: 10.1111/eva.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The introduction of non-native species across the world represents a major global challenge. Retracing invasion origin is an important first step in understanding the invasion process, often requiring detailed sampling within the native range. Insect species frequently host Wolbachia, a widespread endosymbiotic bacterium that manipulates host reproduction to increase infected female fitness. Here, we draw on the spatial variation in infection frequencies of an actively spreading Wolbachia strain wCer2 to investigate the invasion origin of the European cherry fruit fly, Rhagoletis cerasi. This pest of cherries was introduced from Europe to North America within the last decade. First, we screen the introduced fly population for the presence of Wolbachia. The introduced populations lack the wCer2 strain and the strongly associated mitochondrial haplotype, suggesting strain absence due to founder effects with invading individuals originating from wCer2-uninfected native population(s). To narrow down geographic regions of invasion origin, we perform spatial interpolation of the wCer2 infection frequency across the native range and predict the infection frequency in unsampled regions. For this, we use an extensive dataset of R. cerasi infection covering 238 populations across Europe over 25 years, complemented with 14 additional populations analyzed for this study. We find that R. cerasi was unlikely introduced from wCer2-infected populations in Central and Western Europe. We propose wCer2-uninfected populations from Eastern Europe and the Mediterranean region as the most likely candidates for the invasion origin. This work utilizes Wolbachia as an indirect instrument to provide insights into the invasion source of R. cerasi in North America, revealing yet another application for this multifaceted heritable endosymbiont. Given the prevalence of biological invasions, rapidly uncovering invasion origins gives fundamental insights into how invasive species adapt to new environments.
Collapse
Affiliation(s)
- Sonja Lečić
- Department of Forest and Soil SciencesBoku UniversityViennaAustria
| | - Thomas M. Wolfe
- Department of Forest and Soil SciencesBoku UniversityViennaAustria
| | - Animesh Ghosh
- Department of Forest and Soil SciencesBoku UniversityViennaAustria
| | - Serdar Satar
- Department of Plant Protection, Faculty of AgricultureÇukurova UniversityAdanaTurkey
| | - Camilla Souza Beraldo
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesThe University of HelsinkiHelsinkiFinland
| | - Emily Smith
- Department of Biological SciencesWayne State UniversityDetroitMichiganUSA
| | | | - Emily Jernigan
- Department of EntomologyCornell UniversityIthacaNew YorkUSA
| | - Glen Ray Hood
- Department of Biological SciencesWayne State UniversityDetroitMichiganUSA
| | - Hannes Schuler
- Competence Centre for Plant HealthFree University of Bozen‐BolzanoBozen‐BolzanoItaly
- Faculty of Agricultural, Environmental and Food SciencesFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| | | |
Collapse
|
43
|
Everts T, Van Driessche C, Neyrinck S, Haegeman A, Ruttink T, Jacquemyn H, Brys R. Phenological mismatches mitigate the ecological impact of a biological invader on amphibian communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3017. [PMID: 39118362 DOI: 10.1002/eap.3017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Horizon scans have emerged as a valuable tool to anticipate the incoming invasive alien species (IAS) by judging species on their potential impacts. However, little research has been conducted on quantifying actual impacts and assessing causes of species-specific vulnerabilities to particular IAS due to persistent methodological challenges. The underlying interspecific mechanisms driving species-specific vulnerabilities therefore remain poorly understood, even though they can substantially improve the accuracy of risk assessments. Given that interspecific interactions underlying ecological impacts of IAS are often shaped by phenological synchrony, we tested the hypothesis that temporal mismatches in breeding phenology between native species and IAS can mitigate their ecological impacts. Focusing on the invasive American bullfrog (Lithobates catesbeianus), we combined an environmental DNA (eDNA) quantitative barcoding and metabarcoding survey in Belgium with a global meta-analysis, and integrated citizen-science data on breeding phenology. We examined whether the presence of native amphibian species was negatively related to the presence or abundance of invasive bullfrogs and whether this relationship was affected by their phenological mismatches. The field study revealed a significant negative effect of increasing bullfrog eDNA concentrations on native amphibian species richness and community structure. These observations were shaped by species-specific vulnerabilities to invasive bullfrogs, with late spring- and summer-breeding species being strongly affected, while winter-breeding species remained unaffected. This trend was confirmed by the global meta-analysis. A significant negative relationship was observed between phenological mismatch and the impact of bullfrogs. Specifically, native amphibian species with breeding phenology differing by 6 weeks or less from invasive bullfrogs were more likely to be absent in the presence of bullfrogs than species whose phenology differed by more than 6 weeks with that of bullfrogs. Taken together, we present a novel method based on the combination of aqueous eDNA quantitative barcoding and metabarcoding to quantify the ecological impacts of biological invaders at the community level. We show that phenological mismatches between native and invasive species can be a strong predictor of invasion impact regardless of ecological or methodological context. Therefore, we advocate for the integration of temporal alignment between native and IAS's phenologies into invasion impact frameworks.
Collapse
Affiliation(s)
- Teun Everts
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium
| | - Charlotte Van Driessche
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Sabrina Neyrinck
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Annelies Haegeman
- Plant Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Tom Ruttink
- Plant Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium
| | - Rein Brys
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| |
Collapse
|
44
|
Lorenzo P, Galhano C, Dias MC. Organic Waste from the Management of the Invasive Oxalis pes-caprae as a Source of Nutrients for Small Horticultural Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:2358. [PMID: 39273842 PMCID: PMC11396882 DOI: 10.3390/plants13172358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The management of invasive plants is a challenge when using traditional control methods, which are ineffective for large areas, leading to the abandonment of invaded areas and the subsequent worsening of the situation. Finding potential uses for waste resulting from invaders' management could motivate their control in the long-term, concurrently providing new bio-based resources with different applications. Oxalis pes-caprae is an invasive plant, widely distributed worldwide, which spreads aggressively through bulbils, creating a dense ground cover. This study was designed to assess the potential of Oxalis aboveground waste for use as fertilizer and in ameliorating deficit irrigation effects in growing crops. Diplotaxis tenuifolia (wild rocket) seedlings were planted in pots with soil mixed with Oxalis waste at 0, 2.2 and 4.3 kg m-2 or with commercial fertilizer, left to grow for 27 days and then irrigated at 100% or 50% field capacity for 14 days. The incorporation of the Oxalis waste improved the biomass, photosynthesis, sugars, total phenols and total antioxidant capacity in the crop, achieving commercial fertilization values, as well as increasing the phosphorus in soils. However, Oxalis waste seems not to directly affect plants' relative water contents. Our results support the use of Oxalis waste as fertilizer, which can encourage the long-term control of this invasive species.
Collapse
Affiliation(s)
- Paula Lorenzo
- Associate Laboratory TERRA, Centre for Functional Ecology (CFE)-Science for People & the Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Cristina Galhano
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Maria Celeste Dias
- Associate Laboratory TERRA, Centre for Functional Ecology (CFE)-Science for People & the Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
45
|
Chan CMH, Owers CJ, Fuller S, Hayward MW, Moverley D, Griffin AS. Capacity and capability of remote sensing to inform invasive plant species management in the Pacific Islands region. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14344. [PMID: 39166825 DOI: 10.1111/cobi.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 08/23/2024]
Abstract
The Pacific Islands region is home to several of the world's biodiversity hotspots, yet its unique flora and fauna are under threat because of biological invasions. These invasions are likely to proliferate as human activity increases and large-scale natural disturbances unfold, exacerbated by climate change. Remote sensing data and techniques provide a feasible method to map and monitor invasive plant species and inform invasive plant species management across the Pacific Islands region. We used case studies taken from literature retrieved from Google Scholar, 3 regional agencies' digital libraries, and 2 online catalogs on invasive plant species management to examine the uptake and challenges faced in the implementation of remote sensing technology in the Pacific region. We synthesized remote sensing techniques and outlined their potential to detect and map invasive plant species based on species phenology, structural characteristics, and image texture algorithms. The application of remote sensing methods to detect invasive plant species was heavily reliant on species ecology, extent of invasion, and available geospatial and remotely sensed image data. However, current mechanisms that support invasive plant species management, including policy frameworks and geospatial data infrastructure, operated in isolation, leading to duplication of efforts and creating unsustainable solutions for the region. For remote sensing to support invasive plant species management in the region, key stakeholders including conservation managers, researchers, and practitioners; funding agencies; and regional organizations must invest, where possible, in the broader geospatial and environmental sector, integrate, and streamline policies and improve capacity and technology access.
Collapse
Affiliation(s)
- Carrol M H Chan
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Christopher J Owers
- Earth Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sascha Fuller
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Matt W Hayward
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - David Moverley
- Island and Ocean Ecosystems Programme, Secretariat of the Pacific Regional Environment Programme, Apia, Samoa
| | - Andrea S Griffin
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
46
|
Holden CA, McAinsh M, Taylor JE, Beckett P, Martin FL. Attenuated total reflection Fourier-transform infrared spectroscopy reveals environment specific phenotypes in clonal Japanese knotweed. BMC PLANT BIOLOGY 2024; 24:769. [PMID: 39135189 PMCID: PMC11321083 DOI: 10.1186/s12870-024-05200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/24/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Japanese knotweed (Reynoutria japonica var. japonica), a problematic invasive species, has a wide geographical distribution. We have previously shown the potential for attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and chemometrics to segregate regional differentiation between Japanese knotweed plants. However, the contribution of environment to spectral differences remains unclear. Herein, the response of Japanese knotweed to varied environmental habitats has been studied. Eight unique growth environments were created by manipulation of the red: far-red light ratio (R: FR), water availability, nitrogen, and micronutrients. Their impacts on plant growth, photosynthetic parameters, and ATR-FTIR spectral profiles, were explored using chemometric techniques, including principal component analysis (PCA), linear discriminant analysis, support vector machines (SVM) and partial least squares regression. Key wavenumbers responsible for spectral differences were identified with PCA loadings, and molecular biomarkers were assigned. Partial least squared regression (PLSR) of spectral absorbance and root water potential (RWP) data was used to create a predictive model for RWP. RESULTS Spectra from plants grown in different environments were differentiated using ATR-FTIR spectroscopy coupled with SVM. Biomarkers highlighted through PCA loadings corresponded to several molecules, most commonly cell wall carbohydrates, suggesting that these wavenumbers could be consistent indicators of plant stress across species. R: FR most affected the ATR-FTIR spectra of intact dried leaf material. PLSR prediction of root water potential achieved an R2 of 0.8, supporting the potential use of ATR-FTIR spectrometers as sensors for prediction of plant physiological parameters. CONCLUSIONS Japanese knotweed exhibits environmentally induced phenotypes, indicated by measurable differences in their ATR-FTIR spectra. This high environmental plasticity reflected by key biomolecular changes may contribute to its success as an invasive species. Light quality (R: FR) appears critical in defining the growth and spectral response to environment. Cross-species conservation of biomarkers suggest that they could function as indicators of plant-environment interactions including abiotic stress responses and plant health.
Collapse
Affiliation(s)
- Claire A Holden
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Martin McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jane E Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | - Francis L Martin
- Biocel Ltd, Hull, HU10 7TS, UK
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool, FY3 8NR, UK
| |
Collapse
|
47
|
Santoianni LA, Innangi M, Varricchione M, Carboni M, La Bella G, Haider S, Stanisci A. Ecological features facilitating spread of alien plants along Mediterranean mountain roads. Biol Invasions 2024; 26:3879-3899. [PMID: 39324107 PMCID: PMC11420372 DOI: 10.1007/s10530-024-03418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/31/2024] [Indexed: 09/27/2024]
Abstract
Invasive alien species represent a major threat to global biodiversity and the sustenance of ecosystems. Globally, mountain ecosystems have shown a degree of resistance to invasive species due to their distinctive ecological features. However, in recent times, the construction of linear infrastructure, such as roads, might weaken this resistance, especially in the Mediterranean basin region. Roads, by acting as efficient corridors, facilitate the dispersal of alien species along elevation gradients in mountains. Here, we investigated how the ecological features and road-associated disturbance in native plant communities affected both the occurrence and cover of alien plant species in Central Apennines (Italy). We implemented the MIREN road survey in three mountain transects conducting vegetation sampling in plots located both adjacent to and distant from the roads at intervals of ~ 100 m in elevation. We then used community-weighted means of Ecological Indicator Values for Europe together with Disturbance Indicator Values applied to plant species of native communities as predictors of alien species occurrence and cover in a machine-learning classification and regression framework. Our analyses showed that alien species' occurrence was greater in proximity to the road where high soil disturbance occurred and in warm- and light-adapted native communities. On the other hand, alien species cover was more strongly related to moderate grazing pressure and the occurrence of nitrophilic plant communities. These findings provide a baseline for the current status of alien plant species in this Mediterranean mountain region, offering an ecological perspective to address the challenges associated with their management under global change. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-024-03418-y.
Collapse
Affiliation(s)
| | - Michele Innangi
- EnviXLab, Department of Biosciences and Territory, University of Molise, Termoli and Pesche, Italy
| | - Marco Varricchione
- EnviXLab, Department of Biosciences and Territory, University of Molise, Termoli and Pesche, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Marta Carboni
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Sylvia Haider
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Angela Stanisci
- EnviXLab, Department of Biosciences and Territory, University of Molise, Termoli and Pesche, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
48
|
Peter N, Schantz AV, Dörge DD, Steinhoff A, Cunze S, Skaljic A, Klimpel S. Evidence of predation pressure on sensitive species by raccoons based on parasitological studies. Int J Parasitol Parasites Wildl 2024; 24:100935. [PMID: 38638363 PMCID: PMC11024658 DOI: 10.1016/j.ijppaw.2024.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
To demonstrate predation and potential impacts of raccoons on various species, a total of 108 raccoons from aquatic-associated nature reserves and natural areas in three federal states of Germany, Hesse (n = 36), Saxony-Anhalt (n = 36) and Brandenburg (n = 36), were investigated from a dietary ecological perspective in the present study. Fecal analyses and stomach content examinations were conducted for this purpose. Additionally, as a supplementary method for analyzing the dietary spectrum of raccoons, the parasite fauna was considered, as metazoan parasites, in particular, can serve as indicators for the species and origin of food organisms. While stomach content analyses allow for a detailed recording of trophic relationships solely at the time of sampling, parasitological examinations enable inferences about more distant interaction processes. With their different developmental stages and heteroxenous life cycles involving specific, sometimes obligate, intermediate hosts, they utilize the food web to reach their definitive host. The results of this study clearly demonstrate that spawning areas of amphibians and reptiles were predominantly utilized as food resources by raccoons in the study areas. Thus, common toad (Bufo bufo), common newt (Lissotriton vulgaris), grass frog (Rana temporaria), and grass snake (Natrix natrix) were identified as food organisms for raccoons. The detection of the parasite species Euryhelmis squamula, Isthmiophora melis, and Physocephalus sexalatus with partially high infestation rates also suggests that both amphibians and reptiles belong to the established dietary components of raccoons from an ecological perspective, as amphibians and reptiles are obligate intermediate hosts in the respective parasitic life cycles of the detected parasites. The study clearly demonstrates that raccoons have a significant impact on occurrence-sensitive animal species in certain areas and, as an invasive species, can exert a negative influence on native species and ecosystems.
Collapse
Affiliation(s)
- Norbert Peter
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Anna V. Schantz
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Dorian D. Dörge
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Anne Steinhoff
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Sarah Cunze
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Ajdin Skaljic
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt/Main, D-60325, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, D-60325, Frankfurt/Main, Germany
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
| |
Collapse
|
49
|
Cooke SJ, Piczak ML, Singh NJ, Åkesson S, Ford AT, Chowdhury S, Mitchell GW, Norris DR, Hardesty-Moore M, McCauley D, Hammerschlag N, Tucker MA, Horns JJ, Reisinger RR, Kubelka V, Lennox RJ. Animal migration in the Anthropocene: threats and mitigation options. Biol Rev Camb Philos Soc 2024; 99:1242-1260. [PMID: 38437713 DOI: 10.1111/brv.13066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024]
Abstract
Animal migration has fascinated scientists and the public alike for centuries, yet migratory animals are facing diverse threats that could lead to their demise. The Anthropocene is characterised by the reality that humans are the dominant force on Earth, having manifold negative effects on biodiversity and ecosystem function. Considerable research focus has been given to assessing anthropogenic impacts on the numerical abundance of species/populations, whereas relatively less attention has been devoted to animal migration. However, there are clear linkages, for example, where human-driven impacts on migration behaviour can lead to population/species declines or even extinction. Here, we explore anthropogenic threats to migratory animals (in all domains - aquatic, terrestrial, and aerial) using International Union for the Conservation of Nature (IUCN) Threat Taxonomy classifications. We reveal the diverse threats (e.g. human development, disease, invasive species, climate change, exploitation, pollution) that impact migratory wildlife in varied ways spanning taxa, life stages and type of impact (e.g. from direct mortality to changes in behaviour, health, and physiology). Notably, these threats often interact in complex and unpredictable ways to the detriment of wildlife, further complicating management. Fortunately, we are beginning to identify strategies for conserving and managing migratory animals in the Anthropocene. We provide a set of strategies that, if embraced, have the potential to ensure that migratory animals, and the important ecological functions sustained by migration, persist.
Collapse
Affiliation(s)
- Steven J Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Morgan L Piczak
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
| | - Navinder J Singh
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Susanne Åkesson
- Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, Lund, 22362, Sweden
| | - Adam T Ford
- Department of Biology, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, V1V 1V7, Canada
| | - Shawan Chowdhury
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstr, 15, Leipzig, 04318, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr, 4, Leipzig, 04103, Germany
| | - Greg W Mitchell
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, 1125 Colonel By Dr, Ottawa, Ontario, K1A 0H3, Canada
| | - D Ryan Norris
- Department of Integrative Biology, University of Guelph, 50 Stone Rd. E, Guelph, Ontario, N1G 2W1, Canada
| | - Molly Hardesty-Moore
- Department of Ecology, Evolution, and Marine Biology and Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Douglas McCauley
- Department of Ecology, Evolution, and Marine Biology and Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Neil Hammerschlag
- Atlantic Shark Expeditions, 29 Wideview Lane, Boutiliers Point, Nova Scotia, B3Z 0M9, Canada
| | - Marlee A Tucker
- Radboud Institute of Biological and Environmental Sciences, Radboud University, Houtlaan 4, Nijmegen, 6525, The Netherlands
| | - Joshua J Horns
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Ryan R Reisinger
- School of Ocean and Earth Science, University of Southampton, National Oceanography Center Southampton, University Way, Southampton, SO14 3ZH, UK
| | - Vojtěch Kubelka
- Dept of Zoology and Centre for Polar Ecology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Robert J Lennox
- Ocean Tracking Network, Faculty of Science, Dalhousie University, 1355 Oxford St, Halifax, Nova Scotia, B3H 3Z1, Canada
| |
Collapse
|
50
|
Soto I, Balzani P, Carneiro L, Cuthbert RN, Macêdo R, Serhan Tarkan A, Ahmed DA, Bang A, Bacela-Spychalska K, Bailey SA, Baudry T, Ballesteros-Mejia L, Bortolus A, Briski E, Britton JR, Buřič M, Camacho-Cervantes M, Cano-Barbacil C, Copilaș-Ciocianu D, Coughlan NE, Courtois P, Csabai Z, Dalu T, De Santis V, Dickey JWE, Dimarco RD, Falk-Andersson J, Fernandez RD, Florencio M, Franco ACS, García-Berthou E, Giannetto D, Glavendekic MM, Grabowski M, Heringer G, Herrera I, Huang W, Kamelamela KL, Kirichenko NI, Kouba A, Kourantidou M, Kurtul I, Laufer G, Lipták B, Liu C, López-López E, Lozano V, Mammola S, Marchini A, Meshkova V, Milardi M, Musolin DL, Nuñez MA, Oficialdegui FJ, Patoka J, Pattison Z, Pincheira-Donoso D, Piria M, Probert AF, Rasmussen JJ, Renault D, Ribeiro F, Rilov G, Robinson TB, Sanchez AE, Schwindt E, South J, Stoett P, Verreycken H, Vilizzi L, Wang YJ, Watari Y, Wehi PM, Weiperth A, Wiberg-Larsen P, Yapıcı S, Yoğurtçuoğlu B, Zenni RD, Galil BS, Dick JTA, Russell JC, Ricciardi A, Simberloff D, Bradshaw CJA, Haubrock PJ. Taming the terminological tempest in invasion science. Biol Rev Camb Philos Soc 2024; 99:1357-1390. [PMID: 38500298 DOI: 10.1111/brv.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Standardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalised', 'pest') to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' - populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species.
Collapse
Affiliation(s)
- Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Laís Carneiro
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos, 100, Curitiba, 81530-000, Brazil
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Rafael Macêdo
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
| | - Ali Serhan Tarkan
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullaj Area, Hawally, 32093, Kuwait
| | - Alok Bang
- Biology Group, School of Arts and Sciences, Azim Premji University, Bhopal, Madhya Pradesh, 462010, India
| | - Karolina Bacela-Spychalska
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Łódź, 90-237, Poland
| | - Sarah A Bailey
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd, Burlington, Ontario, ON L7S 1A1, Canada
| | - Thomas Baudry
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interaction, UMR, CNRS 7267 Équipe Écologie Évolution Symbiose, 3 rue Jacques Fort, Poitiers, Cedex, 86000, France
| | - Liliana Ballesteros-Mejia
- Institut de Systématique, Évolution, Biodiversité, Muséum National d'Histoire Naturelle, Centre national de la recherche scientifique, École Pratique des Hautes Études, Sorbonne Université, Université des Antilles, 45 Rue Buffon, Entomologie, Paris, 75005, France
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Alejandro Bortolus
- Grupo de Ecología en Ambientes Costeros. Instituto Patagónico para el Estudio de los Ecosistemas Continentales Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Nacional Patagónico, Boulevard Brown 2915, Puerto Madryn, Chubut, U9120ACD, Argentina
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstraße 1-3, Kiel, 24148, Germany
| | - J Robert Britton
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Miloš Buřič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Morelia Camacho-Cervantes
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacan, Mexico City, 04510, Mexico
| | - Carlos Cano-Barbacil
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, Gelnhausen, 63571, Germany
| | - Denis Copilaș-Ciocianu
- Laboratory of Evolutionary Ecology of Hydrobionts, Nature Research Centre, Akademijos 2, Vilnius, 08412, Lithuania
| | - Neil E Coughlan
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Republic of Ireland
| | - Pierre Courtois
- Centre d'Économie de l'Environnement - Montpellier, Université de Montpellier, Centre national de la recherche scientifique, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Institut Agro, Avenue Agropolis, Montpellier, 34090, France
| | - Zoltán Csabai
- University of Pécs, Department of Hydrobiology, Ifjúság 6, Pécs, H-7673, Hungary
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno 3, Tihany, H-8237, Hungary
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Cnr R40 and D725 Roads, Nelspruit, 1200, South Africa
| | - Vanessa De Santis
- Water Research Institute-National Research Council, Largo Tonolli 50, Verbania-Pallanza, 28922, Italy
| | - James W E Dickey
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstraße 1-3, Kiel, 24148, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
- Freie Universität Berlin, Institute of Biology, Königin-Luise-Straße 1-3, Berlin, 14195, Germany
| | - Romina D Dimarco
- Department of Biology and Biochemistry, University of Houston, Science & Research Building 2, 3455 Cullen Blvd, Houston, TX, 77204-5001, USA
| | | | - Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-Consejo Nacional de Investigaciones Científicas y Técnicas, CC34, 4107, Yerba Buena, Tucumán, Argentina
| | - Margarita Florencio
- Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, Edificio de Biología, Darwin, 2, 28049, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global, 28049, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Clara S Franco
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, Girona, Catalonia, 17003, Spain
| | - Emili García-Berthou
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, Girona, Catalonia, 17003, Spain
| | - Daniela Giannetto
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Milka M Glavendekic
- Department of Landscape Architecture and Horticulture, University of Belgrade-Faculty of Forestry, Belgrade, Serbia
| | - Michał Grabowski
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Łódź, 90-237, Poland
| | - Gustavo Heringer
- Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen (HfWU), Schelmenwasen 4-8, Nürtingen, 72622, Germany
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), Lavras, 37203-202, Brazil
| | - Ileana Herrera
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo, Km 2.5 Vía La Puntilla, Samborondón, 091650, Ecuador
- Instituto Nacional de Biodiversidad, Casilla Postal 17-07-8982, Quito, 170501, Ecuador
| | - Wei Huang
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Katie L Kamelamela
- School of Ocean Futures, Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA
| | - Natalia I Kirichenko
- Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Federal Research Centre 'Krasnoyarsk Science Centre SB RAS', Akademgorodok 50/28, Krasnoyarsk, 660036, Russia
- Siberian Federal University, Institute of Ecology and Geography, 79 Svobodny pr, Krasnoyarsk, 660041, Russia
- Saint Petersburg State Forest Technical University, Institutski Per. 5, Saint Petersburg, 194021, Russia
| | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Melina Kourantidou
- Department of Business and Sustainability, University of Southern Denmark, Degnevej 14, Esbjerg, 6705, Denmark
- AMURE-Aménagement des Usages des Ressources et des Espaces marins et littoraux, UMR 6308, Université de Bretagne Occidentale, IUEM- Institut Universitaire Européen de la Mer, rue Dumont d'Urville, Plouzané, 29280, France
- Marine Policy Center, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Irmak Kurtul
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, Bornova, İzmir, 35100, Turkey
| | - Gabriel Laufer
- Área Biodiversidad y Conservación, Museo Nacional de Historia Natural, Miguelete 1825, Montevideo, 11800, Uruguay
| | - Boris Lipták
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Slovak Environment Agency, Tajovského 28, Banská Bystrica, 975 90, Slovak Republic
| | - Chunlong Liu
- The Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, 266005, China
| | - Eugenia López-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340, Ciudad de México, 11340, Mexico
| | - Vanessa Lozano
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/A, Sassari, 07100, Italy
- National Biodiversity Future Centre, Piazza Marina, 61, Palermo, 90133, Italy
| | - Stefano Mammola
- National Biodiversity Future Centre, Piazza Marina, 61, Palermo, 90133, Italy
- Molecular Ecology Group, Water Research Institute, National Research Council, Corso Tonolli 50, Pallanza, 28922, Italy
- Finnish Museum of Natural History, University of Helsinki, Pohjoinen Rautatiekatu 13, Helsinki, 00100, Finland
| | - Agnese Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, Pavia, 27100, Italy
| | - Valentyna Meshkova
- Department of Entomology, Phytopathology, and Physiology, Ukrainian Research Institute of Forestry and Forest Melioration, Pushkinska 86, Kharkiv, UA-61024, Ukraine
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1283, Suchdol, Prague, 16500, Czech Republic
| | - Marco Milardi
- Southern Indian Ocean Fisheries Agreement (SIOFA), 13 Rue de Marseille, Le Port, La Réunion, 97420, France
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization, 21 bd Richard Lenoir, Paris, 75011, France
| | - Martin A Nuñez
- Department of Biology and Biochemistry, University of Houston, Science & Research Building 2, 3455 Cullen Blvd, Houston, TX, 77204-5001, USA
| | - Francisco J Oficialdegui
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jiří Patoka
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Prague, 16500, Czech Republic
| | - Zarah Pattison
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Modelling, Evidence and Policy Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Daniel Pincheira-Donoso
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Marina Piria
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
- University of Zagreb Faculty of Agriculture, Department of Fisheries, Apiculture, Wildlife management and Special Zoology, Svetošimunska cesta 25, Zagreb, 10000, Croatia
| | - Anna F Probert
- Zoology Discipline, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| | - Jes Jessen Rasmussen
- Norwegian Institute for Water Research, Njalsgade 76, Copenhagen S, 2300, Denmark
| | - David Renault
- Université de Rennes, Centre national de la recherche scientifique (CNRS), Écosystèmes, biodiversité, évolution, Rennes, 35000, France
| | - Filipe Ribeiro
- Marine and Environmental Sciences Centre / Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, P.O. Box 8030, Haifa, 31080, Israel
| | - Tamara B Robinson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Axel E Sanchez
- Posgrado en Hidrociencias, Colegio de Postgraduados, Carretera México-Texcoco 36.5 km, Montecillo, Texcoco, C.P. 56264, Mexico
| | - Evangelina Schwindt
- Grupo de Ecología en Ambientes Costeros, Instituto de Biología de Organismos Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard Brown 2915, Puerto Madryn, U9120ACD, Argentina
| | - Josie South
- Water@Leeds, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter Stoett
- Ontario Tech University, 2000 Simcoe St N, Oshawa, Ontario, L1G 0C5, Canada
| | - Hugo Verreycken
- Research Institute for Nature and Forest, Havenlaan 88 Box 73, Brussels, 1000, Belgium
| | - Lorenzo Vilizzi
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Yong-Jian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, F9F4+6FV, Dangui Rd, Hongshan, Wuhan, 430070, China
| | - Yuya Watari
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Priscilla M Wehi
- Te Pūnaha Matatini National Centre of Research Excellence in Complex Systems, University of Auckland, Private Bag 29019, Aotearoa, Auckland, 1142, New Zealand
- Centre for Sustainability, University of Otago, 563 Castle Street North, Dunedin North, Aotearoa, Dunedin, 9016, New Zealand
| | - András Weiperth
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Ave 1/C, Budapest, H-1117, Hungary
| | - Peter Wiberg-Larsen
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé 4-8, Aarhus, 8000, Denmark
| | - Sercan Yapıcı
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Baran Yoğurtçuoğlu
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara, 06800, Turkey
| | - Rafael D Zenni
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), Lavras, 37203-202, Brazil
| | - Bella S Galil
- Steinhardt Museum of Natural History, Tel Aviv University, Klaunserstr. 12, Tel Aviv, Israel
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - James C Russell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Anthony Ricciardi
- Redpath Museum and Bieler School of Environment, McGill University, 859 Sherbrooke Street West, Montréal, Quebec, Quebec, H3A 0C4, Canada
| | - Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Corey J A Bradshaw
- Global Ecology, Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 5001, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Phillip J Haubrock
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullaj Area, Hawally, 32093, Kuwait
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, Gelnhausen, 63571, Germany
| |
Collapse
|