1
|
Behera PP, Singode A, Bhat BV, Borah N, Verma H, Supriya P, Sarma RN. Identifying genetic determinants of forage sorghum [Sorghum bicolor (Moench)] adaptation through GWAS. BMC PLANT BIOLOGY 2024; 24:1043. [PMID: 39497045 PMCID: PMC11536557 DOI: 10.1186/s12870-024-05754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Forage sorghum is a highly valued crop in livestock feed production due to its versatility, adaptability, high productivity, and resilience under adverse environmental conditions, making it a crucial option for sustainable forage production. This study aimed to investigate ninety-five forage sorghum genotypes and identify the marker - trait associations (MTAs) in adaptive traits, including yield and flowering through genome-wide association studies (GWAS). RESULTS Using 41,854 polymorphic SNPs, a GWAS involving the GLM, MLM, and FarmCPU models was performed to analyse fourteen adaptive traits. The population structure revealed the presence of two subpopulation groups. Linkage disequilibrium (LD) plots showed varying degrees of LD decay across the chromosomes, with an average LD decay of 19.49 kbp. Twelve common significant QTNs, encoding 17 putative candidate genes, were simultaneously co-detected and studied by at least two or more GWAS methods. Three QTNs were associated to days to 50% flowering; two each to leaf-to-stem ratio and number of nodes per plant; and one each to plant height, leaf width, number of leaves per plant, stem girth, and internodal length. Six candidate genes were associated with days to 50% flowering, two each with leaf width, stem girth, leaf-to-stem ratio, and number of nodes per plant, and one each with plant height, number of leaves per plant, and internodal length. CONCLUSION FarmCPU was identified as the most suitable and effective among all the models for controlling both false positives and false negatives. Further in-depth analysis of the newly discovered QTNs may lead to the identification of new candidate genes for the trait of interest. These studies elucidate gene functions and could transform forage sorghum breeding through marker-assisted selection and transgenic approaches, accelerating the development of superior forage sorghum varieties and enhancing global food security.
Collapse
Affiliation(s)
- Partha Pratim Behera
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Avinash Singode
- ICAR - Indian Institute of Millets Research, Rajendranagar, Hyderabad, Telangana, 500 030, India
| | - B Venkatesh Bhat
- ICAR - Indian Institute of Millets Research, Rajendranagar, Hyderabad, Telangana, 500 030, India
| | | | - Harendra Verma
- ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Dimapur, Nagaland, 797 106, India
| | - Patel Supriya
- Department of Genetics and Plant Breeding, Acharya N. G. Ranga Agricultural University, Tirupati, Andhra Pradesh, 517502, India
| | - Ramendra Nath Sarma
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
2
|
Lu Z, Su J, Fan H, Zhang X, Wang H, Guan Z, Fang W, Chen F, Zhang F. Insights into the genetic architecture of the reciprocal interspecific hybrids derived from Chrysanthemum dichrum and C. nankingense. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:75. [PMID: 39507485 PMCID: PMC11534950 DOI: 10.1007/s11032-024-01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Chrysanthemums are versatile ornamental plants, and improving leaf and flower traits is an important breeding objective. Distant hybridization is a powerful method for plant breeding and genetic improvement, whereas the genetic basis in interspecific F1 progeny of chrysanthemums needs to be better understood for breeding purposes. In this study, the leaf and floral traits of the 273 reciprocal interspecific F1 hybrids of diploid C. dichrum (YSJ) and C. nankingense (JHN) were analyzed along with their SNP-derived genetic structure to elucidate the influence of differences in genetic background between the parents on the hybrid performance. We then performed a genome-wide association analysis (GWAS) to reveal the investigated traits' genomic loci and candidate genes. Considerable phenotypic variation (8.81% ~ 55.78%) and heterosis with transgressive segregation in both directions were observed in the reciprocal progenies. We observed a higher level of phenotypic variation in JHN × YSJ rather than in YSJ × JHN. Also, a significant reciprocal effect was observed for most examined traits. Based on the SNP data, we separated the hybrid progenies into three groups (I, II, and III), albeit imperfectly dependent on the cross directions, except for some reciprocal hybrids clustering into group II. Group I from YSJ × JHN and Group III from YSJ × JHN differed with contrasting F ST and π ratios, indicating the genetic changes in the reciprocal populations. The outcome of GWAS via the IIIVmrMLM method detected 339 significant quantitative trait nucleotides (QTNs) and 40 suggestive QTNs, and the phenotypic variation explained by a single QTN ranged from 0.26% to 7.42%. Within 100 kb upstream and downstream of the important QTNs, we discovered 49 known genes and 39 new candidate genes for the investigated leaf and floral traits. Our study provides profound insights into the genetic architecture of reciprocal hybrid progenies of chrysanthemum species, facilitating future breeding activities. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01518-0.
Collapse
Affiliation(s)
- Zhaowen Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Honghong Fan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| |
Collapse
|
3
|
Arefian M, Prasad TSK. Susceptibility of Rice Crop to Salt Threat: Proteomic, Metabolomic, and Physiological Inspections. J Proteome Res 2023; 22:152-169. [PMID: 36417662 DOI: 10.1021/acs.jproteome.2c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rice is a staple food crop worldwide; however, salinity stress is estimated to reduce its global production by 50%. Knowledge about initial molecular signaling and proteins associated with sensing salinity among crop plants is limited. We characterized early salt effects on the proteome and metabolome of rice tissues. Omics results were validated by western blotting and multiple reaction monitoring assays and integrated with physiological changes. We identified 8160 proteins and 2045 metabolites in rice tissues. Numerous signaling pathways were induced rapidly or partially by salinity. Combined data showed the most susceptible proteins or metabolites in each pathway that likely affected the sensitivity of rice to salinity, such as PLA1, BON3 (involved in sensing stress), SnRK2, pro-resilin, GDT1, G-proteins, calmodulin activators (Ca2+ and abscisic acid signaling), MAPK3/5, MAPKK1/3 (MAPK pathway), SOS1, ABC F/D, PIP2-7, and K+ transporter-23 (transporters), OPR1, JAR1, COL1, ABA2, and MAPKK3 (phytohormones). Additionally, our results expanded the stress-sensing function of receptor-like kinases, phosphatidylinositols, and Na+ sensing proteins (IPUT1). Combined analyses revealed the most sensitive components of signaling pathways causing salt-susceptibility in rice and suggested potential targets for crop improvement.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Mangalore 575018, India
| | | |
Collapse
|
4
|
Kausar R, Wang X, Komatsu S. Crop Proteomics under Abiotic Stress: From Data to Insights. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212877. [PMID: 36365330 PMCID: PMC9657731 DOI: 10.3390/plants11212877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/09/2022] [Accepted: 10/22/2022] [Indexed: 06/09/2023]
Abstract
Food security is a major challenge in the present world due to erratic weather and climatic changes. Environmental stress negatively affects plant growth and development which leads to reduced crop yields. Technological advancements have caused remarkable improvements in crop-breeding programs. Proteins have an indispensable role in developing stress resilience and tolerance in crops. Genomic and biotechnological advancements have made the process of crop improvement more accurate and targeted. Proteomic studies provide the information required for such targeted approaches. The crosstalk among cellular components is being analyzed by subcellular proteomics. Additionally, the functional diversity of proteins is being unraveled by post-translational modifications during abiotic stress. The exploration of precise cellular responses and the networking among different cellular organelles help in the prediction of signaling pathways and protein-protein interactions. High-throughput mass-spectrometry-based protein studies are now possible due to incremental advancements in mass-spectrometry techniques, sample protocols, and bioinformatic tools as well as the increasing availability of plant genome sequence information for multiple species. In this review, the key role of proteomic analysis in identifying the abiotic-stress-responsive mechanisms in various crops was summarized. The development and availability of advanced computational tools were discussed in detail. The highly variable protein responses among different crops have provided a wide avenue for molecular-marker-assisted genetic buildup studies to develop smart, high-yielding, and stress-tolerant varieties to cope with food-security challenges.
Collapse
Affiliation(s)
- Rehana Kausar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
5
|
Corpas FJ, González-Gordo S, Rodríguez-Ruiz M, Muñoz-Vargas MA, Palma JM. Thiol-based Oxidative Posttranslational Modifications (OxiPTMs) of Plant Proteins. PLANT & CELL PHYSIOLOGY 2022; 63:889-900. [PMID: 35323963 PMCID: PMC9282725 DOI: 10.1093/pcp/pcac036] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 06/01/2023]
Abstract
The thiol group of cysteine (Cys) residues, often present in the active center of the protein, is of particular importance to protein function, which is significantly determined by the redox state of a protein's environment. Our knowledge of different thiol-based oxidative posttranslational modifications (oxiPTMs), which compete for specific protein thiol groups, has increased over the last 10 years. The principal oxiPTMs include S-sulfenylation, S-glutathionylation, S-nitrosation, persulfidation, S-cyanylation and S-acylation. The role of each oxiPTM depends on the redox cellular state, which in turn depends on cellular homeostasis under either optimal or stressful conditions. Under such conditions, the metabolism of molecules such as glutathione, NADPH (reduced nicotinamide adenine dinucleotide phosphate), nitric oxide, hydrogen sulfide and hydrogen peroxide can be altered, exacerbated and, consequently, outside the cell's control. This review provides a broad overview of these oxiPTMs under physiological and unfavorable conditions, which can regulate the function of target proteins.
Collapse
Affiliation(s)
- Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Salvador González-Gordo
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Marta Rodríguez-Ruiz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - María A Muñoz-Vargas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - José M Palma
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
6
|
Arefian M, Antil N, Najar MA, Behera SK, Subba P, Prasad TSK. Identifying Novel Genes and Proteins Involved in Salt Stress Perception and Signaling of Rice Seedlings. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:151-164. [PMID: 35073185 DOI: 10.1089/omi.2021.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rice is one of the most important crops worldwide. Crop production is constrained markedly, however, by abiotic stresses such as salinity. To elucidate early stress response signaling networks involved in rice, we report in this study an original quantitative proteomic analysis of the rice seedlings subjected to short-term salt stress. We detected 570 differentially regulated proteins (DRPs) in the root sample. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis demonstrated that DRPs of the root were mainly involved in membrane trafficking, kinase activity, and ion toxicity responses. Interactome analysis revealed the central role of root proteins involved in membrane trafficking in the early response to salinity, such as cell surface receptor-like kinases (RLKs), phosphatidylinositols (PIs), calcium-dependent protein kinases 1 and 5, calcineurin B-like protein-interacting proteins, protein phosphatase 2C (PP2C) inhibitors, and abscisic acid receptors (PYL5/10), indicating activation of S-type anion channel. Furthermore, the proteogenomic analysis revealed 128 unique genome search-specific peptides with high-quality mass spectromety (MS/MS) spectra. We identified 38 novel protein-coding genes, refined the annotation of 17 existing gene models, and suggested several novel stress-responsive proteins, such as RLK5, peroxidase 27, and growth-regulating factor 2. Novel peptides had an ortholog match in the curated protein sequence set of other plant species. In conclusion, this study identifies novel stress-responsive proteins and genes of rice, thus warrant future consideration as candidates for molecular breeding of stress-tolerant crop varieties.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya, (Deemed to be University), Mangalore, India
| | - Neelam Antil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya, (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya, (Deemed to be University), Mangalore, India
| | - Santosh Kumar Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya, (Deemed to be University), Mangalore, India
| | - Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya, (Deemed to be University), Mangalore, India
| | | |
Collapse
|