1
|
Augusto M, Abude RRS, Cardoso RS, Nascimento RL, Valentin JL, Cabrini TMB. Effectiveness of protected areas and restricted access in sandy beach biodiversity conservation: A case study from Rio de Janeiro, Southeast Brazil. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106995. [PMID: 39954385 DOI: 10.1016/j.marenvres.2025.106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Sandy beaches are important socio-ecological systems for human well-being and coastal stability. They are also economic and cultural assets; however, urbanization and human activities threaten their ecosystem services and biodiversity. Thus, it is important to discuss strategies for ecosystem conservation. The main objective of this study was to evaluate the effect of different degrees of spatial protection (Protected Areas - PA vs Restricted Access - RA) on the macrofauna of sandy beaches in Rio de Janeiro, Brazil. Beaches were sampled in 2012 and 2020, before and after PA implementation, and compared to beaches with Restricted Access (RA). Results revealed that RA beaches supported higher macrofaunal density and species richness, including indicator species, compared to PAs. These findings suggest that RA areas are more effective in conserving sandy beach macrofaunal communities than PAs with unrestricted public access. While beaches are vital for human well-being and recreation, proper management of human activities within PAs is essential to safeguard biodiversity and maintain ecosystem services.
Collapse
Affiliation(s)
- Matheus Augusto
- Laboratory of Marine Ecology, Department of Ecology and Marine Resources, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), 458 Pasteur Avenue, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil.
| | - Rayane R S Abude
- Laboratory of Marine Ecology, Department of Ecology and Marine Resources, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), 458 Pasteur Avenue, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil; Graduate Program in Ecology and Evolution, Rio de Janeiro State University (UERJ), Brazil
| | - Ricardo S Cardoso
- Laboratory of Marine Ecology, Department of Ecology and Marine Resources, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), 458 Pasteur Avenue, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil
| | - Rodolfo L Nascimento
- Laboratory of Molecular Ecology and Evolution, Department of Marine Biology, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, CEP: 24.210-201, Brazil
| | - Jean L Valentin
- Laboratory of Zooplankton, Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, CEP: 21.949-900, Brazil
| | - Tatiana M B Cabrini
- Laboratory of Marine Ecology, Department of Ecology and Marine Resources, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), 458 Pasteur Avenue, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil
| |
Collapse
|
2
|
Sun B, Pan Y, Sokolova I, Shao Y, Hu M, Wang Y. Perfluorooctanoate and nano-titanium dioxide modulate male gonadal function in the mussel Mytilus coruscus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107251. [PMID: 39842193 DOI: 10.1016/j.aquatox.2025.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Perfluorooctanoic acid (PFOA) and nano-titanium dioxide (nano-TiO₂) are widely used in industrial applications such as manufacturing and textiles, and can be released into the environment, causing toxicity to marine organisms. To study the effects of these pollutants on the gonadal development, we exposed the males of Mytilus coruscus to varying PFOA concentrations (2 and 200 μg/L) alone or combined with nano-TiO2 (0.1 mg/L, size: 25 nm) for 14 days. Co-exposure to PFOA and nano-TiO₂ resulted in a short-term (7 days) decrease in the gonadosomatic index (GSI), which recovered to baseline levels. In contrast, long-term (14 days) exposure induced changes in the testes, including increased protein content, decreased lipid content, reductions in spermatic area and sperm count, and elevated apoptotic cell levels. Furthermore, key genes essential for gonadal maturation were significantly upregulated after long-term exposure. PFOA and nano-TiO2 can disrupt the gonadal function in the male mussels by interfering with Wnt family signaling pathways, modulation of steroid and lipid metabolism and induction of apoptosis. Therefore, PFOA and nanoparticle pollutants may pose a significant risk to the reproductive capacity of mussels' populations from polluted coastal environments.
Collapse
Affiliation(s)
- Bingyan Sun
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yiting Pan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Ying Shao
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, PR China.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
3
|
Gómez-Serrano MÁ. Improving beach natural debris management for biodiversity conservation. Trends Ecol Evol 2024; 39:1063-1065. [PMID: 39424532 DOI: 10.1016/j.tree.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Natural debris deposited by the sea is essential for the functioning of the beach ecosystem. As tourist demands on the coast grow, aesthetic values become more important, and the indiscriminate cleaning of debris spreads from urban to natural beaches. A change in beach debris management is needed to ensure that organic debris plays its role where the sea has deposited it.
Collapse
Affiliation(s)
- Miguel Ángel Gómez-Serrano
- Department of Microbiology and Ecology, Faculty of Biological Sciences, University of Valencia, E-46100 Burjassot, Valencia, Spain.
| |
Collapse
|
4
|
Kolda A, Mucko M, Rapljenović A, Ljubešić Z, Pikelj K, Kwokal Ž, Fajković H, Cuculić V. Beach wracks microbiome and its putative function in plastic polluted Mediterranean marine ecosystem. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106769. [PMID: 39369653 DOI: 10.1016/j.marenvres.2024.106769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/18/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
The coasts of the world's oceans and seas accumulate various types of floating debris, commonly known as beach wracks, including organic seaweeds, seagrass, and ubiquitous anthropogenic waste, mainly plastic. Beach wrack microbiome (MB), surviving in the form of a biofilm, ensures decomposition and remineralization of wracks, but can also serve as a vector of potential pathogens in the environment. Through the interdisciplinary approach and comprehensive sampling design that includes geological analysis of the sediment, plastic debris composition analysis (ATR-FTIR) and application of 16S rRNA gene metabarcoding of beach wrack MBs, this study aims to describe MB in relation to beach exposure, sediment type and plastic pollution. Major contributors in beach wrack MB were Proteobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, Verrucomicrobia and Firmicutes and there was significant dissimilarity between sample groups with Vibrio, Cobetia and Planococcus shaping the Exposed beach sample group and Cyclobacteriaceae and Flavobacterium shaping the Sheltered beach sample group. Our results suggest plastisphere MB is mostly shaped by beach exposure, type of seagrass, sediment type and probably beach naturalness with heavy influence of seawater MB and shows no significant dissimilarity between MBs from a variety of microplastics (MP). Putative functional analysis of MB detected plastic degradation and potential human pathogen bacteria in both beach wrack and seawater MB. The research provides the next crucial step in beach wrack MP accumulation research, MB composition and functional investigation with focus on beach exposure as an important variable.
Collapse
Affiliation(s)
- Anamarija Kolda
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | - Maja Mucko
- University of Zagreb, Faculty of Science, Department of Biology, Zagreb, Croatia.
| | - Ana Rapljenović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | - Zrinka Ljubešić
- University of Zagreb, Faculty of Science, Department of Biology, Zagreb, Croatia
| | - Kristina Pikelj
- University of Zagreb, Faculty of Science, Department of Geology, Zagreb, Croatia
| | - Željko Kwokal
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | - Hana Fajković
- University of Zagreb, Faculty of Science, Department of Geology, Zagreb, Croatia
| | - Vlado Cuculić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| |
Collapse
|
5
|
Lima LVS, do Nascimento RF, de Barros-Barreto MBB, Silva AA, Furtado CRG, Figueiredo GM. Microplastics associated with stranded macroalgae on an impacted estuarine beach, Rio de Janeiro, Brazil. MARINE POLLUTION BULLETIN 2024; 206:116772. [PMID: 39068709 DOI: 10.1016/j.marpolbul.2024.116772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Microplastics (MPs) are contaminants widely distributed in marine ecosystems. Only few studies approached MP interactions with marine plants, which are considered potential traps for MPs. Here, we determined MPs' densities and types associated with stranded macroalgae on a eutrophic beach in Guanabara Bay. Our results showed that red algae exhibited higher MP densities (1.48 MPs g-1), possibly due to their more branched thalli, than green algae (0.27 MPs g-1). The predominant MP types were blue and white fragments <3 mm in size and polymers were classified as polyethylene and polyvinyl chloride in fragments, and polypropylene in fibers. The higher densities of MPs in algae seemed to be influenced by the inner bay waters. The densities of MPs associated with algae from Guanabara Bay surpassed those reported in other studies. High MPs densities increase the chances that organisms associated with algae entangle or ingest MPs, impacting their health and survival.
Collapse
Affiliation(s)
- Lucas Vinícius Sousa Lima
- Postgraduation Program in Marine Biology and coastal Environments - Federal Fluminense University, Niteroi, Brazil
| | | | | | - Arianne Aparecida Silva
- Department of Chemical Processes, Institute of Chemistry, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Gisela Mandali Figueiredo
- Postgraduation Program in Marine Biology and coastal Environments - Federal Fluminense University, Niteroi, Brazil; Department of Marine Biology, Institute of Biology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Orihuela-Torres A, Morales-Reyes Z, Hermoso V, Picazo F, Sánchez Fernández D, Pérez-García JM, Botella F, Sánchez-Zapata JA, Sebastián-González E. Carrion ecology in inland aquatic ecosystems: a systematic review. Biol Rev Camb Philos Soc 2024; 99:1425-1443. [PMID: 38509722 DOI: 10.1111/brv.13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Carrion ecology, i.e. the decomposition and recycling of dead animals, has traditionally been neglected as a key process in ecosystem functioning. Similarly, despite the large threats that inland aquatic ecosystems (hereafter, aquatic ecosystems) face, the scientific literature is still largely biased towards terrestrial ecosystems. However, there has been an increasing number of studies on carrion ecology in aquatic ecosystems in the last two decades, highlighting their key role in nutrient recirculation and disease control. Thus, a global assessment of the ecological role of scavengers and carrion in aquatic ecosystems is timely. Here, we systematically reviewed scientific articles on carrion ecology in aquatic ecosystems to describe current knowledge, identify research gaps, and promote future studies that will deepen our understanding in this field. We found 206 relevant studies, which were highly biased towards North America, especially in lotic ecosystems, covering short time periods, and overlooking seasonality, a crucial factor in scavenging dynamics. Despite the low number of studies on scavenger assemblages, we recorded 55 orders of invertebrates from 179 families, with Diptera and Coleoptera being the most frequent orders. For vertebrates, we recorded 114 species from 40 families, with birds and mammals being the most common. Our results emphasise the significance of scavengers in stabilising food webs and facilitating nutrient cycling within aquatic ecosystems. Studies were strongly biased towards the assessment of the ecosystem effects of carrion, particularly of salmon carcasses in North America. The second most common research topic was the foraging ecology of vertebrates, which was mostly evaluated through sporadic observations of carrion in the diet. Articles assessing scavenger assemblages were scarce, and only a limited number of these studies evaluated carrion consumption patterns, which serve as a proxy for the role of scavengers in the ecosystem. The ecological functions performed by carrion and scavengers in aquatic ecosystems were diverse. The main ecological functions were carrion as food source and the role of scavengers in nutrient cycling, which appeared in 52.4% (N = 108) and 46.1% (N = 95) of publications, respectively. Ecosystem threats associated with carrion ecology were also identified, the most common being water eutrophication and carrion as source of pathogens (2.4%; N = 5 each). Regarding the effects of carrion on ecosystems, we found studies spanning all ecosystem components (N = 85), from soil or the water column to terrestrial vertebrates, with a particular focus on aquatic invertebrates and fish. Most of these articles found positive effects of carrion on ecosystems (e.g. higher species richness, abundance or fitness; 84.7%; N = 72), while a minority found negative effects, changes in community composition, or even no effects. Enhancing our understanding of scavengers and carrion in aquatic ecosystems is crucial to assessing their current and future roles amidst global change, mainly for water-land nutrient transport, due to changes in the amount and speed of nutrient movement, and for disease control and impact mitigation, due to the predicted increase in occurrence and magnitude of mortality events in aquatic ecosystems.
Collapse
Affiliation(s)
- Adrian Orihuela-Torres
- Department of Ecology, University of Alicante, Ctra. San Vicente del Raspeig s/n, Alicante, 03690, Spain
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel km 3.2, Orihuela, 03312, Spain
| | - Zebensui Morales-Reyes
- Instituto de Estudios Sociales Avanzados (IESA), CSIC, Campo Santo de los Mártires, 7, Córdoba, 14004, Spain
| | - Virgilio Hermoso
- Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD) - CSIC, Américo Vespucio 26, Sevilla, 41092, Spain
| | - Félix Picazo
- Department of Ecology/Research Unit Modeling Nature (MNat), University of Granada, Faculty of Sciences, Campus Fuentenueva s/n, Granada, 18071, Spain
- Water Institute (IdA), University of Granada, Ramón y Cajal 4, Granada, 18003, Spain
| | - David Sánchez Fernández
- Department of Ecology and Hidrology, University of Murcia, Campus de Espinardo, Murcia, 30100, Spain
| | - Juan M Pérez-García
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel km 3.2, Orihuela, 03312, Spain
| | - Francisco Botella
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel km 3.2, Orihuela, 03312, Spain
| | - José A Sánchez-Zapata
- Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Carretera de Beniel km 3.2, Orihuela, 03312, Spain
| | - Esther Sebastián-González
- Department of Ecology, University of Alicante, Ctra. San Vicente del Raspeig s/n, Alicante, 03690, Spain
| |
Collapse
|
7
|
Quintanilla-Ahumada D, Quijón PA, Jahnsen-Guzmán N, Lynn KD, Pulgar J, Palma J, Manríquez PH, Duarte C. Splitting light pollution: Wavelength effects on the activity of two sandy beach species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124317. [PMID: 38844041 DOI: 10.1016/j.envpol.2024.124317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Artificial Light at Night (ALAN) threatens to disrupt most natural habitats and species, including those in coastal settings, where a growing number of studies have identified ALAN impacts. A careful examination of the light properties behind those impacts is important to better understand and manage the effects of this stressor. This study focused on ALAN monochromatic wavelengths and examined which types of light spectra altered the natural activity of two prominent coastal species from the Pacific southeast: the talitroid amphipod Orchestoidea tuberculata and the oniscoid isopod Tylos spinulosus. We compared the natural daylight/night activity of these organisms with the one they exhibit when exposed to five different ALAN wavelengths: lights in the violet, blue, green, amber, and red spectra. Our working hypothesis was that ALAN alters these species' activity at night, but the magnitude of such impact differs depending on light wavelengths. Measurements of activity over 24 h cycles for five consecutive days and in three separate experiments confirmed a natural circadian activity pattern in both species, with strong activity at night (∼90% of probability) and barely any activity during daylight. However, when exposed to ALAN, activity declined significantly in both species under all light wavelengths. Interestingly, amphipods exhibited moderate activity (∼40% of probability) when exposed to red lights at night, whereas isopods shifted some of their activity to daylight hours in two of the experiments when exposed to blue or amber lights, suggesting a possible alteration in this species circadian rhythm. Altogether, our results were consistent with our working hypothesis, and suggest that ALAN reduces night activity, and some wavelengths have differential effects on each species. Differences between amphipods and isopods are likely related to their distinct adaptations to natural low-light habitat conditions, and therefore distinct sensitivity to ALAN.
Collapse
Affiliation(s)
- Diego Quintanilla-Ahumada
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Nicole Jahnsen-Guzmán
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - K Devon Lynn
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile
| | | | - Patricio H Manríquez
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile.
| |
Collapse
|
8
|
Menicagli V, Balestri E, Bernardini G, Barsotti F, Fulignati S, Raspolli Galletti AM, Lardicci C. Beach-cast seagrass wrack: A natural marine resource improving the establishment of dune plant communities under a changing climate. MARINE POLLUTION BULLETIN 2024; 201:116270. [PMID: 38520997 DOI: 10.1016/j.marpolbul.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Seagrass wrack plays multiple ecological roles in coastal habitats but is often removed from beaches and used for economical processing, neglecting its potential role in sustaining dune plant establishment under changing climate scenarios. Rainwater shortage is a major stress for seedlings and reduced precipitations are expected in some coastal areas. We investigated in mesocosm how wrack influenced seedling performance of Cakile maritima, Thinopyrum junceum, and Calamagrostis arenaria under current and reduced precipitation. We also assessed wrack water holding capacity and leachate chemical/physical properties. Wrack stimulated seedling growth while reduced precipitation decreased root development. Wrack mitigated the effects of reduced precipitation on T. junceum and C. arenaria biomass. Wrack retained water up to five-fold its weight, increased water pH, conductivity, and nutrient content. Wrack promotes dune colonization by vegetation even under rainwater shortage. Thus, the maintenance of this natural resource on beaches is critical for improving dune resilience against climate changes.
Collapse
Affiliation(s)
- Virginia Menicagli
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy
| | - Elena Balestri
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy.
| | - Giada Bernardini
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy
| | - Francesca Barsotti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Sara Fulignati
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | | | - Claudio Lardicci
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, via S. Maria 53, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy; Department of Earth Sciences, University of Pisa, via S. Maria 53, Pisa, Italy
| |
Collapse
|
9
|
Martins M, Sousa F, Soares C, Sousa B, Pereira R, Rubal M, Fidalgo F. Beach wrack: Discussing ecological roles, risks, and sustainable bioenergy and agricultural applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120526. [PMID: 38492423 DOI: 10.1016/j.jenvman.2024.120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024]
Abstract
The equilibrium of the marine ecosystem is currently threatened by several constraints, among which climate change and anthropogenic activities stand out. Indeed, these factors favour the growth of macroalgae, which sometimes end up stranded on the beaches at the end of their life cycle, forming what is known as beach wrack. Despite its undeniable important ecological role on beaches, as it is an important source of organic matter (OM), and provides food and habitat for several invertebrates, reptiles, small mammals, and shorebirds, the overaccumulation of beach wrack is often associated with the release of greenhouse gases, negatively impacting tourist activities, and generating economic expenses for its removal. Although currently beach wrack is mainly treated as a waste, it can be used for numerous potential applications in distinct areas. This review aimed at providing a solid point of view regarding the process of wrack formation, its spatiotemporal location, as well as its importance and risks. It also contains the current advances of the research regarding sustainable alternatives to valorise this organic biomass, that range from bioenergy production to the incorporation of wrack in agricultural soils, considering a circular economy concept. Although there are some concerns regarding wrack utilisation, from its variable availability to a possible soil contamination with salts and other contaminants, this review comprises the overall beneficial effects of the incorporation of this residue particularly in the organic agricultural model, strengthening the conversion of this wasted biomass into a valuable resource.
Collapse
Affiliation(s)
- Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre and INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Filipa Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre and INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre and INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre and INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Ruth Pereira
- GreenUPorto - Sustainable Agrifood Production Research Centre and INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Marcos Rubal
- Centre of Molecular and Environmental Biology (CBMA/ARNET), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre and INOV4AGRO, Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| |
Collapse
|
10
|
Kalvaitienė G, Bučas M, Vaičiūtė D, Balčiūnas A, Gyraitė G, Kataržytė M. Impact of beach wrack on microorganisms associated with faecal pollution at the Baltic Sea Sandy beaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170442. [PMID: 38278231 DOI: 10.1016/j.scitotenv.2024.170442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
We investigated whether higher quantities of faecal indicator bacteria (FIB) are in the areas with red algae-dominated wrack compared to areas without it and if the birds are the primary source of faecal pollution on sandy beaches of the Baltic Sea. Water, sand and wrack samples were collected during the recreational season, and abundances of FIB, HF183 (human faecal pollution) and GFD (bird faecal pollution) markers, as well as the presence of Salmonella and Campylobacter, were assessed. Significantly higher levels of Enterococcus spp. were found in the wrack accumulation areas in water and sand than in the areas without wrack when there was a faecal pollution event, which could be explained by entrapment and changed physico-chemical water conditions. Both faecal pollution markers were identified, however, with no apparent pattern. Campylobacter bacteria were identified in the wrack-affected water, sand, and beach wrack. While this research provides valuable insights into beach wrack serving as a reservoir for FIB, further investigations, including multi-day samplings, are necessary to gain a deeper understanding of the long-term dynamics of microbiota within red algae-dominated wrack.
Collapse
Affiliation(s)
- Greta Kalvaitienė
- Klaipėda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania.
| | - Martynas Bučas
- Klaipėda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania.
| | - Diana Vaičiūtė
- Klaipėda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania.
| | - Arūnas Balčiūnas
- Klaipėda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania.
| | - Greta Gyraitė
- Klaipėda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania.
| | - Marija Kataržytė
- Klaipėda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania.
| |
Collapse
|
11
|
Hanley ME, Firth LB, Foggo A. Victim of changes? Marine macroalgae in a changing world. ANNALS OF BOTANY 2024; 133:1-16. [PMID: 37996092 PMCID: PMC10921835 DOI: 10.1093/aob/mcad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Marine macroalgae ('seaweeds') are a diverse and globally distributed group of photosynthetic organisms that together generate considerable primary productivity, provide an array of different habitats for other organisms, and contribute many important ecosystem functions and services. As a result of continued anthropogenic stress on marine systems, many macroalgal species and habitats face an uncertain future, risking their vital contribution to global productivity and ecosystem service provision. SCOPE After briefly considering the remarkable taxonomy and ecological distribution of marine macroalgae, we review how the threats posed by a combination of anthropogenically induced stressors affect seaweed species and communities. From there we highlight five critical avenues for further research to explore (long-term monitoring, use of functional traits, focus on early ontogeny, biotic interactions and impact of marine litter on coastal vegetation). CONCLUSIONS Although there are considerable parallels with terrestrial vascular plant responses to the many threats posed by anthropogenic stressors, we note that the impacts of some (e.g. habitat loss) are much less keenly felt in the oceans than on land. Nevertheless, and in common with terrestrial plant communities, the impact of climate change will inevitably be the most pernicious threat to the future persistence of seaweed species, communities and service provision. While understanding macroalgal responses to simultaneous environmental stressors is inevitably a complex exercise, our attempt to highlight synergies with terrestrial systems, and provide five future research priorities to elucidate some of the important trends and mechanisms of response, may yet offer some small contribution to this goal.
Collapse
Affiliation(s)
- Mick E Hanley
- School of Biological and Marine Sciences, University of Plymouth, UK
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, UK
| | - Andy Foggo
- School of Biological and Marine Sciences, University of Plymouth, UK
| |
Collapse
|
12
|
Saldaña PH, Angelini C, Bertness MD, Altieri AH. Dead foundation species drive ecosystem dynamics. Trends Ecol Evol 2024; 39:294-305. [PMID: 37923644 DOI: 10.1016/j.tree.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Foundation species facilitate communities, modulate energy flow, and define ecosystems, but their ecological roles after death are frequently overlooked. Here, we reveal the widespread importance of their dead structures as unique, interacting components of ecosystems that are vulnerable to global change. Key metabolic activity, mobility, and morphology traits of foundation species either change or persist after death with important consequences for ecosystem functions, biodiversity, and subsidy dynamics. Dead foundation species frequently mediate ecosystem stability, resilience, and transitions, often through feedbacks, and harnessing their structural and trophic roles can improve restoration outcomes. Enhanced recognition of dead foundation species and their incorporation into habitat monitoring, ecological theory, and ecosystem forecasting can help solve the escalating conservation challenges of the Anthropocene.
Collapse
Affiliation(s)
- Patrick H Saldaña
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611, USA.
| | - Christine Angelini
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611, USA
| | - Mark D Bertness
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Andrew H Altieri
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Walter JA, Emery KA, Dugan JE, Hubbard DM, Bell TW, Sheppard LW, Karatayev VA, Cavanaugh KC, Reuman DC, Castorani MCN. Spatial synchrony cascades across ecosystem boundaries and up food webs via resource subsidies. Proc Natl Acad Sci U S A 2024; 121:e2310052120. [PMID: 38165932 PMCID: PMC10786303 DOI: 10.1073/pnas.2310052120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/28/2023] [Indexed: 01/04/2024] Open
Abstract
Cross-ecosystem subsidies are critical to ecosystem structure and function, especially in recipient ecosystems where they are the primary source of organic matter to the food web. Subsidies are indicative of processes connecting ecosystems and can couple ecological dynamics across system boundaries. However, the degree to which such flows can induce cross-ecosystem cascades of spatial synchrony, the tendency for system fluctuations to be correlated across locations, is not well understood. Synchrony has destabilizing effects on ecosystems, adding to the importance of understanding spatiotemporal patterns of synchrony transmission. In order to understand whether and how spatial synchrony cascades across the marine-terrestrial boundary via resource subsidies, we studied the relationship between giant kelp forests on rocky nearshore reefs and sandy beach ecosystems that receive resource subsidies in the form of kelp wrack (detritus). We found that synchrony cascades from rocky reefs to sandy beaches, with spatiotemporal patterns mediated by fluctuations in live kelp biomass, wave action, and beach width. Moreover, wrack deposition synchronized local abundances of shorebirds that move among beaches seeking to forage on wrack-associated invertebrates, demonstrating that synchrony due to subsidies propagates across trophic levels in the recipient ecosystem. Synchronizing resource subsidies likely play an underappreciated role in the spatiotemporal structure, functioning, and stability of ecosystems.
Collapse
Affiliation(s)
- Jonathan A. Walter
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA22904
- Center for Watershed Sciences, University of California, Davis, CA95616
| | - Kyle A. Emery
- Department of Geography, University of California, Los Angeles, CA90095
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - Jenifer E. Dugan
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - David M. Hubbard
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - Tom W. Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | - Lawrence W. Sheppard
- Marine Biological Association of the United Kingdom, PlymouthPL1 2PB, United Kingdom
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS66047
| | - Vadim A. Karatayev
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS66047
| | - Kyle C. Cavanaugh
- Department of Geography, University of California, Los Angeles, CA90095
| | - Daniel C. Reuman
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS66047
| | - Max C. N. Castorani
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA22904
| |
Collapse
|
14
|
Ebersole A, Bunker ME, Weiss SL, Fox-Dobbs K. Inter- and intrapopulation resource use variation of marine subsidized western fence lizards. Oecologia 2024; 204:1-11. [PMID: 38244058 PMCID: PMC10830707 DOI: 10.1007/s00442-023-05496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024]
Abstract
Marine resource subsidies alter consumer dynamics of recipient populations in coastal systems. The response to these subsidies by generalist consumers is often not uniform, creating inter- and intrapopulation diet variation and niche diversification that may be intensified across heterogeneous landscapes. We sampled western fence lizards, Sceloporus occidentalis, from Puget Sound beaches and coastal and inland forest habitats, in addition to the lizards' marine and terrestrial prey items to quantify marine and terrestrial resource use with stable isotope analysis and mixing models. Beach lizards had higher average δ13C and δ15N values compared to coastal and inland forest lizards, exhibiting a strong mixing line between marine and terrestrial prey items. Across five beach sites, lizard populations received 20-51% of their diet from marine resources, on average, with individual lizards ranging between 7 and 86% marine diet. The hillslope of the transition zone between marine and terrestrial environments at beach sites was positively associated with marine-based diets, as the steepest sloped beach sites had the highest percent marine diets. Within-beach variation in transition zone slope was positively correlated with the isotopic niche space of beach lizard populations. These results demonstrate that physiography of transitional landscapes can mediate resource flow between environments, and variable habitat topography promotes niche diversification within lizard populations. Marine resource subsidization of Puget Sound beach S. occidentalis populations may facilitate occupation of the northwesternmost edge of the species range. Shoreline restoration and driftwood beach habitat conservation are important to support the unique ecology of Puget Sound S. occidentalis.
Collapse
Affiliation(s)
- Alexi Ebersole
- Department of Biology, University of Puget Sound, Tacoma, WA, 98416, USA.
| | - Marie E Bunker
- Department of Biology, University of Puget Sound, Tacoma, WA, 98416, USA
| | - Stacey L Weiss
- Department of Biology, University of Puget Sound, Tacoma, WA, 98416, USA
| | - Kena Fox-Dobbs
- Department of Geology, University of Puget Sound, Tacoma, WA, 98416, USA
| |
Collapse
|
15
|
Berdan EL, Roger F, Wellenreuther M, Kinnby A, Cervin G, Pereyra R, Töpel M, Johannesson K, Butlin RK, André C. A metabarcoding analysis of the wrackbed microbiome indicates a phylogeographic break along the North Sea-Baltic Sea transition zone. Environ Microbiol 2023; 25:1659-1673. [PMID: 37032322 DOI: 10.1111/1462-2920.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/18/2023] [Indexed: 04/11/2023]
Abstract
Sandy beaches are biogeochemical hotspots that bridge marine and terrestrial ecosystems via the transfer of organic matter, such as seaweed (termed wrack). A keystone of this unique ecosystem is the microbial community, which helps to degrade wrack and re-mineralize nutrients. However, little is known about this community. Here, we characterize the wrackbed microbiome as well as the microbiome of a primary consumer, the seaweed fly Coelopa frigida, and examine how they change along one of the most studied ecological gradients in the world, the transition from the marine North Sea to the brackish Baltic Sea. We found that polysaccharide degraders dominated both microbiomes, but there were still consistent differences between wrackbed and fly samples. Furthermore, we observed a shift in both microbial communities and functionality between the North and Baltic Sea driven by changes in the frequency of different groups of known polysaccharide degraders. We hypothesize that microbes were selected for their abilities to degrade different polysaccharides corresponding to a shift in polysaccharide content in the different seaweed communities. Our results reveal the complexities of both the wrackbed microbial community, with different groups specialized to different roles, and the cascading trophic consequences of shifts in the near shore algal community.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, The University of Gothenburg, Tjärnö Marine Laboratory, 452 96, Strömstad, Sweden
| | - Fabian Roger
- Lund University, Centre for Environmental and Climate Science, Sölvegatan 37, 223 62, Lund, Sweden
| | - Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Alexandra Kinnby
- Department of Marine Sciences, The University of Gothenburg, Tjärnö Marine Laboratory, 452 96, Strömstad, Sweden
| | - Gunnar Cervin
- Department of Marine Sciences, The University of Gothenburg, Tjärnö Marine Laboratory, 452 96, Strömstad, Sweden
| | - Ricardo Pereyra
- Department of Marine Sciences, The University of Gothenburg, Tjärnö Marine Laboratory, 452 96, Strömstad, Sweden
| | - Mats Töpel
- Department of Marine Sciences, The University of Gothenburg, Tjärnö Marine Laboratory, 452 96, Strömstad, Sweden
| | - Kerstin Johannesson
- Department of Marine Sciences, The University of Gothenburg, Tjärnö Marine Laboratory, 452 96, Strömstad, Sweden
| | - Roger K Butlin
- Department of Marine Sciences, The University of Gothenburg, Tjärnö Marine Laboratory, 452 96, Strömstad, Sweden
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Carl André
- Department of Marine Sciences, The University of Gothenburg, Tjärnö Marine Laboratory, 452 96, Strömstad, Sweden
| |
Collapse
|
16
|
Lu R, Cao X, Zheng X, Zeng Y, Jiang Y, Mai B. Biomagnification and elimination effects of persistent organic pollutants in a typical wetland food web from South China. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131733. [PMID: 37269563 DOI: 10.1016/j.jhazmat.2023.131733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
This study investigated the quantitative sources of persistent organic pollutants (POPs), their biomagnification factors, and their effect on POP biomagnification in a typical waterbird (common kingfisher, Alcedo atthis) food web in South China. The median concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in kingfishers were 32,500 ng/g lw and 130 ng/g lw, respectively. The congener profiles of PBDEs and PCBs showed significant temporal changes because of the restriction time points and biomagnification potential of different contaminants. The concentrations of most bioaccumulative POPs, such as CBs 138 and 180 and BDEs 153 and 154, decreased at lower rates than those of other POPs. Pelagic fish (metzia lineata) and benthic fish (common carp) were the primary prey of kingfishers, as indicated by quantitative fatty acid signature analysis (QFASA) results. Pelagic and benthic prey species were the primary sources of low and high hydrophobic contaminants for kingfishers, respectively. Biomagnification factors (BMFs) and trophic magnification factors (TMFs) had parabolic relationships with log KOW, with peak values of approximately 7. Significant negative correlations were found between the whole-body elimination rates of POPs in waterbirds and the log-transformed TMFs and BMFs, indicating that the strong metabolism of waterbirds could potentially affect POP biomagnification.
Collapse
Affiliation(s)
- Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingpei Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yiye Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
17
|
Battisti C, Fanelli G, Gallitelli L, Scalici M. Dunal plants as sink for anthropogenic marine litter: The entrapping role of Salsola kali L. (1753) in a Mediterranean remote beach (Sardinia, Italy). MARINE POLLUTION BULLETIN 2023; 192:115033. [PMID: 37182241 DOI: 10.1016/j.marpolbul.2023.115033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
The ability to retain anthropogenic marine litter by a halo-psammophilous plant formation dominated by a single prostrate species (Salsola kali) on a Sardinian beach was measured. We hypothesized that the anthropogenic litter (i) is trapped by plants to a greater extent than in control areas, and (ii) has more elongated size, mimicking the organic Posidonia wrack, largely occurring locally as 'banquettes'. Salsola kali patches show an apparently higher anthropogenic litter density than control sites without vegetation. Salsola kali plants trap litter items significantly longer and a larger number of size length categories than control plots. These effects may be due to the prostrate structure of the plant with small thorns at the apex. Also, litter entrapped by plants can interfere with the mechanisms of dune deposition and structuration, in turn affecting food chains by decreasing the availability of organic material for pedofauna.
Collapse
Affiliation(s)
- Corrado Battisti
- "Torre Flavia" LTER (Long Term Ecological Research) Station, Città Metropolitana di Roma Capitale, Servizio Aree protette - parchi regionali, Viale G. Ribotta 41, 00144 Rome, Italy.
| | - Giuliano Fanelli
- Department of Environmental Biology, University of Rome Sapienza, Italy.
| | - Luca Gallitelli
- Department of Sciences, University of Rome Tre, Viale Guglielmo Marconi, 446 00146 Rome, Italy.
| | - Massimiliano Scalici
- Department of Sciences, University of Rome Tre, Viale Guglielmo Marconi, 446 00146 Rome, Italy.
| |
Collapse
|
18
|
Duarte C, Quintanilla-Ahumada D, Anguita C, Silva-Rodriguez EA, Manríquez PH, Widdicombe S, Pulgar J, Miranda C, Jahnsen-Guzmán N, Quijón PA. Field experimental evidence of sandy beach community changes in response to artificial light at night (ALAN). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162086. [PMID: 36764536 DOI: 10.1016/j.scitotenv.2023.162086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Artificial light at night (ALAN) is a pervasive but still under-recognized driver of global change. In coastal settings, a large majority of the studies assessing ALAN impacts has focused on individual species, even though it is unclear whether results gathered from single species can be used to predict community-wide responses. Similarly, these studies often treat species as single life-stage entities, ignoring the variation associated with distinct life stages. This study addresses both limitations by focusing on the effects of ALAN on a sandy beach community consisting of species with distinct early- and late-life stages. Our hypothesis was that ALAN alters community structure and these changes are mediated by individual species and also by their ontogenetic stages. A field experiment was conducted in a sandy beach of north-central Chile using an artificial LED system. Samples were collected at different night hours (8-levels in total) across the intertidal (9-levels) over several days in November and January (austral spring and summer seasons). The abundance of adults of all species was significantly lower in ALAN treatments. Early stages of isopods showed the same pattern, but the opposite was observed for the early stages of the other two species. Clear differences were detected in the zonation of these species during natural darkness versus those exposed to ALAN, with some adult-juvenile differences in this response. These results support our hypothesis and document a series of changes affecting differentially both early and late life stages of these species, and ultimately, the structure of the entire community. Although the effects described correspond to short-term responses, more persistent effects are likely to occur if ALAN sources become established as permanent features in sandy beaches. The worldwide growth of ALAN suggests that the scope of its effect will continue to grow and represents a concern for sandy beach systems.
Collapse
Affiliation(s)
- Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - Cristóbal Anguita
- Laboratorio de Ecología de Vida Silvestre, Facultad de Ciencias Forestales y Conservación de la Naturaleza, Universidad de Chile, Av. Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Eduardo A Silva-Rodriguez
- Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile; Programa Austral Patagonia, Universidad Austral de Chile, Valdivia, Chile
| | - Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Stephen Widdicombe
- Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Miranda
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - Nicole Jahnsen-Guzmán
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
19
|
Duke BM, Emery KA, Dugan JE, Hubbard DM, Joab BM. Uptake of polycyclic aromatic hydrocarbons via high-energy water accommodated fraction (HEWAF) by beach hoppers (Amphipoda, Talitridae) using different sandy beach exposure pathways. MARINE POLLUTION BULLETIN 2023; 190:114835. [PMID: 37023547 DOI: 10.1016/j.marpolbul.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Sandy beach ecosystems are highly dynamic coastal environments subject to a variety of anthropogenic pressures and impacts. Pollution from oil spills can damage beach ecosystems through the toxic effects of hydrocarbons on organisms and the disruptive nature of large-scale clean-up practices. On temperate sandy beaches, intertidal talitrid amphipods are primary consumers of macrophyte wrack subsidies and serve as prey for higher trophic level consumers, such as birds and fish. These integral organisms of the beach food web can be exposed to hydrocarbons by direct contact with oiled sand through burrowing and by the consumption of oiled wrack. We experimentally evaluated the primary polycyclic aromatic hydrocarbon (PAH) exposure pathway via high-energy water accommodated fraction (HEWAF) for a species of talitrid amphipod (Megalorchestia pugettensis). Our results indicated that tissue PAH concentrations in talitrids were six-fold higher in treatments that included oiled sand compared to those with only oiled kelp and the controls.
Collapse
Affiliation(s)
- Bryand M Duke
- National Oceanic and Atmospheric Administration, St. Petersburg, FL 33701, United States of America.
| | - Kyle A Emery
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA 93106, United States of America; Department of Geography, UC Los Angeles, Los Angeles, CA 90095, United States of America
| | - Jenifer E Dugan
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - David M Hubbard
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - Bruce M Joab
- Office of Spill Prevention and Response (OSPR), California Department of Fish and Wildlife, 95605, United States of America
| |
Collapse
|
20
|
The carrion connection: Marine mammal carcasses provide an indirect subsidy to insectivorous birds. FOOD WEBS 2023. [DOI: 10.1016/j.fooweb.2023.e00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
21
|
Battisti C, Gallitelli L, Vanadia S, Scalici M. General macro-litter as a proxy for fishing lines, hooks and nets entrapping beach-nesting birds: Implications for clean-ups. MARINE POLLUTION BULLETIN 2023; 186:114502. [PMID: 36563602 DOI: 10.1016/j.marpolbul.2022.114502] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Fishing lines, hooks and nets represent a sub-category of macro-litter potentially entrapping plover birds nesting on sandy beaches. Here, during a winter period, the accumulation pattern of both general beach litter and fishing lines, hooks and nets was analysed on four central Italy beaches. Despite the active monthly litter removal by clean-ups, there was not a decrease in its density during the winter period, due to the continuous accumulation by frequent winter storms. However, the entrapping litter was very low (<2.5 % of the general litter) and appeared directly correlated to the general litter density. Following a DPSIR approach, the general litter can act as an indirect pressure indicator (proxy) of the amount of entrapping litter. Therefore, an increase in general macro-litter should alarm those involved in the conservation of entanglement-sensitive bird species, such as plovers, suggesting that they should implement high-frequency clean-up activities aimed at removing it.
Collapse
Affiliation(s)
- Corrado Battisti
- "Torre Flavia" LTER (Long Term Ecological Research) Station, Città Metropolitana di Roma Capitale, Servizio Aree Protette, Via G. Ribotta, 41, 00144 Roma, Italy
| | - Luca Gallitelli
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Sharon Vanadia
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| |
Collapse
|
22
|
Graca B, Jędruch A, Bełdowska M, Bełdowski J, Kotwicki L, Siedlewicz G, Korejwo E, Popińska W, Łukawska-Matuszewska K. Effects of beach wrack on the fate of mercury at the land-sea interface - A preliminary study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120394. [PMID: 36228857 DOI: 10.1016/j.envpol.2022.120394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Since the 1970s, the amount of aquatic plants and algae debris, called beach wrack (BW), has increased along the shores of industrialised regions. The strong ability of primary producers to accumulate pollutants can potentially result in their deposition on the beach along with the BW. Despite that, the fate and impact of such pollutants on sandy beach ecosystems have not been investigated so far. This study examines the fate of neurotoxic mercury and its labile and stable fractions in BW on sandy beaches of the Puck Bay (Baltic Sea). In addition to BW, beach sediments and wrack-associated macrofauna were also analysed. Rough estimations showed that Puck Bay beaches (58.8 km) may be a temporary storage of 0.2-0.5 kg of mercury, deposited on them along with the BW annually. A large proportion of Hg (89 ± 16%) in a BW was labile and potentially bioavailable. The contribution of Hg fractions in the BW was conditioned by the degree of its decomposition (molar C:N:P ratio). With the progressive degradation of BW, a decrease in the contribution of Hg adsorbed on its surface with a simultaneous increase in the proportion of adsorbed (intracellular), mercury was observed. BW accumulation decreased oxygen content and redox potential and increased methylmercury content in underlying sediments, indicating methylation. Hg concentrations in the studied fauna were up to 4 times higher than in the BW. The highest values occurred in a predatory sand bear spider and the lowest in a herbivorous sand hopper. Regardless of trophic position, most of Hg (92-95%) occurred as an absorbed fraction, which indicates about a 30% increase in relation to its share of BW. These findings suggest the significant role of BW as a mercury carrier in a land-sea interface and increased exposure of beach communities to the adverse effects of mercury in coastal ecosystems.
Collapse
Affiliation(s)
- Bożena Graca
- University of Gdansk, Institute of Oceanography, Department of Marine Chemistry and Environmental Protection, Al. Marszałka Piłsudskiego 46, Gdynia, 81-378, Poland.
| | - Agnieszka Jędruch
- Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, Sopot, 81-712, Poland
| | - Magdalena Bełdowska
- University of Gdansk, Institute of Oceanography, Department of Marine Chemistry and Environmental Protection, Al. Marszałka Piłsudskiego 46, Gdynia, 81-378, Poland
| | - Jacek Bełdowski
- Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, Sopot, 81-712, Poland
| | - Lech Kotwicki
- Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, Sopot, 81-712, Poland
| | - Grzegorz Siedlewicz
- Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, Sopot, 81-712, Poland
| | - Ewa Korejwo
- Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, Sopot, 81-712, Poland
| | - Wioletta Popińska
- Institute of Horticulture - National Research Institute, Laboratory of Quality Testing of Horticultural Products, Pomologiczna 18 Street, Skierniewice, 96-100, Poland
| | - Katarzyna Łukawska-Matuszewska
- University of Gdansk, Institute of Oceanography, Department of Marine Chemistry and Environmental Protection, Al. Marszałka Piłsudskiego 46, Gdynia, 81-378, Poland
| |
Collapse
|
23
|
Butterworth NJ, Benbow ME, Barton PS. The ephemeral resource patch concept. Biol Rev Camb Philos Soc 2022; 98:697-726. [PMID: 36517934 DOI: 10.1111/brv.12926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Ephemeral resource patches (ERPs) - short lived resources including dung, carrion, temporary pools, rotting vegetation, decaying wood, and fungi - are found throughout every ecosystem. Their short-lived dynamics greatly enhance ecosystem heterogeneity and have shaped the evolutionary trajectories of a wide range of organisms - from bacteria to insects and amphibians. Despite this, there has been no attempt to distinguish ERPs clearly from other resource types, to identify their shared spatiotemporal characteristics, or to articulate their broad ecological and evolutionary influences on biotic communities. Here, we define ERPs as any distinct consumable resources which (i) are homogeneous (genetically, chemically, or structurally) relative to the surrounding matrix, (ii) host a discrete multitrophic community consisting of species that cannot replicate solely in any of the surrounding matrix, and (iii) cannot maintain a balance between depletion and renewal, which in turn, prevents multiple generations of consumers/users or reaching a community equilibrium. We outline the wide range of ERPs that fit these criteria, propose 12 spatiotemporal characteristics along which ERPs can vary, and synthesise a large body of literature that relates ERP dynamics to ecological and evolutionary theory. We draw this knowledge together and present a new unifying conceptual framework that incorporates how ERPs have shaped the adaptive trajectories of organisms, the structure of ecosystems, and how they can be integrated into biodiversity management and conservation. Future research should focus on how inter- and intra-resource variation occurs in nature - with a particular focus on resource × environment × genotype interactions. This will likely reveal novel adaptive strategies, aid the development of new eco-evolutionary theory, and greatly improve our understanding of the form and function of organisms and ecosystems.
Collapse
Affiliation(s)
- Nathan J. Butterworth
- School of Biological Sciences, Monash University Wellington Road Clayton VIC 3800 Australia
- School of Life Sciences, University of Technology Sydney 15 Broadway Ultimo NSW 2007 Australia
| | - M. Eric Benbow
- Department of Entomology, Department of Osteopathic Medical Specialties, and Ecology, Evolution and Behavior Program Michigan State University 220 Trowbridge Rd East Lansing MI 48824 USA
| | - Philip S. Barton
- Future Regions Research Centre, Federation University University Drive, Mount Helen VIC 3350 Australia
| |
Collapse
|
24
|
Hambäck PA, Cirtwill AR, Grudzinska-Sterno M, Hoffmann A, Langbak M, Åhlén D. Species composition of shoreline wolf spider communities vary with salinity, but their diets vary with wrack inflow. Ecol Evol 2022; 12:e9701. [PMID: 36590338 PMCID: PMC9797640 DOI: 10.1002/ece3.9701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Wolf spiders are typically the most common group of arthropod predators on both lake and marine shorelines because of the high prey availability in these habitats. However, shores are also harsh environments due to flooding and, in proximity to marine waters, to toxic salinity levels. Here, we describe the spider community, prey availabilities, and spider diets between shoreline sites with different salinities, albeit with comparatively small differences (5‰ vs. 7‰). Despite the small environmental differences, spider communities between lower and higher saline sites showed an almost complete species turnover. At the same time, differences in prey availability or spider gut contents did not match changes in spider species composition but rather changed with habitat characteristics within a region, where spiders collected at sites with thick wrack beds had a different diet than sites with little wrack. These data suggest that shifts in spider communities are due to habitat characteristics other than prey availabilities, and the most likely candidate restricting species in high salinity would be saline sensitivity. At the same time, species absence from low-saline habitats remains unresolved.
Collapse
Affiliation(s)
- Peter A Hambäck
- Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm Sweden
| | - Alyssa R Cirtwill
- Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm Sweden
| | | | - Alexander Hoffmann
- Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm Sweden
| | - Marie Langbak
- Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm Sweden
| | - David Åhlén
- Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm Sweden
| |
Collapse
|
25
|
Lynn KD, Quintanilla-Ahumada D, Duarte C, Quijón PA. Hemocyanin as a biological indicator of artificial light at night stress in sandy beach amphipods. MARINE POLLUTION BULLETIN 2022; 184:114147. [PMID: 36152494 DOI: 10.1016/j.marpolbul.2022.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The influence of artificial light at night (ALAN) is becoming evident in marine sandy beaches. These habitats are dominated by species reliant on natural daylight/night regimes, making the identification of biological indicators a priority. We assessed the applicability of hemocyanin, an oxygen-transport protein in the hemolymph of many invertebrates, as an indicator of ALAN-related stress. Unlike total proteins, hemocyanins signal metabolic function and stress, so we expected them to increase in response to ALAN. We adapted spectrophotometry protocols to describe spatial variation in hemocyanins and total proteins in four populations of the talitroid amphipod Americorchestia longicornis. Then, a two-week experiment tested for changes in response to ALAN. Hemocyanin levels increased by 17 % and 40 % with respect to experimental controls after 7 and 14 d, respectively, and were higher than any measurements conducted in the field. These results suggest good prospects for hemocyanin as an indicator of ALAN effects.
Collapse
Affiliation(s)
- K Devon Lynn
- Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A4P3, Canada
| | - Diego Quintanilla-Ahumada
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Duarte
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A4P3, Canada.
| |
Collapse
|