1
|
Vargas Soto JS, Kosiewska JR, Grove D, Metts D, Muller LI, Wilber MQ. How do non-independent host movements affect spatio-temporal disease dynamics? Partitioning the contributions of spatial overlap and correlated movements to transmission risk. MOVEMENT ECOLOGY 2025; 13:11. [PMID: 40012019 DOI: 10.1186/s40462-025-00539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Despite decades of epidemiological theory making relatively simple assumptions about host movements, it is increasingly clear that non-random movements drastically affect disease transmission. To better predict transmission risk, theory is needed that quantifies the contributions of both fine-scale host space use and non-independent, correlated host movements to epidemiological dynamics. METHODS We developed and applied new theory that quantifies relative contributions of fine-scale space use and non-independent host movements to spatio-temporal transmission risk. Our theory decomposes pairwise spatio-temporal transmission risk into two components: (i) spatial overlap of hosts-a classic metric of spatial transmission risk - and (ii) pairwise correlations in space use - a component of transmission risk that is almost universally ignored. Using analytical results, simulations, and empirical movement data, we ask: under what ecological and epidemiological conditions do non-independent movements substantially alter spatio-temporal transmission risk compared to spatial overlap? RESULTS Using theory and simulation, we found that for directly transmitted pathogens even weak pairwise correlations in space use among hosts can increase contact and transmission risk by orders of magnitude compared to independent host movements. In contrast, non-independent movements had reduced importance for transmission risk for indirectly transmitted pathogens. Furthermore, we found that if the scale of pathogen transmission is smaller than the scale where host social decisions occur, host movements can be highly correlated but this correlation matters little for transmission. We applied our theory to GPS movement data from white-tailed deer (Odocoileus virginianus). Our approach predicted highly seasonally varying contributions of the spatial and social drivers of transmission risk - with social interactions augmenting transmission risk between hosts by greater than a factor of 10 in some cases, despite similar degrees of spatial overlap. Moreover, social interactions could lead to a distinct shift in the predicted locations of transmission hotspots, compared to joint space use. CONCLUSIONS Our theory provides clear expectations for when non-independent movements alter spatio-temporal transmission risk, showing that correlated movements can reshape epidemiological landscapes, creating transmission hotspots whose magnitude and location are not necessarily predictable from spatial overlap.
Collapse
Affiliation(s)
- Juan S Vargas Soto
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Justin R Kosiewska
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Dan Grove
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Dailee Metts
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Lisa I Muller
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Mark Q Wilber
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
| |
Collapse
|
2
|
Van Doren BM, DeSimone JG, Firth JA, Hillemann F, Gayk Z, Cohen E, Farnsworth A. Social associations across species during nocturnal bird migration. Curr Biol 2025; 35:898-904.e4. [PMID: 39818216 DOI: 10.1016/j.cub.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/01/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
An emerging frontier in ecology explores how organisms integrate social information into movement behavior and the extent to which information exchange occurs across species boundaries.1,2,3 Most migratory landbirds are thought to undertake nocturnal migratory flights independently, guided by endogenous programs and individual experience.4,5 Little research has addressed the potential for social information exchange aloft during nocturnal migration, but social influences that aid navigation, orientation, or survival could be valuable during high-risk migration periods.1,2,6,7,8 We captured audio of >18,000 h of nocturnal bird migration and used deep learning to extract >175,000 in-flight vocalizations of 27 species of North American landbirds.9,10,11,12 We used vocalizations to test whether migrating birds distribute non-randomly relative to other species in flight, accounting for migration phenology, geography, and other non-social factors. We found that migrants engaged in distinct associations with an average of 2.7 ± 1.9 SD other species. Social associations were stronger among species with similar wing morphologies and vocalizations. These results suggest that vocal signals maintain in-flight associations that are structured by flight speed and behavior.11,13,14 For small-bodied and short-lived bird species, transient social associations could play an important role in migratory decision-making by supplementing endogenous or experiential information sources.15,16,17 This research provides the first quantitative evidence of interspecific social associations during nocturnal bird migration, supporting recent calls to rethink songbird migration with a social lens.2 Substantial recent declines in bird populations18,19 may diminish the frequency and strength of social associations during migration, with currently unknown consequences for populations.
Collapse
Affiliation(s)
- Benjamin M Van Doren
- University of Illinois at Urbana-Champaign, Department of Natural Resources and Environmental Sciences, Urbana, IL 61801, USA; Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA.
| | - Joely G DeSimone
- University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, MD 21532, USA
| | | | | | - Zach Gayk
- University of Illinois at Urbana-Champaign, Department of Natural Resources and Environmental Sciences, Urbana, IL 61801, USA
| | - Emily Cohen
- University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, MD 21532, USA
| | - Andrew Farnsworth
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA; Actions@EBMF, New York, NY 10006, USA
| |
Collapse
|
3
|
Ohrndorf L, Mundry R, Beckmann J, Fischer J, Zinner D. Impact of food availability and predator presence on patterns of landscape partitioning among neighbouring Guinea baboon (Papio papio) parties. MOVEMENT ECOLOGY 2025; 13:9. [PMID: 39987137 PMCID: PMC11847332 DOI: 10.1186/s40462-025-00534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Access to critical resources, including food, water, or shelter, significantly determines individual fitness. As these resources are limited in most habitats, animals may employ strategies of landscape partitioning to mitigate the impact of direct resource competition. Territoriality may be regarded as an aggressive form of landscape partitioning, but other forms of landscape partitioning exist in non-territorial species. Animals living in groups with greater flexibility in their association patterns, such as multilevel societies with fission-fusion dynamics, may adjust their grouping and space use patterns to short-term variations in ecological conditions such as food availability, predation pressure, or the presence of conspecific groups. This flexibility may allow them to balance the costs of competition while reaping the benefits of better predator detection and defence. METHODS We explored patterns of landscape partitioning among neighbouring Guinea baboon (Papio papio) parties in the Niokolo-Koba National Park, Senegal. Guinea baboons live in a multilevel society in which parties predictably form higher-level associations ("gangs"). We used four years of locational data from individuals equipped with GPS collars to estimate annual home ranges, home range overlap, and average minimum distances between parties. We examined whether food availability and predator presence levels affected the cohesion between parties in 2022. RESULTS We found substantial overlap in home range and core area among parties (33 to 100%). Food availability or predator presence did not affect the distance to the closest neighbouring party; the average minimum distance between parties was less than 100 m. CONCLUSIONS Our results suggest a low level of feeding competition between our study parties. Whether this is a general feature of Guinea baboons or particular to the situation in the Niokolo-Koba National Park remains to be investigated.
Collapse
Affiliation(s)
- Lisa Ohrndorf
- Department for Primate Cognition, Johann-Friedrich-Blumenbach Institute, Georg-August-Universität Göttingen, Kellnerweg 4, 37077, Göttingen, Germany.
- Cognitive Ethology Laboratory, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
| | - Roger Mundry
- Department for Primate Cognition, Johann-Friedrich-Blumenbach Institute, Georg-August-Universität Göttingen, Kellnerweg 4, 37077, Göttingen, Germany
- Cognitive Ethology Laboratory, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Jörg Beckmann
- Nuremberg Zoo, Am Tiergarten 30, 90480, Nuremberg, Germany
| | - Julia Fischer
- Department for Primate Cognition, Johann-Friedrich-Blumenbach Institute, Georg-August-Universität Göttingen, Kellnerweg 4, 37077, Göttingen, Germany
- Cognitive Ethology Laboratory, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Dietmar Zinner
- Department for Primate Cognition, Johann-Friedrich-Blumenbach Institute, Georg-August-Universität Göttingen, Kellnerweg 4, 37077, Göttingen, Germany
- Cognitive Ethology Laboratory, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| |
Collapse
|
4
|
Chan AHH, Dunning J, Beck KB, Burke T, Chik HYJ, Dunleavy D, Evans T, Ferreira A, Fourie B, Griffith SC, Hillemann F, Schroeder J. Animal social networks are robust to changing association definitions. Behav Ecol Sociobiol 2025; 79:26. [PMID: 39927187 PMCID: PMC11802709 DOI: 10.1007/s00265-025-03559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025]
Abstract
The interconnecting links between individuals in an animal social network are often defined by discrete, directed behaviours, but where these are difficult to observe, a network link (edge) may instead be defined by individuals sharing a space at the same time, which can then be used to infer a social association. The method by which these associations are defined should be informed by the biological significance of edges, and therefore often vary between studies. Identifying an appropriate measure of association remains a challenge to behavioural ecologists. Here, we use automatically recorded feeder visit data from four bird systems to compare three methods to identify a social association: (1) strict time-window, (2) co-occurrence in a group, and (3) arrival-time. We tested the similarity of the resulting networks by comparing the repeatability and sensitivity of individuals' social traits (network degree, strength, betweenness). We found that networks constructed using different methods but applying similar, ecologically relevant definitions of associations based on individuals' spatio-temporal co-occurrence, showed similar characteristics. Our findings suggest that the different methods to construct animal social networks are comparable, but result in subtle differences driven by species biology and feeder design. We urge researchers to carefully evaluate the ecological context of their study systems when making methodological decisions. Specifically, researchers in ecology and evolution should carefully consider the biological relevance of an edge in animal social networks, and the implications of adopting different definitions. Supplementary Information The online version contains supplementary material available at 10.1007/s00265-025-03559-7.
Collapse
Affiliation(s)
- Alex Hoi Hang Chan
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
- Department of Life Sciences, Imperial College London, Silwood park, Ascot, UK
| | - Jamie Dunning
- Department of Life Sciences, Imperial College London, Silwood park, Ascot, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kristina B Beck
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Daniel Dunleavy
- Department of Life Sciences, Imperial College London, Silwood park, Ascot, UK
| | - Tim Evans
- Center for Complexity Science, Imperial College London, London, UK
| | - André Ferreira
- Centre d’Ecologie Fonctionnelle et Evolutive, University Montpellier, Montpellier, France
| | - Babette Fourie
- Centre d’Ecologie Fonctionnelle et Evolutive, University Montpellier, Montpellier, France
- Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, Porto, Portugal
| | | | | | - Julia Schroeder
- Department of Life Sciences, Imperial College London, Silwood park, Ascot, UK
| |
Collapse
|
5
|
Satarkar D, Sepil I, Sheldon BC. Genetic, natal and spatial drivers of social phenotypes in wild great tits. J Anim Ecol 2025; 94:220-232. [PMID: 39737865 PMCID: PMC11794972 DOI: 10.1111/1365-2656.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025]
Abstract
In social animals, group dynamics profoundly influence collective behaviours, vital in processes like information sharing and predator vigilance. Disentangling the causes of individual-level variation in social behaviours is crucial for understanding the evolution of sociality. This requires the estimation of the genetic and environmental basis of these behaviours, which is challenging in uncontrolled wild populations. In this study, we partitioned genetic, developmental and spatial environmental variation in repeatable social network traits derived from foraging events. We used a multi-generational pedigree and social data for 1823 individuals with over 800,000 observations from a long-term monitored great tit population. Animal models indicated minimal narrow-sense heritability (2%-3%) in group size choice, further reduced when the spatial location was considered, which itself explains a substantial 30% of the observed variation. Individual gregariousness also had a small genetic component, with a low heritability estimate for degree (<5%). Centrality showed heritability up to 10% in one of 3 years sampled, whereas betweenness showed none, indicating modest genetic variation in individual sociability, but not group-switching tendencies. These findings suggest a small, albeit detectable, genetic basis for individual sociality but pronounced spatial effects. Furthermore, our study highlights the importance of common environment effects (natal origin and brood identity), which essentially negated genetic effects when explicitly accounted for. In addition, we demonstrate that phenotypic resemblance can be a result of similarities beyond shared genes; spatial proximity at birth and natal environmental similarity explained up to 8% of the variation in individual sociability. Our results thus emphasise the role of non-genetic factors, particularly developmental and spatial variation, in shaping individual social behavioural tendencies.
Collapse
Affiliation(s)
- Devi Satarkar
- Department of Biology, Edward Grey Institute of Field OrnithologyUniversity of OxfordOxfordUK
| | - Irem Sepil
- Department of Biology, Edward Grey Institute of Field OrnithologyUniversity of OxfordOxfordUK
| | - Ben C. Sheldon
- Department of Biology, Edward Grey Institute of Field OrnithologyUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Dejeante R, Lemaire‐Patin R, Chamaillé‐Jammes S. How Can Overlooking Social Interactions, Space Familiarity or Other "Invisible Landscapes" Shaping Animal Movement Bias Habitat Selection Estimations and Species Distribution Predictions? Ecol Evol 2025; 15:e70782. [PMID: 39781261 PMCID: PMC11707625 DOI: 10.1002/ece3.70782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025] Open
Abstract
Species' future distributions are commonly predicted using models that link the likelihood of occurrence of individuals to the environment. Although animals' movements are influenced by physical and non-physical landscapes, for example related to individual experiences such as space familiarity or previous encounters with conspecifics, species distribution models developed from observations of unknown individuals cannot integrate these latter variables, turning them into 'invisible landscapes'. In this theoretical study, we address how overlooking 'invisible landscapes' impacts the estimation of habitat selection and thereby the projection of future distributions. Overlooking the attraction towards some 'invisible' variable consistently led to overestimating the strength of habitat selection. Consequently, projections of future population distributions were also biased, with animals following changes in preferred habitat less than predicted. Our results reveal an overlooked challenge faced by correlative species distribution models based on the observation of unknown individuals, whose past experience of the environment is by definition not known. Mechanistic distribution modeling integrating cognitive processes underlying movement should be developed.
Collapse
Affiliation(s)
| | | | - Simon Chamaillé‐Jammes
- CEFEUniv Montpellier, CNRS, EPHE, IRDMontpellierFrance
- Department of Zoology and EntomologyMammal Research Institute, University of PretoriaPretoriaSouth Africa
| |
Collapse
|
7
|
Bar-Ziv M, Ziv H, Breuer M, Arnon E, Uzan A, Spiegel O. Spur-winged lapwings show spatial behavioural types with different mobility and exploration between urban and rural individuals. Proc Biol Sci 2025; 292:20242471. [PMID: 39772959 PMCID: PMC11706648 DOI: 10.1098/rspb.2024.2471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Understanding how wildlife responds to the spread of human-dominated habitats is a major challenge in ecology. It is still poorly understood how urban areas affect wildlife space-use patterns and consistent intra-specific behavioural differences (i.e. behavioural types; BTs), which in turn shape various ecological processes. To address these questions, we investigated the movements of a common resident wader, the spur-winged lapwing (Vanellus spinosus), hypothesizing that urban individuals will be more mobile than rural ones. We used an ATLAS tracking system to track many (n = 135) individuals at a high resolution over several months each. We first established that daily movement indices show consistent differences among individuals, acting as spatial-BTs. Then focusing on the two main principle components of lapwings' daily movements-mobility and position along the exploration-exploitation gradient-we investigated how these BTs are shaped by urbanization, season (nesting versus non-nesting) and sex. We found that urban lapwings were indeed more mobile in both seasons. Furthermore, urban females were less explorative than rural females, especially during the nesting season. These results highlight how urbanization affects wildlife behaviour, even of apparently urban-resilient avian residents. This underscores the need to consider possible behavioural consequences that are only apparent through advanced tracking methods.
Collapse
Affiliation(s)
- Michael Bar-Ziv
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv6997801, Israel
| | - Hilla Ziv
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv6997801, Israel
| | - Mookie Breuer
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv6997801, Israel
| | - Eitam Arnon
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv6997801, Israel
| | - Assaf Uzan
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv6997801, Israel
| | - Orr Spiegel
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv6997801, Israel
| |
Collapse
|
8
|
Dossman BC, Rodewald AD, Marra PP. Hidden space use behaviors of a nonbreeding migratory bird: the role of environment and social context. MOVEMENT ECOLOGY 2024; 12:82. [PMID: 39722063 DOI: 10.1186/s40462-024-00523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Movement behavior strongly mediates species and environment interactions, yet our understanding is constrained by challenges tracking space use at fine spatiotemporal resolutions. METHODS Using an automated telemetry array, we quantified variation in and drivers of space use for a nonbreeding population of migratory bird, the American redstart Setophaga ruticilla. RESULTS We identified two distinct and common behaviors - territoriality and floating,- that were governed primarily by NDVI as a proxy of resource availability. Within seasons, declines in weekly resources increased the prevalence of forays and the area of space utilized. Floaters were less likely to maintain body condition throughout the nonbreeding season, which is expected to negatively influence fitness and survival. CONCLUSIONS Our study demonstrates that nonbreeding migratory birds exhibit a high degree of plasticity in space use that is driven primarily by resource availability but influenced by the dominance hierarchy within an individual's environment which are expected to have important implications on migratory populations.
Collapse
Affiliation(s)
- Bryant C Dossman
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14850, USA.
- The Earth Commons Institute; Department of Biology, McCourt School of Public Policy, Georgetown University, Washington, DC, 20057, USA.
| | - Amanda D Rodewald
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14850, USA
- Cornell Laboratory of Ornithology, Ithaca, NY, 14850, USA
| | - Peter P Marra
- The Earth Commons Institute; Department of Biology, McCourt School of Public Policy, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
9
|
Love AE, Heckley AM, Webber QMR. Taking cues from ecological and evolutionary theories to expand the landscape of disgust. Proc Biol Sci 2024; 291:20241919. [PMID: 39626751 PMCID: PMC11614535 DOI: 10.1098/rspb.2024.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024] Open
Abstract
Behavioural avoidance of parasites in the environment generates what is known as the 'landscape of disgust' (analogous to the predator-induced 'landscape of fear'). Despite the potential for improving our inference of host-parasite dynamics, three limitations of the landscape of disgust restrict the insight that is gained from current research: (i) many host-parasite systems will not be appropriate for invoking the landscape of disgust framework; (ii) existing research has primarily focused on immediate choices made by hosts on small scales, limiting predictive power, generalizability, and the value of the insight obtained; and (iii) relevant ecological and evolutionary theory has yet to be integrated into the framework, challenging our ability to interpret the landscape of disgust within the context of most host-parasite systems. In this review, we explore the specific requirements for implementing a landscape of disgust framework in empirical systems. We also propose greater integration of habitat selection and evolutionary theories, aiming to generate novel insight, by exploring how the landscape of disgust varies within and across generations, presenting opportunities for future research. Despite interest in the impacts of parasitism on animal movement and behaviour, many unanswered questions remain.
Collapse
Affiliation(s)
- A. E. Love
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - A. M. Heckley
- Department of Biology and the Redpath Museum, McGill University, Montreal, Quebec, Canada
| | - Q. M. R. Webber
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Wood BM, Raichlen DA, Pontzer H, Harris JA, Sayre MK, Paolo B, Anyawire M, Mabulla AZP. Beyond the here and now: hunter-gatherer socio-spatial complexity and the evolution of language. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220521. [PMID: 39230448 PMCID: PMC11449209 DOI: 10.1098/rstb.2022.0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/07/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
Human evolutionary ecology stands to benefit by integrating theory and methods developed in movement ecology, and in turn, to make contributions to the broader field of movement ecology by leveraging our species' distinct attributes. In this paper, we review data and evolutionary models suggesting that major changes in socio-spatial behaviour accompanied the evolution of language. To illustrate and explore these issues, we present a comparison of GPS measures of the socio-spatial behaviour of Hadza hunter-gatherers of northern Tanzania to those of olive baboons (Papio anubis), a comparatively small-brained primate that is also savanna-adapted. While standard spatial metrics show modest differences, measures of spatial diversity, landscape exploration and spatiotemporal displacement between individuals differ markedly. Groups of Hadza foragers rapidly accumulate a vast, diverse knowledge pool about places and things over the horizon, contrasting with the baboon's narrower and more homogeneous pool of ecological information. The larger and more complex socio-spatial world illustrated by the Hadza is one where heightened cognitive abilities for spatial and episodic memory, navigation, perspective taking and communication about things beyond the here and now all have clear value.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Brian M. Wood
- Department of Anthropology, University of California, Los Angeles, CA, USA
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - David A. Raichlen
- Department of Biological Sciences and Anthropology, University of Southern California, Los Angeles, USA
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Jacob A. Harris
- School of Interdisciplinary Forensics, Arizona State University, Tempe, AZ, USA
| | - M. Katherine Sayre
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | | | | | - Audax Z. P. Mabulla
- Department of Archaeology and Heritage, University of Dar es Salaam, Dar es Salaam, Tanzania
| |
Collapse
|
11
|
Picardi S, Abrahms BL, Merkle JA. Scale at the interface of spatial and social ecology. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220523. [PMID: 39230455 PMCID: PMC11495407 DOI: 10.1098/rstb.2022.0523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 09/05/2024] Open
Abstract
Animals simultaneously navigate spatial and social environments, and their decision-making with respect to those environments constitutes their spatial (e.g. habitat selection) and social (e.g. conspecific associations) phenotypes. The spatial-social interface is a recently introduced conceptual framework linking these components of spatial and social ecology. The spatial-social interface is inherently scale-dependent, yet it has not been integrated with the rich body of literature on ecological scale. Here, we develop a conceptual connection between the spatial-social interface and ecological scale. We propose three key innovations that incrementally build upon each other. First, the use-availability framework that underpins a large body of literature in behavioural ecology can be used in analogy to the phenotype-environment nomenclature and is transferable across the spatial and social realms. Second, both spatial and social phenotypes are hierarchical, with nested components that are linked via constraints-from the top down-or emergent properties-from the bottom up. Finally, in both the spatial and social realms, the definitions of environment and phenotype depend on the focal scale of inquiry. These conceptual innovations cast our understanding of the relationships between social and spatial dimensions of animal ecology in a new light, allowing a more holistic understanding and clearer hypothesis development for animal behaviour. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Simona Picardi
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| | - Briana L. Abrahms
- Department of Biology, Center for Ecosystem Sentinels, University of Washington, Seattle, WA, USA
| | - Jerod A. Merkle
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
12
|
Baker CJ, Class B, Dwyer RG, Franklin CE, Campbell HA, Irwin TR, Frère CH. Active crocodiles are less sociable. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220528. [PMID: 39230456 PMCID: PMC11449168 DOI: 10.1098/rstb.2022.0528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 09/05/2024] Open
Abstract
How animals move and associate with conspecifics is rarely random, with a population's spatial structure forming the foundation on which the social behaviours of individuals form. Studies examining the spatial-social interface typically measure averaged behavioural differences between individuals; however, this neglects the inherent variation present within individuals and how it may impact the spatial-social interface. Here, we investigated differences in among-individual (co)variance in sociability, activity and site fidelity in a population of wild estuarine crocodiles, Crocodylus porosus, across a 10-year period. By monitoring 118 crocodiles using coded acoustic transmitters and an array of fixed underwater receivers, we discovered that not only did individual crocodiles repeatably differ (among-individual variation) in each behaviour measured but also in how consistently they expressed these behaviours through time (within-individual variation). As expected, crocodile activity and sociability formed a behavioural syndrome, with more active individuals being less sociable. Interestingly, we also found that individuals that were either more sociable or displayed greater site fidelity were also more specialized (lower within-individual variation) in these behaviours. Together, our results provide important empirical evidence for the interplay between spatial, temporal and social individual-level behavioural variation and how these contribute to forming behavioural niches. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Cameron J. Baker
- Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory0815, Australia
- The School of the Environment, The University of Queensland, Brisbane, Queensland4072, Australia
| | - Barbara Class
- Ludwig-Maximilians-Universität München, Munich80539, Germany
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland4556, Australia
| | - Ross G. Dwyer
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland4556, Australia
| | - Craig E. Franklin
- The School of the Environment, The University of Queensland, Brisbane, Queensland4072, Australia
| | - Hamish A. Campbell
- Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory0815, Australia
| | - Terri R. Irwin
- Australia Zoo, Steve Irwin Way, Beerwah, Queensland4519, Australia
| | - Céline H. Frère
- The School of the Environment, The University of Queensland, Brisbane, Queensland4072, Australia
| |
Collapse
|
13
|
Gahm K, Nguyen R, Acácio M, Anglister N, Vaadia G, Spiegel O, Pinter-Wollman N. A wrap-around movement path randomization method to distinguish social and spatial drivers of animal interactions. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220531. [PMID: 39230446 PMCID: PMC11449205 DOI: 10.1098/rstb.2022.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 09/05/2024] Open
Abstract
Studying the spatial-social interface requires tools that distinguish between social and spatial drivers of interactions. Testing hypotheses about the factors determining animal interactions often involves comparing observed interactions with reference or 'null' models. One approach to accounting for spatial drivers of social interactions in reference models is randomizing animal movement paths to decouple spatial and social phenotypes while maintaining environmental effects on movements. Here, we update a reference model that detects social attraction above the effect of spatial constraints. We explore the use of our 'wrap-around' method and compare its performance to the previous approach using agent-based simulations. The wrap-around method provides reference models that are more similar to the original tracking data, while still distinguishing between social and spatial drivers. Furthermore, the wrap-around approach results in fewer false-positives than its predecessor, especially when animals do not return to one place each night but change movement foci, either locally or directionally. Finally, we show that interactions among GPS-tracked griffon vultures (Gyps fulvus) emerge from social attraction rather than from spatial constraints on their movements. We conclude by highlighting the biological situations in which the updated method might be most suitable for testing hypotheses about the underlying causes of social interactions. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Kaija Gahm
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Ryan Nguyen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Marta Acácio
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Nili Anglister
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Gideon Vaadia
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Orr Spiegel
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Merkle JA, Poulin MP, Caldwell MR, Laforge MP, Scholle AE, Verzuh TL, Geremia C. Spatial-social familiarity complements the spatial-social interface: evidence from Yellowstone bison. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220530. [PMID: 39230449 PMCID: PMC11449198 DOI: 10.1098/rstb.2022.0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/08/2023] [Accepted: 01/23/2024] [Indexed: 09/05/2024] Open
Abstract
Social animals make behavioural decisions based on local habitat and conspecifics, as well as memorized past experience (i.e. 'familiarity') with habitat and conspecifics. Here, we develop a conceptual and empirical understanding of how spatial and social familiarity fit within the spatial-social interface-a novel framework integrating the spatial and social components of animal behaviour. We conducted a multi-scale analysis of the movements of GPS-collared plains bison (Bison bison, n = 66) residing in and around Yellowstone National Park, USA. We found that both spatial and social familiarity mediate how individuals respond to their spatial and social environments. For instance, individuals with high spatial familiarity rely on their own knowledge as opposed to their conspecifics, and individuals with high social familiarity rely more strongly on the movement of conspecifics to guide their own movement. We also found that fine-scale spatial and social phenotypes often scale up to broad-scale phenotypes. For instance, bison that select more strongly to align with their nearest neighbour have larger home ranges. By integrating spatial and social familiarity into the spatial-social interface, we demonstrate the utility of the interface for testing hypotheses, while also highlighting the pervasive importance of cognitive mechanisms in animal behaviour. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Jerod A Merkle
- Department of Zoology and Physiology, University of Wyoming , Laramie, WY, USA
| | - Marie-Pier Poulin
- Department of Zoology and Physiology, University of Wyoming , Laramie, WY, USA
| | - Molly R Caldwell
- Department of Zoology and Physiology, University of Wyoming , Laramie, WY, USA
- Program in Ecology and Evolution, University of Wyoming , Laramie, WY, USA
| | - Michel P Laforge
- Department of Zoology and Physiology, University of Wyoming , Laramie, WY, USA
- Faculty of Natural Resources Management, Lakehead University , Thunder Bay, ON, Canada
| | - Anne E Scholle
- Department of Zoology and Physiology, University of Wyoming , Laramie, WY, USA
- Program in Ecology and Evolution, University of Wyoming , Laramie, WY, USA
| | - Tana L Verzuh
- Department of Zoology and Physiology, University of Wyoming , Laramie, WY, USA
- Program in Ecology and Evolution, University of Wyoming , Laramie, WY, USA
| | - Chris Geremia
- Yellowstone Center for Resources, Yellowstone National Park, Mammoth Hot Springs , Yellowstone, WY, USA
| |
Collapse
|
15
|
Hendrix JG, Robitaille AL, Kusch JM, Webber QMR, Vander Wal E. Faithful pals and familiar locales: differentiating social and spatial site fidelity during reproduction. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220525. [PMID: 39230451 PMCID: PMC11449207 DOI: 10.1098/rstb.2022.0525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/10/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Site fidelity-the tendency to reuse familiar spaces-is expected to improve fitness. Familiarity with the local environment is particularly crucial when resource demands or predation risk are high. Consequently, site fidelity often peaks during reproduction when energetic costs are high and offspring are vulnerable. For many species, the environment they experience is not solely a function of geography but also of the social environment. Social fidelity, the selection for familiar social environments, could constitute an independent or parallel strategy to spatial fidelity when considering behaviour at the spatial-social interface. Using global positioning system locations from caribou across Newfoundland, we tested whether females selected calving sites based on proximity to familiar conspecifics, in addition to geographical (spatial) fidelity. These strategies were synergistic, not alternative, and correlated across the population but more variable within individuals. We also tested whether either form of fidelity affected reproductive success. We failed to detect an effect of spatial or social fidelity on reproductive success in this population. Nevertheless, given the association between social and spatial fidelity and the demonstrated fitness consequences of site fidelity in other systems, familiar conspecifics and the potential benefits these social partners provide may be an underappreciated component driving site fidelity.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- J G Hendrix
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland and Labrador, St John's, Newfoundland and Labrador, Canada
| | - A L Robitaille
- Department of Biology, Memorial University of Newfoundland and Labrador, St John's, Newfoundland and Labrador, Canada
| | - J M Kusch
- Department of Biology, Memorial University of Newfoundland and Labrador, St John's, Newfoundland and Labrador, Canada
| | - Q M R Webber
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - E Vander Wal
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland and Labrador, St John's, Newfoundland and Labrador, Canada
- Department of Biology, Memorial University of Newfoundland and Labrador, St John's, Newfoundland and Labrador, Canada
| |
Collapse
|
16
|
Ricci LE, Cox M, Manlove KR. Movement decisions driving metapopulation connectivity respond to social resources in a long-lived ungulate, bighorn sheep ( Ovis canadensis). Philos Trans R Soc Lond B Biol Sci 2024; 379:20220533. [PMID: 39230452 PMCID: PMC11449200 DOI: 10.1098/rstb.2022.0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
The spatial availability of social resources is speculated to structure animal movement decisions, but the effects of social resources on animal movements are difficult to identify because social resources are rarely measured. Here, we assessed whether varying availability of a key social resource-access to receptive mates-produces predictable changes in movement decisions among bighorn sheep in Nevada, the United States. We compared the probability that males made long-distance 'foray' movements, a critical driver of connectivity, across three ecoregions with varying temporal duration of a socially mediated factor, breeding season. We used a hidden Markov model to identify foray events and then quantified the effects of social covariates on the probability of foray using a discrete choice model. We found that males engaged in forays at higher rates when the breeding season was short, suggesting that males were most responsive to the social resource when its existence was short lived. During the breeding season, males altered their response to social covariates, relative to the non-breeding season, though patterns varied, and age was associated with increased foray probability. Our results suggest that animals respond to the temporal availability of social resources when making the long-distance movements that drive connectivity. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Lauren E Ricci
- Department of Wildland Resources and Ecology Center, Utah State University , Logan, UT, USA
| | - Mike Cox
- Nevada Department of Wildlife , Reno, NV, USA
| | - Kezia R Manlove
- Department of Wildland Resources and Ecology Center, Utah State University , Logan, UT, USA
| |
Collapse
|
17
|
Albery GF, Webber QMR, Farine D, Picardi S, Vander Wal E, Manlove KR. Expanding theory, methodology and empirical systems at the spatial-social interface. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220534. [PMID: 39230454 PMCID: PMC11449169 DOI: 10.1098/rstb.2022.0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
All animals exhibit some combination of spatial and social behaviours. A diversity of interactions occurs between such behaviours, producing emergent phenomena at the spatial-social interface. Untangling and interrogating these complex, intertwined processes can be vital for identifying the mechanisms, causes and consequences of behavioural variation in animal ecology. Nevertheless, the integrated study of the interactions between spatial and social phenotypes and environments (at the spatial-social interface) is in its relative infancy. In this theme issue, we present a collection of papers chosen to expand the spatial-social interface along several theoretical, methodological and empirical dimensions. They detail new perspectives, methods, study systems and more, as well as offering roadmaps for applied outputs and detailing exciting new directions for the field to move in the future. In this Introduction, we outline the contents of these papers, placing them in the context of what comes before, and we synthesize a number of takeaways and future directions for the spatial-social interface. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Gregory F Albery
- School of Natural Sciences, Trinity College Dublin , Dublin, Ireland
- Department of Biology, Georgetown University , Washington, DC, USA
| | - Quinn M R Webber
- Department of Integrative Biology, University of Guelph , Guelph, Ontario, Canada
| | - Damien Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich , Zurich, Switzerland
- Division of Ecology and Evolution, Research School of Biology, The Australian National University , Canberra, Australian Capital Territory, Australia
- Department of Collective Behavior, Max Planck Institute of Animal Behavior , Radolfzell, Germany
| | - Simona Picardi
- Department of Fish and Wildlife Sciences, University of Idaho , Moscow, ID, USA
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland , St. John's, Newfoundland, Canada
| | - Kezia R Manlove
- Department of Wildland Resources, Utah State University , Logan, UT, USA
| |
Collapse
|
18
|
Chimento M, Farine DR. The contribution of movement to social network structure and spreading dynamics under simple and complex transmission. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220524. [PMID: 39230450 PMCID: PMC11495406 DOI: 10.1098/rstb.2022.0524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/09/2024] [Accepted: 03/18/2024] [Indexed: 09/05/2024] Open
Abstract
The structure of social networks fundamentally influences spreading dynamics. In general, the more contact between individuals, the more opportunity there is for the transmission of information or disease to take place. Yet, contact between individuals, and any resulting transmission events, are determined by a combination of spatial (where individuals choose to move) and social rules (who they choose to interact with or learn from). Here, we examine the effect of the social-spatial interface on spreading dynamics using a simulation model. We quantify the relative effects of different movement rules (localized, semi-localized, nomadic and resource-based movement) and social transmission rules (simple transmission, anti-conformity, proportional, conformity and threshold rules) to both the structure of social networks and spread of a novel behaviour. Localized movement created weakly connected sparse networks, nomadic movement created weakly connected dense networks, and resource-based movement generated strongly connected modular networks. The resulting rate of spreading varied with different combinations of movement and transmission rules, but-importantly-the relative rankings of transmission rules changed when running simulations on static versus dynamic representations of networks. Our results emphasize that individual-level social and spatial behaviours influence emergent network structure, and are of particular consequence for the spread of information under complex transmission rules.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Michael Chimento
- Cognitive and Cultural Ecology Research Group, Max Planck
Institute of Animal Behavior, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour,
University of Konstanz, Konstanz, Germany
- Department of Evolutionary Biology and Environmental Studies,
University of Zurich, Zurich, Switzerland
| | - Damien R. Farine
- Department of Evolutionary Biology and Environmental Studies,
University of Zurich, Zurich, Switzerland
- Division of Ecology and Evolution, Research School of Biology,
Australian National University, Canberra, Australia
- Department of Collective Behavior, Max Planck Institute of
Animal Behavior, Konstanz, Germany
| |
Collapse
|
19
|
Thompson JC, Parkinson C. Interactions between neural representations of the social and spatial environment. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220522. [PMID: 39230453 PMCID: PMC11449203 DOI: 10.1098/rstb.2022.0522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 09/05/2024] Open
Abstract
Even in our highly interconnected modern world, geographic factors play an important role in human social connections. Similarly, social relationships influence how and where we travel, and how we think about our spatial world. Here, we review the growing body of neuroscience research that is revealing multiple interactions between social and spatial processes in both humans and non-human animals. We review research on the cognitive and neural representation of spatial and social information, and highlight recent findings suggesting that underlying mechanisms might be common to both. We discuss how spatial factors can influence social behaviour, and how social concepts modify representations of space. In so doing, this review elucidates not only how neural representations of social and spatial information interact but also similarities in how the brain represents and operates on analogous information about its social and spatial surroundings.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- James C. Thompson
- Department of Psychology, and Center for Adaptive Systems of Brain-Body Interactions, George Mason University, MS3F5 4400 University Drive, Fairfax, VA22030, USA
| | - Carolyn Parkinson
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
Gaynor KM, Abrahms B, Manlove KR, Oestreich WK, Smith JA. Anthropogenic impacts at the interface of animal spatial and social behaviour. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220527. [PMID: 39230457 PMCID: PMC11449167 DOI: 10.1098/rstb.2022.0527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 09/05/2024] Open
Abstract
Human disturbance is contributing to widespread, global changes in the distributions and densities of wild animals. These anthropogenic impacts on wildlife arise from multiple bottom-up and top-down pathways, including habitat loss, resource provisioning, climate change, pollution, infrastructure development, hunting and our direct presence. Animal behaviour is an important mechanism linking these disturbances to population outcomes, although these behavioural pathways are often complex and can remain obscured when different aspects of behaviour are studied in isolation from one another. The spatial-social interface provides a lens for understanding how an animal's spatial and social environments interact to determine its spatial and social phenotype (i.e. measurable characteristics of an individual), and how these phenotypes interact and feed back to reshape environments. Here, we review studies of animal behaviour at the spatial-social interface to understand and predict how human disturbance affects animal movement, distribution and intraspecific interactions, with consequences for the conservation of populations and ecosystems. By understanding the spatial-social mechanisms linking human disturbance to conservation outcomes, we can better design management interventions to mitigate undesired consequences of disturbance.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Kaitlyn M Gaynor
- Departments of Zoology and Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kezia R Manlove
- Department of Wildland Resources, Utah State University, Logan, UT 84322, USA
| | | | - Justine A Smith
- Department of Wildlife Fish, and Conservation Biology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
21
|
Labonté-Dupras MÈ, Houle C, Pelletier F, Garant D. Social selection analysis reveals limited effect of neighbors' traits in Tree swallows. Evolution 2024; 78:1710-1721. [PMID: 38989911 DOI: 10.1093/evolut/qpae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Social interactions are ubiquitous in nature and can shape the fitness of individuals through social selection. This type of selection arises when phenotypes of neighbors influence the fitness of a focal individual. Quantifying social selection is crucial to better characterize the overall selective landscape. For example, if intraspecific competition is strong, traits that are beneficial for an individual could be detrimental to competitors. In this study, we quantified social selection acting on three key ecological traits (body mass, wing length, and laying date) in wild Tree swallow (Tachycineta bicolor) females. We used reproductive success measured at three stages throughout the breeding season as fitness proxies to assess selection acting at those decisive moments. We also quantified the effects of environment on selection using measures of conspecifics' density, type of agricultural landscape, and presence of interspecific competitors. Overall, we found no strong evidence of social selection on these traits in our study system, although there were marginally nonsignificant selection gradients suggesting the positive effect of larger neighbors. Environmental variables affected reproductive success but did not strongly affect social selection gradients. Our study calls for more social selection estimates to be reported across environments to better understand its importance in wild populations.
Collapse
Affiliation(s)
| | - Carolyne Houle
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Fanie Pelletier
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dany Garant
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
22
|
Webber Q. Integrating life history and behavioral aging in the wild. Proc Natl Acad Sci U S A 2024; 121:e2414773121. [PMID: 39226369 PMCID: PMC11406274 DOI: 10.1073/pnas.2414773121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Affiliation(s)
- Quinn Webber
- Department of Integrative Biology, University of Guelph, Guelph, ONN1G2W1, Canada
| |
Collapse
|
23
|
Webber Q, Prokopenko C, Kingdon K, Turner J, Vander Wal E. Effects of the social environment on movement-integrated habitat selection. MOVEMENT ECOLOGY 2024; 12:61. [PMID: 39238061 PMCID: PMC11378598 DOI: 10.1186/s40462-024-00502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Movement links the distribution of habitats with the social environment of animals using those habitats. Despite the links between movement, habitat selection, and socioecology, their integration remains a challenge due to lack of shared vocabulary across fields, methodological gaps, and the implicit (rather than explicit) historical development of theory in the fields of social and spatial ecology. Given these challenges can be addressed, opportunity for further study will provide insight about the links between social, spatial, and movement ecology. Here, our objective was to disentangle the roles of habitat selection and social association as drivers of movement in caribou (Rangifer tarandus). METHODS To accomplish our objective, we modelled the relationship between collective movement and selection of foraging habitats using socially informed integrated step selection function (iSSF). Using iSSF, we modelled the effect of social processes, i.e., nearest neighbour distance and social preference, and movement behaviour on patterns of habitat selection. RESULTS By unifying social network analysis with iSSF, we identified movement-dependent social association, where individuals took shorter steps in lichen habitat and foraged in close proximity to more familiar individuals. CONCLUSIONS Our study demonstrates that social preference is context-dependent based on habitat selection and foraging behaviour. We therefore surmise that habitat selection and social association are drivers of collective movement, such that movement is the glue between habitat selection and social association. Here, we put these concepts into practice to demonstrate that movement is the glue connecting individual habitat selection to the social environment.
Collapse
Affiliation(s)
- Quinn Webber
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NL, Canada.
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| | - Christina Prokopenko
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katrien Kingdon
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Julie Turner
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Eric Vander Wal
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NL, Canada
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
24
|
Acácio M, Gahm K, Anglister N, Vaadia G, Hatzofe O, Harel R, Efrat R, Nathan R, Pinter-Wollman N, Spiegel O. Behavioral plasticity shapes population aging patterns in a long-lived avian scavenger. Proc Natl Acad Sci U S A 2024; 121:e2407298121. [PMID: 39163331 PMCID: PMC11363333 DOI: 10.1073/pnas.2407298121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/13/2024] [Indexed: 08/22/2024] Open
Abstract
Studying the mechanisms shaping age-related changes in behavior ("behavioral aging") is important for understanding population dynamics in our changing world. Yet, studies that capture within-individual behavioral changes in wild populations of long-lived animals are still scarce. Here, we used a 15-y GPS-tracking dataset of a social obligate scavenger, the griffon vulture (Gyps fulvus), to investigate age-related changes in movement and social behaviors, and disentangle the role of behavioral plasticity and selective disappearance in shaping such patterns. We tracked 142 individuals for up to 12 y and found a nonlinear increase in site fidelity with age: a sharp increase in site fidelity before sexual maturity (<5 y old), stabilization during adulthood (6 to 15 y), and a further increase at old age (>15 y). This pattern resulted from individuals changing behavior throughout their life (behavioral plasticity) and not from selective disappearance. Mature vultures increased the predictability of their movement routines and spent more nights at the most popular roosting sites compared to younger individuals. Thus, adults likely have a competitive advantage over younger conspecifics. These changes in site fidelity and movement routines were mirrored in changes to social behavior. Older individuals interacted less with their associates (decreasing average strength with age), particularly during the breeding season. Our results reveal a variety of behavioral aging patterns in long-lived species and underscore the importance of behavioral plasticity in shaping such patterns. Comprehensive longitudinal studies are imperative for understanding how plasticity and selection shape the persistence of wild animal populations facing human-induced environmental changes.
Collapse
Affiliation(s)
- Marta Acácio
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kaija Gahm
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA
| | - Nili Anglister
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Vaadia
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Hatzofe
- Science Division, Israel Nature and Parks Authority, Jerusalem, Israel
| | - Roi Harel
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Ron Efrat
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Ran Nathan
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Spiegel O, Michelangeli M, Sinn DL, Payne E, Klein JRV, Kirkpatrick J, Harbusch M, Sih A. Resource manipulation reveals interactive phenotype-dependent foraging in free-ranging lizards. J Anim Ecol 2024; 93:1108-1122. [PMID: 38877691 DOI: 10.1111/1365-2656.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
Recent evidence suggests that individuals differ in foraging tactics and this variation is often linked to an individual's behavioural type (BT). Yet, while foraging typically comprises a series of search and handling steps, empirical investigations have rarely considered BT-dependent effects across multiple stages of the foraging process, particularly in natural settings. In our long-term sleepy lizard (Tiliqua rugosa) study system, individuals exhibit behavioural consistency in boldness (measured as an individual's willingness to approach a novel food item in the presence of a threat) and aggressiveness (measured as an individual's response to an 'attack' by a conspecific dummy). These BTs are only weakly correlated and have previously been shown to have interactive effects on lizard space use and movement, suggesting that they could also affect lizard foraging performance, particularly in their search behaviour for food. To investigate how lizards' BTs affect their foraging process in the wild, we supplemented food in 123 patches across a 120-ha study site with three food abundance treatments (high, low and no-food controls). Patches were replenished twice a week over the species' entire spring activity season and feeding behaviours were quantified with camera traps at these patches. We tracked lizards using GPS to determine their home range (HR) size and repeatedly assayed their aggressiveness and boldness in designated assays. We hypothesised that bolder lizards would be more efficient foragers while aggressive ones would be less attentive to the quality of foraging patches. We found an interactive BT effect on overall foraging performance. Individuals that were both bold and aggressive ate the highest number of food items from the foraging array. Further dissection of the foraging process showed that aggressive lizards in general ate the fewest food items in part because they visited foraging patches less regularly, and because they discriminated less between high and low-quality patches when revisiting them. Bolder lizards, in contrast, ate more tomatoes because they visited foraging patches more regularly, and ate a higher proportion of the available tomatoes at patches during visits. Our study demonstrates that BTs can interact to affect different search and handling components of the foraging process, leading to within-population variation in foraging success. Given that individual differences in foraging and movement will influence social and ecological interactions, our results highlight the potential role of BT's in shaping individual fitness strategies and population dynamics.
Collapse
Affiliation(s)
- Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcus Michelangeli
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - David L Sinn
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Eric Payne
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Janine-Rose V Klein
- Department of Anthropology, University of California, Santa Barbara, California, USA
| | - Jamie Kirkpatrick
- Department of Anthropology, University of California, Santa Barbara, California, USA
| | - Marco Harbusch
- Georg-August-Büsgen-Institut, Universität Göttingen, Göttingen, Germany
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| |
Collapse
|
26
|
Webber QMR, Laforge MP, Bonar M, Vander Wal E. The adaptive value of density-dependent habitat specialization and social network centrality. Nat Commun 2024; 15:4423. [PMID: 38789438 PMCID: PMC11126670 DOI: 10.1038/s41467-024-48657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Density dependence is a fundamental ecological process. In particular, animal habitat selection and social behavior often affect fitness in a density-dependent manner. The Ideal Free Distribution (IFD) and niche variation hypothesis (NVH) present distinct predictions associated with Optimal Foraging Theory about how the effect of habitat selection on fitness varies with population density. Using caribou (Rangifer tarandus) in Canada as a model system, we test competing hypotheses about how habitat specialization, social behavior, and annual reproductive success (co)vary across a population density gradient. Within a behavioral reaction norm framework, we estimate repeatability, behavioral plasticity, and covariance among social behavior and habitat selection to investigate the adaptive value of sociality and habitat selection. In support of NVH, but not the IFD, we find that at high density habitat specialists had higher annual reproductive success than generalists, but were also less social than generalists, suggesting the possibility that specialists were less social to avoid competition. Our study supports niche variation as a mechanism for density-dependent habitat specialization.
Collapse
Affiliation(s)
- Quinn M R Webber
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NF, Canada.
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| | - Michel P Laforge
- Department of Biology, Memorial University of Newfoundland, St. John's, NF, Canada
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Maegwin Bonar
- Department of Biology, Memorial University of Newfoundland, St. John's, NF, Canada
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Eric Vander Wal
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NF, Canada
- Department of Biology, Memorial University of Newfoundland, St. John's, NF, Canada
| |
Collapse
|
27
|
Bakner NW, Ulrey EE, Wightman PH, Gulotta NA, Collier BA, Chamberlain MJ. Spatial roost networks and resource selection of female wild turkeys. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231938. [PMID: 39076792 PMCID: PMC11285678 DOI: 10.1098/rsos.231938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 07/31/2024]
Abstract
Wildlife demography is influenced by behavioural decisions, with sleep being a crucial avian behaviour. Avian species use roost sites to minimize thermoregulation costs, predation risk and enhance foraging efficiency. Sleep locations are often reused, forming networks within the home range. Our study, focusing on female eastern wild turkeys (Meleagris gallopavo silvestris) during the reproductive season, used social network analysis to quantify both roost site selection and network structure. We identified roost networks which were composed of a small percentage of hub roost sites connecting satellite roosts. Hub roosts were characterized by greater values of betweenness (β = 0.62, s.e. = 0.02), closeness (β = 0.59, s.e. = 0.03) and eigenvalue centrality (β = 1.15, s.e. = 0.05), indicating their importance as connectors and proximity to the network's functional centre. The probability of a roost being a hub increased significantly with greater eigenvalue centrality. Female wild turkeys consistently chose roost sites at lower elevations and with greater topographical ruggedness. Hub roost probability was higher near secondary roads and further from water. Our research highlights well-organized roost site networks around hub roosts, emphasizing the importance of further investigations into how these networks influence conspecific interactions, reproduction and resource utilization in wild turkeys.
Collapse
Affiliation(s)
- Nicholas W. Bakner
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA30602, USA
| | - Erin E. Ulrey
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA30602, USA
| | - Patrick H. Wightman
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA30602, USA
| | - Nick A. Gulotta
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA30602, USA
| | - Bret A. Collier
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA70803, USA
| | - Michael J. Chamberlain
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
28
|
Shelton DS, Suriyampola PS, Dinges ZM, Glaholt SP, Shaw JR, Martins EP. Plants buffer some of the effects of a pair of cadmium-exposed zebrafish on the un-exposed majority. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104419. [PMID: 38508506 PMCID: PMC11042042 DOI: 10.1016/j.etap.2024.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Certain individuals have a disproportionate effect on group responses. Characteristics may include susceptibility to pollutants, such as cadmium (Cd), a potent trace metal. Here, we show how a pair of Cd-exposed individuals can impact the behavior of unexposed groups. We used behavioral assessments to characterize the extent of the effects of the Cd-exposed individuals on group boldness, cohesion, foraging, activity, and responses to plants. We found that groups with a pair of Cd-exposed fish remained closer to novel stimuli and plants than did groups with untreated (control) fish. The presence of plants reduced Cd-induced differences in shoal cohesion and delays feeding in male shoals. Shoals with Cd- and water-treated fish were equally active. The results suggest that fish acutely exposed to environmentally relevant Cd concentrations can have profound effects on the un-exposed majority. However, the presence of plants may mitigate the effects of contaminants on some aspects of social behavior.
Collapse
Affiliation(s)
- Delia S Shelton
- Department of Biology, University of Miami, 1301 Memorial Dr, Coral Gables, FL 33134, USA.
| | - Piyumika S Suriyampola
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| | - Zoe M Dinges
- Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA
| | - Stephen P Glaholt
- O'Neill School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Joseph R Shaw
- O'Neill School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Emília P Martins
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
29
|
Farine DR. Modelling animal social networks: New solutions and future directions. J Anim Ecol 2024; 93:250-253. [PMID: 38234253 DOI: 10.1111/1365-2656.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
Research Highlight: Ross, C. T., McElreath, R., & Redhead, D. (2023). Modelling animal network data in R using STRAND. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.14021. One of the most important insights in ecology over the past decade has been that the social connections among animals affect a wide range of ecological and evolutionary processes. However, despite over 20 years of study effort on this topic, generating knowledge from data on social associations and interactions remains fraught with problems. Redhead et al. present an R package-STRAND-that extends the current animal social network analysis toolbox in two ways. First, they provide a simple R interfaces to implement generative network models, which are an alternative to regression approaches that draw inference by simulating the data-generating process. Second, they implement these models in a Bayesian framework, allowing uncertainty in the observation process to be carried through to hypothesis testing. STRAND therefore fills an important gap for hypothesis testing using network data. However, major challenges remain, and while STRAND represents an important advance, generating robust results continues to require careful study design, considerations in terms of statistical methods and a plurality of approaches.
Collapse
Affiliation(s)
- Damien R Farine
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Department of Evolutionary Biology and Environmental Science, University of Zurich, Zurich, Switzerland
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
| |
Collapse
|
30
|
Dejeante R, Loveridge AJ, Macdonald DW, Madhlamoto D, Valeix M, Chamaillé-Jammes S. Counter-strategies to infanticide: The importance of cubs in determining lion habitat selection and social interactions. J Anim Ecol 2024; 93:159-170. [PMID: 38174381 DOI: 10.1111/1365-2656.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Animal social and spatial behaviours are inextricably linked. Animal movements are driven by environmental factors and social interactions. Habitat structure and changing patterns of animal space use can also shape social interactions. Animals adjust their social and spatial behaviours to reduce the risk of offspring mortality. In territorial infanticidal species, two strategies are possible for males: they can stay close to offspring to protect them against rivals (infant-defence hypothesis) or patrol the territory more intensively to prevent rival intrusions (territorial-defence hypothesis). Here, we tested these hypotheses in African lions (Panthera leo) by investigating how males and females adjust their social and spatial behaviours in the presence of offspring. We combined datasets on the demography and movement of lions, collected between 2002 and 2016 in Hwange National Park (Zimbabwe), to document the presence of cubs (field observations) and the simultaneous movements of groupmates and competitors (GPS tracking). We showed a spatial response of lions to the presence of offspring, with females with cubs less likely to select areas close to waterholes or in the periphery of the territory than females without cubs. In contrast, these areas were more selected by males when there were cubs in the pride. We also found social responses. Males spent more time with females as habitat openness increased but the presence of cubs in the pride did not influence the average likelihood of observing males with females. Furthermore, rival males relocated further after an encounter with pride males when cubs were present in the prides, suggesting that the presence of cubs leads to a more vigorous repulsion of competitors. Males with cubs in their pride were more likely to interact with male competitors on the edge of the pride's home range and far from the waterholes, suggesting that they are particularly assiduous in detecting and repelling rival males during these periods. In general, the strategies to avoid infanticide exhibited by male lions supported the territorial-defence hypothesis. Our study contributes to answer the recent call for a behavioural ecology at the spatial-social interface.
Collapse
Affiliation(s)
- Romain Dejeante
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Andrew J Loveridge
- Wildlife Conservation Research Unit, Department of Biology, The Recanati-Kaplan Centre, University of Oxford, Oxford, UK
- Panthera, New York, New York, USA
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Biology, The Recanati-Kaplan Centre, University of Oxford, Oxford, UK
| | - Daphine Madhlamoto
- Zimbabwe Parks and Wildlife Management Authority, Main Camp Research, Chiredzi, Zimbabwe
| | - Marion Valeix
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université de Lyon, Villeurbanne, France
- LTSER France, Zone Atelier 'Hwange', Hwange National Park, Zimbabwe
| | - Simon Chamaillé-Jammes
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- LTSER France, Zone Atelier 'Hwange', Hwange National Park, Zimbabwe
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
31
|
Catitti B, Grüebler MU, Farine DR, Kormann UG. Natal legacies cause social and spatial marginalization during dispersal. Ecol Lett 2024; 27:e14366. [PMID: 38332501 DOI: 10.1111/ele.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
Early-life experiences can drive subsequent variation in social behaviours, but how differences among individuals emerge remains unknown. We combined experimental manipulations with GPS-tracking to investigate the pathways through which developmental conditions affect social network position during the early dispersal of wild red kites (Milvus milvus). Across 211 juveniles from 140 broods, last-hatched chicks-the least competitive-had the fewest number of peer encounters after fledging. However, when food supplemented, they had more encounters than all others. Using 4425 bird-days of GPS data, we revealed that this was driven by differential responses to competition, with less competitive individuals naturally spreading out into marginal areas, and clustering in central foraging areas when food supplemented. Our results suggest that early-life adversities can cause significant natal legacies on individual behaviour beyond independence, with potentially far-reaching consequences on the social and spatial structure of animal populations.
Collapse
Affiliation(s)
- Benedetta Catitti
- Swiss Ornithological Institute, Sempach, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Damien R Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Urs G Kormann
- Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|
32
|
English HM, Börger L, Kane A, Ciuti S. Advances in biologging can identify nuanced energetic costs and gains in predators. MOVEMENT ECOLOGY 2024; 12:7. [PMID: 38254232 PMCID: PMC10802026 DOI: 10.1186/s40462-024-00448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Foraging is a key driver of animal movement patterns, with specific challenges for predators which must search for mobile prey. These patterns are increasingly impacted by global changes, principally in land use and climate. Understanding the degree of flexibility in predator foraging and social strategies is pertinent to wildlife conservation under global change, including potential top-down effects on wider ecosystems. Here we propose key future research directions to better understand foraging strategies and social flexibility in predators. In particular, rapid continued advances in biologging technology are helping to record and understand dynamic behavioural and movement responses of animals to environmental changes, and their energetic consequences. Data collection can be optimised by calibrating behavioural interpretation methods in captive settings and strategic tagging decisions within and between social groups. Importantly, many species' social systems are increasingly being found to be more flexible than originally described in the literature, which may be more readily detectable through biologging approaches than behavioural observation. Integrating the effects of the physical landscape and biotic interactions will be key to explaining and predicting animal movements and energetic balance in a changing world.
Collapse
Affiliation(s)
- Holly M English
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Luca Börger
- Department of Biosciences, Swansea University, Swansea, UK
| | - Adam Kane
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Simone Ciuti
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
33
|
Albery GF, Bansal S, Silk MJ. Comparative approaches in social network ecology. Ecol Lett 2024; 27:e14345. [PMID: 38069575 DOI: 10.1111/ele.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 01/31/2024]
Abstract
Social systems vary enormously across the animal kingdom, with important implications for ecological and evolutionary processes such as infectious disease dynamics, anti-predator defence, and the evolution of cooperation. Comparing social network structures between species offers a promising route to help disentangle the ecological and evolutionary processes that shape this diversity. Comparative analyses of networks like these are challenging and have been used relatively little in ecology, but are becoming increasingly feasible as the number of empirical datasets expands. Here, we provide an overview of multispecies comparative social network studies in ecology and evolution. We identify a range of advancements that these studies have made and key challenges that they face, and we use these to guide methodological and empirical suggestions for future research. Overall, we hope to motivate wider publication and analysis of open social network datasets in animal ecology.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Matthew J Silk
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Beck KB, Farine DR, Firth JA, Sheldon BC. Variation in local population size predicts social network structure in wild songbirds. J Anim Ecol 2023; 92:2348-2362. [PMID: 37837224 PMCID: PMC10952437 DOI: 10.1111/1365-2656.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
The structure of animal societies is a key determinant of many ecological and evolutionary processes. Yet, we know relatively little about the factors and mechanisms that underpin detailed social structure. Among other factors, social structure can be influenced by habitat configuration. By shaping animal movement decisions, heterogeneity in habitat features, such as vegetation and the availability of resources, can influence the spatiotemporal distribution of individuals and subsequently key socioecological properties such as the local population size and density. Differences in local population size and density can impact opportunities for social associations and may thus drive substantial variation in local social structure. Here, we investigated spatiotemporal variation in population size at 65 distinct locations in a small songbird, the great tit (Parus major) and its effect on social network structure. We first explored the within-location consistency of population size from weekly samples and whether the observed variation in local population size was predicted by the underlying habitat configuration. Next, we created social networks from the birds' foraging associations at each location for each week and examined if local population size affected social structure. We show that population size is highly repeatable within locations across weeks and years and that some of the observed variation in local population size was predicted by the underlying habitat, with locations closer to the forest edge having on average larger population sizes. Furthermore, we show that local population size affected social structure inferred by four global network metrics. Using simple simulations, we then reveal that much of the observed social structure is shaped by social processes. Across different population sizes, the birds' social structure was largely explained by their preference to forage in flocks. In addition, over and above effects of social foraging, social preferences between birds (i.e. social relationships) shaped certain network features such as the extent of realized social connections. Our findings thus suggest that individual social decisions substantially contribute to shaping certain social network features over and above effects of population size alone.
Collapse
Affiliation(s)
- Kristina B. Beck
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| | - Damien R. Farine
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Department of Collective BehaviourMax Planck Institute of Animal BehaviourKonstanzGermany
| | - Josh A. Firth
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| | - Ben C. Sheldon
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| |
Collapse
|
35
|
Gupte PR, Albery GF, Gismann J, Sweeny A, Weissing FJ. Novel pathogen introduction triggers rapid evolution in animal social movement strategies. eLife 2023; 12:e81805. [PMID: 37548365 PMCID: PMC10449382 DOI: 10.7554/elife.81805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2023] [Indexed: 08/08/2023] Open
Abstract
Animal sociality emerges from individual decisions on how to balance the costs and benefits of being sociable. Novel pathogens introduced into wildlife populations should increase the costs of sociality, selecting against gregariousness. Using an individual-based model that captures essential features of pathogen transmission among social hosts, we show how novel pathogen introduction provokes the rapid evolutionary emergence and coexistence of distinct social movement strategies. These strategies differ in how they trade the benefits of social information against the risk of infection. Overall, pathogen-risk-adapted populations move more and have fewer associations with other individuals than their pathogen-risk-naive ancestors, reducing disease spread. Host evolution to be less social can be sufficient to cause a pathogen to be eliminated from a population, which is followed by a rapid recovery in social tendency. Our conceptual model is broadly applicable to a wide range of potential host-pathogen introductions and offers initial predictions for the eco-evolutionary consequences of wildlife pathogen spillover scenarios and a template for the development of theory in the ecology and evolution of animals' movement decisions.
Collapse
Affiliation(s)
- Pratik Rajan Gupte
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| | - Gregory F Albery
- Georgetown UniversityWashingtonUnited States
- Wissenschaftskolleg zu BerlinBerlinGermany
| | - Jakob Gismann
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| | - Amy Sweeny
- Institute of Evolutionary Biology, University of EdinburghEdinburghUnited Kingdom
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| |
Collapse
|
36
|
Turner JW, Prokopenko CM, Kingdon KA, Dupont DLJ, Zabihi-Seissan S, Vander Wal E. Death comes for us all: relating movement-integrated habitat selection and social behavior to human-associated and disease-related mortality among gray wolves. Oecologia 2023; 202:685-697. [PMID: 37515598 DOI: 10.1007/s00442-023-05426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
Avoiding death affects biological processes, including behavior. Habitat selection, movement, and sociality are highly flexible behaviors that influence the mortality risks and subsequent fitness of individuals. In the Anthropocene, animals are experiencing increased risks from direct human causes and increased spread of infectious diseases. Using integrated step selection analysis, we tested how the habitat selection, movement, and social behaviors of gray wolves vary in the two months prior to death due to humans (being shot or trapped) or canine distemper virus (CDV). We further tested how those behaviors vary as a prelude to death. We studied populations of wolves that occurred under two different management schemes: a national park managed for conservation and a provincially managed multi-use area. Behaviors that changed prior to death were strongly related to how an animal eventually died. Wolves killed by humans moved slower than wolves that survived and selected to be nearer roads closer in time to their death. Wolves that died due to CDV moved progressively slower as they neared death and reduced their avoidance of wet habitats. All animals, regardless of dying or living, maintained selection to be near packmates across time, which seemingly contributed to disease dynamics in the packs infected with CDV. There were no noticeable differences in behavior between the two management areas. Overall, habitat selection, movement, and sociality interact to put individuals and groups at greater risks, influencing their cause-specific mortality.
Collapse
Affiliation(s)
- Julie W Turner
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, NL, A1B 3X9, Canada.
| | - Christina M Prokopenko
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, NL, A1B 3X9, Canada
| | - Katrien A Kingdon
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, NL, A1B 3X9, Canada
| | - Daniel L J Dupont
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, NL, A1B 3X9, Canada
- Département des sciences expérimentales, Université de Saint-Boniface, 200 ave de la Cathédrale, Winnipeg, MB, R2H 0H7, Canada
| | - Sana Zabihi-Seissan
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, NL, A1B 3X9, Canada
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, NL, A1B 3X9, Canada
| |
Collapse
|
37
|
Sharma N, Anglister N, Spiegel O, Pinter‐Wollman N. Social situations differ in their contribution to population-level social structure in griffon vultures. Ecol Evol 2023; 13:e10139. [PMID: 37274150 PMCID: PMC10238758 DOI: 10.1002/ece3.10139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
Social relationships among animals emerge from interactions in multiple ecological and social situations. However, we seldom ask how each situation contributes to the global structure of a population, and whether different situations contribute different information about social relationships and the position of individuals within the social fabric. Griffon vultures (Gyps fulvus) interact socially in multiple situations, including communal roosting, joint flights, and co-feeding. These social interactions can influence population-level outcomes, such as disease transmission and information sharing that determine survival and response to changes. We examined the unique contribution of each social and ecological situation to the social structure of the population and individuals' positions within the overall social network using high-resolution GPS tracking. We found that the number of individuals each vulture interacted with (degree) was best predicted by diurnal interactions-both during flights and on the ground (such as when feeding). However, the strength of social bonds, that is, the number of interactions an individual had (strength), was best predicted by interactions on the ground-both during the day (e.g., while feeding) and at night (e.g., while roosting) but not by interactions while flying. Thus, social situations differ in their impact on the relationships that individuals form. By incorporating the ecological situations in which social interactions occur we gain a more complete view of how social relationships are formed and which situations are important for different types of interactions.
Collapse
Affiliation(s)
- Nitika Sharma
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Nili Anglister
- School of Zoology, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Orr Spiegel
- School of Zoology, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Noa Pinter‐Wollman
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|