1
|
Bayurova E, Zhitkevich A, Avdoshina D, Kupriyanova N, Kolyako Y, Kostyushev D, Gordeychuk I. Common Marmoset Cell Lines and Their Applications in Biomedical Research. Cells 2023; 12:2020. [PMID: 37626830 PMCID: PMC10453182 DOI: 10.3390/cells12162020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Common marmosets (Callithrix jacchus; CMs) are small New World primates widely used in biomedical research. Early stages of such research often include in vitro experiments which require standardized and well-characterized CM cell cultures derived from different tissues. Despite the long history of laboratory work with CMs and high translational potential of such studies, the number of available standardized, well-defined, stable, and validated CM cell lines is still small. While primary cells and immortalized cell lines are mostly used for the studies of infectious diseases, biochemical research, and targeted gene therapy, the main current applications of CM embryonic stem cells and induced pluripotent stem cells are regenerative medicine, stem cell research, generation of transgenic CMs, transplantology, cell therapy, reproductive physiology, oncology, and neurodegenerative diseases. In this review we summarize the data on the main advantages, drawbacks and research applications of CM cell lines published to date including primary cells, immortalized cell lines, lymphoblastoid cell lines, embryonic stem cells, and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Alla Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Daria Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Natalya Kupriyanova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Yuliya Kolyako
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119435 Moscow, Russia;
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| |
Collapse
|
2
|
Advances and Perspectives in Dental Pulp Stem Cell Based Neuroregeneration Therapies. Int J Mol Sci 2021; 22:ijms22073546. [PMID: 33805573 PMCID: PMC8036729 DOI: 10.3390/ijms22073546] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types for regenerative therapies given their ability to grow in the absence of serum and their realistic possibility to be used in autologous grafts. In this review, we describe the particular advantages of hDPSCs for neuroregenerative cell therapies. We thoroughly discuss the knowledge about their embryonic origin and characteristics of their postnatal niche, as well as the current status of cell culture protocols to maximize their multilineage differentiation potential, highlighting some common issues when assessing neuronal differentiation fates of hDPSCs. We also review the recent progress on neuroprotective and immunomodulatory capacity of hDPSCs and their secreted extracellular vesicles, as well as their combination with scaffold materials to improve their functional integration on the injured central nervous system (CNS) and peripheral nervous system (PNS). Finally, we offer some perspectives on the current and possible future applications of hDPSCs in neuroregenerative cell therapies.
Collapse
|
3
|
Mishra A, Qiu Z, Farnsworth SL, Hemmi JJ, Li M, Pickering AV, Hornsby PJ. Induced Pluripotent Stem Cells from Nonhuman Primates. Methods Mol Biol 2016; 1357:183-93. [PMID: 25540117 PMCID: PMC4483148 DOI: 10.1007/7651_2014_159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem cells from nonhuman primates (NHPs) have unique roles in cell biology and regenerative medicine. Because of the relatedness of NHPs to humans, NHP iPS cells can serve as a source of differentiated derivatives that can be used to address important questions in the comparative biology of primates. Additionally, when used as a source of cells for regenerative medicine, NHP iPS cells serve an invaluable role in translational experiments in cell therapy. Reprogramming of NHP somatic cells requires the same conditions as previously established for human cells. However, throughout the process, a variety of modifications to the human cell protocols must be made to accommodate significant species differences.
Collapse
Affiliation(s)
- Anuja Mishra
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA
| | - Zhifang Qiu
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA
| | - Steven L Farnsworth
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jacob J Hemmi
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA
| | - Miao Li
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA
| | - Alexander V Pickering
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA
| | - Peter J Hornsby
- South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
4
|
Ke B, Zhang A, Wu X, Fang X. The Role of Krüppel-like Factor 4 in Renal Fibrosis. Front Physiol 2015; 6:327. [PMID: 26617530 PMCID: PMC4641914 DOI: 10.3389/fphys.2015.00327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) caused by renal fibrosis is an important public health concern. It is therefore necessary to understand the molecular pathogenesis of renal fibrosis in order to develop novel therapeutic strategies. KLF4 is the most extensively studied factor among the various members of the Krüppel-like factor (KLF) family of zinc finger-containing transcription factors. Many studies have demonstrated that KLF4 inhibits the activation of myofibroblasts and exerts an inhibitory effect on fibrosis. However, other studies have indicated that KLF4 may promote renal fibrosis. These controversial results suggest that KLF4 may be crucially involved in the development of renal fibrosis, although the underlying mechanism(s) remain unclear. Here, we summarize the recent progress made in understanding the role of KLF4 in renal fibrosis. Together, these findings suggest that KLF4 may participate in the development of renal fibrosis, but that its inhibition of fibrosis is greater than its promotion of the condition, which suggests that KLF4 may serve as a novel therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Ben Ke
- Department of Nephrology, Nanchang University School of Medicine, Second Affiliated Hospital to Nanchang University Nanchang, China
| | - Afei Zhang
- Department of Nephrology, Nanchang University School of Medicine, Second Affiliated Hospital to Nanchang University Nanchang, China
| | - Xianfeng Wu
- Department of Nephrology, Nanchang University School of Medicine, Second Affiliated Hospital to Nanchang University Nanchang, China
| | - Xiangdong Fang
- Department of Nephrology, Nanchang University School of Medicine, Second Affiliated Hospital to Nanchang University Nanchang, China
| |
Collapse
|
5
|
Wang B, Zhao MZ, Cui NP, Lin DD, Zhang AY, Qin Y, Liu CY, Yan WT, Shi JH, Chen BP. Krüppel-like factor 4 induces apoptosis and inhibits tumorigenic progression in SK-BR-3 breast cancer cells. FEBS Open Bio 2015; 5:147-54. [PMID: 25834779 PMCID: PMC4359971 DOI: 10.1016/j.fob.2015.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 12/16/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) functions as either a tumor suppressor or an oncogene in different tissues by regulating the expression of various genes. The aim of this study was to reveal the functions of KLF4 in regulating breast cancer apoptosis, proliferation, and tumorigenic progression. KLF4 expression levels in breast cancer tissues and breast cancer cell lines were found to be much lower than those in nontumorous tissues and a nontransformed mammary epithelial cell line. KLF4 was upregulated in the tumor necrosis factor-α-induced SK-BR-3 breast cancer cell apoptotic process. Overexpression of KLF4 promoted SK-BR-3 breast cancer cell apoptosis and suppressed SK-BR-3 cell tumorigenicity in vivo.
Collapse
Affiliation(s)
- Bing Wang
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Ming-Zhi Zhao
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Nai-Peng Cui
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Dan-Dan Lin
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - An-Yi Zhang
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Yan Qin
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Cai-Yun Liu
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Wei-Tao Yan
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Jian-Hong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Bao-Ping Chen
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding 071000, China
| |
Collapse
|
6
|
Xu R, Taskin MB, Rubert M, Seliktar D, Besenbacher F, Chen M. hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold. Sci Rep 2015; 5:8480. [PMID: 25684543 PMCID: PMC4329554 DOI: 10.1038/srep08480] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/22/2015] [Indexed: 12/11/2022] Open
Abstract
Fibroblasts are ubiquitous cells that constitute the stroma of virtually all tissues and play vital roles in homeostasis. The poor innate healing capacity of fibroblastic tissues is attributed to the scarcity of fibroblasts as collagen-producing cells. In this study, we have developed a functional ECM mimicking scaffold that is capable to supply spatial allocation of stem cells as well as anchorage and storage of growth factors (GFs) to direct stem cells differentiate towards fibroblasts. Electrospun PCL fibers were embedded in a PEG-fibrinogen (PF) hydrogel, which was infiltrated with connective tissue growth factor (CTGF) to form the 3D nanocomposite PFP-C. The human induced pluripotent stem cells derived mesenchymal stem cells (hiPS-MSCs) with an advance in growth over adult MSCs were applied to validate the fibrogenic capacity of the 3D nanocomposite scaffold. The PFP-C scaffold was found not only biocompatible with the hiPS-MSCs, but also presented intriguingly strong fibroblastic commitments, to an extent comparable to the positive control, tissue culture plastic surfaces (TCP) timely refreshed with 100% CTGF. The novel scaffold presented not only biomimetic ECM nanostructures for homing stem cells, but also sufficient cell-approachable bio-signaling cues, which may synergistically facilitate the control of stem cell fates for regenerative therapies.
Collapse
Affiliation(s)
- Ruodan Xu
- interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Mehmet Berat Taskin
- interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Marina Rubert
- interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Flemming Besenbacher
- interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Menglin Chen
- interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|