1
|
Limonta P, Chiaramonte R, Casati L. Unveiling the Dynamic Interplay between Cancer Stem Cells and the Tumor Microenvironment in Melanoma: Implications for Novel Therapeutic Strategies. Cancers (Basel) 2024; 16:2861. [PMID: 39199632 PMCID: PMC11352669 DOI: 10.3390/cancers16162861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Cutaneous melanoma still represents a significant health burden worldwide, being responsible for the majority of skin cancer deaths. Key advances in therapeutic strategies have significantly improved patient outcomes; however, most patients experience drug resistance and tumor relapse. Cancer stem cells (CSCs) are a small subpopulation of cells in different tumors, including melanoma, endowed with distinctive capacities of self-renewal and differentiation into bulk tumor cells. Melanoma CSCs are characterized by the expression of specific biomarkers and intracellular pathways; moreover, they play a pivotal role in tumor onset, progression and drug resistance. In recent years, great efforts have been made to dissect the molecular mechanisms underlying the protumor activities of melanoma CSCs to provide the basis for novel CSC-targeted therapies. Herein, we highlight the intricate crosstalk between melanoma CSCs and bystander cells in the tumor microenvironment (TME), including immune cells, endothelial cells and cancer-associated fibroblasts (CAFs), and its role in melanoma progression. Specifically, we discuss the peculiar capacities of melanoma CSCs to escape the host immune surveillance, to recruit immunosuppressive cells and to educate immune cells toward an immunosuppressive and protumor phenotype. We also address currently investigated CSC-targeted strategies that could pave the way for new promising therapeutic approaches for melanoma care.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
2
|
Molecular biology exploration and targeted therapy strategy of Ameloblastoma. Arch Oral Biol 2022; 140:105454. [DOI: 10.1016/j.archoralbio.2022.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
|
3
|
Pijnappel EN, Wassenaar NPM, Gurney-Champion OJ, Klaassen R, van der Lee K, Pleunis-van Empel MCH, Richel DJ, Legdeur MC, Nederveen AJ, van Laarhoven HWM, Wilmink JW. Phase I/II Study of LDE225 in Combination with Gemcitabine and Nab-Paclitaxel in Patients with Metastatic Pancreatic Cancer. Cancers (Basel) 2021; 13:4869. [PMID: 34638351 PMCID: PMC8507646 DOI: 10.3390/cancers13194869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Desmoplasia is a central feature of the tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC). LDE225 is a pharmacological Hedgehog signaling pathway inhibitor and is thought to specifically target tumor stroma. We investigated the combined use of LDE225 and chemotherapy to treat PDAC patients. METHODS This was a multi-center, phase I/II study for patients with metastatic PDAC establishing the maximum tolerated dose of LDE225 co-administered with gemcitabine and nab-paclitaxel (phase I) and evaluating the efficacy and safety of the treatment combination after prior FOLFIRINOX treatment (phase II). Tumor microenvironment assessment was performed with quantitative MRI using intra-voxel incoherent motion diffusion weighted MRI (IVIM-DWI) and dynamic contrast-enhanced (DCE) MRI. RESULTS The MTD of LDE225 was 200 mg once daily co-administered with gemcitabine 1000 mg/m2 and nab-paclitaxel 125 mg/m2. In phase II, six therapy-related grade 4 adverse events (AE) and three grade 5 were observed. In 24 patients, the target lesion response was evaluable. Three patients had partial response (13%), 14 patients showed stable disease (58%), and 7 patients had progressive disease (29%). Median overall survival (OS) was 6 months (IQR 3.9-8.1). Blood plasma fraction (DCE) and diffusion coefficient (IVIM-DWI) significantly increased during treatment. Baseline perfusion fraction could predict OS (>222 days) with 80% sensitivity and 85% specificity. CONCLUSION LDE225 in combination with gemcitabine and nab-paclitaxel was well-tolerated in patients with metastatic PDAC and has promising efficacy after prior treatment with FOLFIRINOX. Quantitative MRI suggested that LDE225 causes increased tumor diffusion and works particularly well in patients with poor baseline tumor perfusion.
Collapse
Affiliation(s)
- Esther N. Pijnappel
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | - Nienke P. M. Wassenaar
- Cancer Center Amsterdam, Department of Radiology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (N.P.M.W.); (O.J.G.-C.); (A.J.N.)
| | - Oliver J. Gurney-Champion
- Cancer Center Amsterdam, Department of Radiology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (N.P.M.W.); (O.J.G.-C.); (A.J.N.)
| | - Remy Klaassen
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | - Koen van der Lee
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | | | - Dick J. Richel
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | - Marie C. Legdeur
- Department of Medical Oncology, Medisch Spectrum Twente, Twente, 7512 Enschede, The Netherlands; (M.C.H.P.-v.E.); (M.C.L.)
| | - Aart J. Nederveen
- Cancer Center Amsterdam, Department of Radiology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (N.P.M.W.); (O.J.G.-C.); (A.J.N.)
| | - Hanneke W. M. van Laarhoven
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | - Johanna W. Wilmink
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| |
Collapse
|
4
|
Lospinoso Severini L, Ghirga F, Bufalieri F, Quaglio D, Infante P, Di Marcotullio L. The SHH/GLI signaling pathway: a therapeutic target for medulloblastoma. Expert Opin Ther Targets 2020; 24:1159-1181. [PMID: 32990091 DOI: 10.1080/14728222.2020.1823967] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Medulloblastoma (MB) is a heterogeneous tumor of the cerebellum that is divided into four main subgroups with distinct molecular and clinical features. Sonic Hedgehog MB (SHH-MB) is the most genetically understood and occurs predominantly in childhood. Current therapies consist of aggressive and non-targeted multimodal approaches that are often ineffective and cause long-term complications. These problems intensify the need to develop molecularly targeted therapies to improve outcome and reduce treatment-related morbidities. In this scenario, Hedgehog (HH) signaling, a developmental pathway whose deregulation is involved in the pathogenesis of several malignancies, has emerged as an attractive druggable pathway for SHH-MB therapy. AREAS COVERED This review provides an overview of the advancements in the HH antagonist research field. We place an emphasis on Smoothened (SMO) and glioma-associated oncogene homolog (GLI) inhibitors and immunotherapy approaches that are validated in preclinical SHH-MB models and that have therapeutic potential for MB patients. Literature from Pubmed and data reported on ClinicalTrial.gov up to August 2020 were considered. EXPERT OPINION Extensive-omics analysis has enhanced our knowledge and has transformed the way that MB is studied and managed. The clinical use of SMO antagonists has yet to be determined, however, future GLI inhibitors and multitargeting approaches are promising.
Collapse
Affiliation(s)
| | - Francesca Ghirga
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia , 00161, Rome, Italy
| | - Francesca Bufalieri
- Department of Molecular Medicine, University of Rome La Sapienza , 00161, Rome, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, University of Rome La Sapienza, 00185 , Rome, Italy
| | - Paola Infante
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia , 00161, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, University of Rome La Sapienza , 00161, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza , 00161, Rome, Italy
| |
Collapse
|
5
|
Dong Z, Wang Y, Ding V, Yan X, Lv Y, Zhong M, Zhu F, Zhao P, He C, Ding F, Shi H. GLI1 activation is a key mechanism of erlotinib resistance in human non-small cell lung cancer. Oncol Lett 2020; 20:76. [PMID: 32863909 PMCID: PMC7436900 DOI: 10.3892/ol.2020.11937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/23/2020] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated death worldwide. In recent years, the advancement of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) targeted therapies has provided clinical benefits for lung cancer patients with EGFR mutations. The response to EGFR-TKI varies in patients with lung cancer, and resistance typically develops during the course of the treatment. Therefore, understanding biomarkers which can predict resistance to EGFR-TKI is important. Overexpression of GLI causes activation of the Hedgehog (Hh) signaling pathway and plays a critical role in oncogenesis in numerous types of cancer. In the present study, the role of GLI1 in erlotinib resistance was investigated. GLI1 mRNA and protein expression levels were determined using reverse transcription-quantitative PCR and immunohistochemistry (IHC) in lung cancer cell lines and tumor specimens, respectively. GLI1 mRNA expression levels were found to be positively correlated with the IC50 of erlotinib in 15 non-small cell lung cancer (NSCLC) cell lines. The downregulation of GLI1 using siRNA sensitized lung cancer cells to the erlotinib treatment, whereas the overexpression of GLI1 increased the survival of lung cancer cells in the presence of erlotinib, indicating that Hh/GLI activation may play a critical role in the development of TKI resistance in lung cancer. Combined treatment with erlotinib and a GLI1 inhibitor reduced the cell viability synergistically. A retrospective study of patients with NSCLC treated with erlotinib revealed that those with a high IHC score for GLI1 protein expression had a poorer prognosis. These results indicated that GLI1 is a key regulator for TKI sensitivity, and patients with lung cancer may benefit from the combined treatment of TKI and GLI1 inhibitor.
Collapse
Affiliation(s)
- Zhouhuan Dong
- Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yun Wang
- Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Vivianne Ding
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Xiang Yan
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yali Lv
- Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Mei Zhong
- Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Fengwei Zhu
- Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Po Zhao
- Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Charlotte He
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Feng Ding
- Zhejiang Provincial Key Laboratory of Applied Enzymology and Precision Medicine Center, Jiaxing, Zhejiang 314006, P.R. China.,ACCB Diagnostic Laboratory, Yangze Delta Region Institute of Tsinghua University Zhejiang, Jiaxing, Zhejiang 314006, P.R. China
| | - Huaiyin Shi
- Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
6
|
Zhu X, Chen L, Liu L, Niu X. EMT-Mediated Acquired EGFR-TKI Resistance in NSCLC: Mechanisms and Strategies. Front Oncol 2019; 9:1044. [PMID: 31681582 PMCID: PMC6798878 DOI: 10.3389/fonc.2019.01044] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023] Open
Abstract
Acquired resistance inevitably limits the curative effects of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), which represent the classical paradigm of molecular-targeted therapies in non-small-cell lung cancer (NSCLC). How to break such a bottleneck becomes a pressing problem in cancer treatment. The epithelial-mesenchymal transition (EMT) is a dynamic process that governs biological changes in various aspects of malignancies, notably drug resistance. Progress in delineating the nature of this process offers an opportunity to develop clinical therapeutics to tackle resistance toward anticancer agents. Herein, we seek to provide a framework for the mechanistic underpinnings on the EMT-mediated acquisition of EGFR-TKI resistance, with a focus on NSCLC, and raise the question of what therapeutic strategies along this line should be pursued to optimize the efficacy in clinical practice.
Collapse
Affiliation(s)
- Xuan Zhu
- Institute of Translational Medicine, China Medical University, Shenyang, China.,Department of Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lijie Chen
- Department of Third Clinical College, China Medical University, Shenyang, China
| | - Ling Liu
- Department of College of Stomatology, China Medical University, Shenyang, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| |
Collapse
|
7
|
Du FY, Zhou QF, Sun WJ, Chen GL. Targeting cancer stem cells in drug discovery: Current state and future perspectives. World J Stem Cells 2019; 11:398-420. [PMID: 31396368 PMCID: PMC6682504 DOI: 10.4252/wjsc.v11.i7.398] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, cancer stem cells (CSCs) have been increasingly identified in many malignancies. CSC-related signaling pathways and their functions provide new strategies for treating cancer. The aberrant activation of related signaling pathways (e.g., Wnt, Notch, and Hedgehog pathways) has been linked to multiple types of malignant tumors, which makes these pathways attractive targets for cancer therapy. CSCs display many characteristic features, such as self-renewal, differentiation, high tumorigenicity, and drug resistance. Therefore, there is an urgent need to develop new therapeutic strategies to target these pathways to control stem cell replication, survival, and differentiation. Notable crosstalk occurs among different signaling pathways and potentially leads to compensatory escape. Therefore, multitarget inhibitors will be one of the main methods to overcome the drug resistance of CSCs. Many small molecule inhibitors of components of signaling pathways in CSCs have entered clinical trials, and some inhibitors, such as vismodegib, sonidegib, and glasdegib, have been approved. Tumor cells are susceptible to sonidegib and vismodegib resistance due to mutations in the Smo protein. The signal transducers and activators of transcription 3 (STAT3) inhibitor BBI608 is being evaluated in a phase III trial for a variety of cancers. Structural derivatives of BBI608 are the main focus of STAT3 inhibitor development, which is another strategy for CSC therapy. In addition to the potential pharmacological inhibitors targeting CSC-related signaling pathways, other methods of targeting CSCs are available, such as nano-drug delivery systems, mitochondrion targeting, autophagy, hyperthermia, immunotherapy, and CSC microenvironment targeting. In addition, we summarize the latest advances in the clinical development of agents targeting CSC-related signaling pathways and other methods of targeting CSCs.
Collapse
Affiliation(s)
- Fang-Yu Du
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Qi-Fan Zhou
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Wen-Jiao Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Guo-Liang Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| |
Collapse
|
8
|
Carpenter RL, Ray H. Safety and Tolerability of Sonic Hedgehog Pathway Inhibitors in Cancer. Drug Saf 2019; 42:263-279. [PMID: 30649745 DOI: 10.1007/s40264-018-0777-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hedgehog pathway, for which sonic hedgehog (Shh) is the most prominent ligand, is highly conserved and is tightly associated with embryonic development in a number of species. This pathway is also tightly associated with the development of several types of cancer, including basal cell carcinoma (BCC) and acute promyelocytic leukemia, among many others. Inactivating mutations in Patched-1 (PTCH1), leading to ligand-independent pathway activation, are frequent in several cancer types, but most prominent in BCC. This has led to the development of several compounds targeting this pathway as a cancer therapeutic. These compounds target the inducers of this pathway in Smoothened (SMO) and the GLI transcription factors, although targeting SMO has had the most success. Despite the many attempts at targeting this pathway, only three US FDA-approved drugs for cancers affect the Shh pathway. Two of these compounds, vismodegib and sonidegib, target SMO to suppress signaling from either PTCH1 or SMO mutations that lead to upregulation of the pathway. The other approved compound is arsenic trioxide, which can suppress this pathway at the level of the GLI proteins, although current evidence suggests it also has other targets. This review focuses on the safety and tolerability of these clinically approved drugs targeting the Shh pathway, along with a discussion on other Shh pathway inhibitors being developed.
Collapse
Affiliation(s)
- Richard L Carpenter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA. .,Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr., Indianapolis, IN, 46202, USA.
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, 1001 E. 3rd St, Bloomington, IN, 47405, USA
| |
Collapse
|
9
|
Xie H, Paradise BD, Ma WW, Fernandez-Zapico ME. Recent Advances in the Clinical Targeting of Hedgehog/GLI Signaling in Cancer. Cells 2019; 8:E394. [PMID: 31035664 PMCID: PMC6562674 DOI: 10.3390/cells8050394] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
The Hedgehog/GLI signaling pathway plays an important role in normal embryonic tissue development and has been implicated in the pathogenesis of various human cancers. In this review article, we summarize pre-clinical evidence supporting the suitability of targeting this signaling pathway in cancers. We review agents blocking both the ligand-dependent and ligand-independent cascades, and discuss the clinical evidence, which has led to the FDA approval of Hedgehog receptor Smoothened inhibitors, vismodegib, and sonidegib, in different malignancies. Finally, we provide an overview of published and ongoing clinical trial data on single agent or combination therapeutic strategies, targeting Hedgehog/GLI signaling pathway, in both advanced solid tumors and hematologic malignancies.
Collapse
Affiliation(s)
- Hao Xie
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Brooke D Paradise
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA..
| | - Wen Wee Ma
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA..
| |
Collapse
|
10
|
Gyawali B, Ando Y. FDA Approval Summary: Sonidegib-Letter. Clin Cancer Res 2019; 23:5993. [PMID: 28972085 DOI: 10.1158/1078-0432.ccr-17-1460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Bishal Gyawali
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Japan.
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Japan
| |
Collapse
|
11
|
Girardi D, Barrichello A, Fernandes G, Pereira A. Targeting the Hedgehog Pathway in Cancer: Current Evidence and Future Perspectives. Cells 2019; 8:cells8020153. [PMID: 30759860 PMCID: PMC6406365 DOI: 10.3390/cells8020153] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/05/2023] Open
Abstract
The Hedgehog pathway (HhP) plays an important role in normal embryonic development and its abnormal function has been linked to a variety of neoplasms. Recently, the complex mechanisms involved in this pathway have been deciphered and the cross talks with other important pathways involved in carcinogenesis have been characterized. This knowledge has led to the development of targeted therapies against key components of HhP, which culminated in the approval of vismodegib for the treatment of advanced basal cell carcinoma in 2012. Since then, other compounds have been developed and evaluated in preclinical and clinical studies with interesting results. Today, several medications against components of the HhP have demonstrated clinical activity as monotherapies and in combination with cytotoxic treatment or other targeted therapies against mitogenic pathways that are linked to the HhP. This review aims to clarify the mechanism of the HhP and the complex crosstalk with others pathways involved in carcinogenesis and to discuss both the evidence associated with the growing number of medications and combined therapies addressing this pathway and future perspectives.
Collapse
Affiliation(s)
- Daniel Girardi
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Adriana Barrichello
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Gustavo Fernandes
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Allan Pereira
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| |
Collapse
|
12
|
Neurological complications of systemic tumor therapy. Wien Med Wochenschr 2018; 169:33-40. [PMID: 30232660 DOI: 10.1007/s10354-018-0654-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
The treatment of malignant tumors has considerably improved in recent years, and also the number of "long term cancer survivors" is increasing.The spectrum of anti-tumoral agents is increasing at a fast pace and in addition to conventional therapies such as surgery, radiotherapy, and chemotherapy, new drugs with entirely new mechanisms are appearing. Side effects of old and new drugs can affect the central and peripheral nervous system, the neuromuscular junction, and muscle. These side effects often have to be distinguished from other causes and need neurological expertise. Although the majority of patients still receive conventional therapies, several new strategies such as immune therapies are being implemented. These drugs have also drug specific side effects, which do not always follow the classical principles of "toxicity."This review focuses on the well-known and described side effects of conventional cancer therapies and adds new observations on new drugs.
Collapse
|
13
|
Xie P, Lefrançois P. Efficacy, safety, and comparison of sonic hedgehog inhibitors in basal cell carcinomas: A systematic review and meta-analysis. J Am Acad Dermatol 2018; 79:1089-1100.e17. [PMID: 30003981 DOI: 10.1016/j.jaad.2018.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sonic hedgehog inhibitors (SHHis) provide an additional treatment option for basal cell carcinomas (BCCs), especially for metastatic or locally advanced BCC. However, studies have been heterogeneous and lacked direct comparisons between molecules. OBJECTIVE To determine the efficacy and safety of the class of molecules SHHi for treating BCC and to compare them individually. METHODS We performed a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-compliant systematic review of studies followed by a meta-analysis. RESULTS Eighteen articles were included in our meta-analysis; 16 articles were combined for efficacy and 16 for safety. In locally advanced BCC, overall response rates (ORRs) were similar for vismodegib and sonidegib (69% vs 57%, respectively) but not complete response rates (31% vs 3%, respectively). In metastatic disease, the ORR of vismodegib was 2.7-fold higher than the ORR of sonidegib (39% vs 15%, respectively). For side effects affecting a majority of patients, prevalences for muscle spasms (67.1%), dysgeusia (54.1%), and alopecia (57.7%) were in similar proportions for sonidegib and vismodegib. Patients receiving sonidegib experienced more upper gastrointestinal distress than patients receiving vismodegib. CONCLUSION SHHis induce a partial response to locally advanced BCC disease. Side effects are common, similar across molecules, associated with high discontinuation rates, and warrant discussion beforehand.
Collapse
Affiliation(s)
- Pingxing Xie
- Division of Dermatology, Department of Medicine, McGill University, Montreal, Canada
| | - Philippe Lefrançois
- Division of Dermatology, Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
14
|
Jain S, Song R, Xie J. Sonidegib: mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas. Onco Targets Ther 2017; 10:1645-1653. [PMID: 28352196 PMCID: PMC5360396 DOI: 10.2147/ott.s130910] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Hedgehog (Hh) pathway is critical for cell differentiation, tissue polarity, and stem cell maintenance during embryonic development, but is silent in adult tissues under normal conditions. However, aberrant Hh signaling activation has been implicated in the development and promotion of certain types of cancer, including basal cell carcinoma (BCC), medulloblastoma, and gastrointestinal cancers. In 2015, the US Food and Drug Administration (FDA) approved sonidegib, a smoothened (SMO) antagonist, for treatment of advanced BCC (aBCC) after a successful Phase II clinical trial. Sonidegib, also named Odomzo, is the second Hh signaling inhibitor approved by the FDA to treat BCCs following approval of the first SMO antagonist vismodegib in 2012. What are the major features of sonidegib (mechanism of action; metabolic profiles, clinical efficacy, safety, and tolerability profiles)? Will the sonidegib experience help other clinical trials using Hh signaling inhibitors in the future? In this review, we will summarize current understanding of BCCs and Hh signaling. We will focus on sonidegib and its use in the clinic, and we will discuss ways to improve its clinical application in cancer therapeutics.
Collapse
Affiliation(s)
| | - Ruolan Song
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Jingwu Xie
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| |
Collapse
|
15
|
Morita S, Thall PF, Takeda K. A simulation study of methods for selecting subgroup-specific doses in phase 1 trials. Pharm Stat 2017; 16:143-156. [PMID: 28111916 DOI: 10.1002/pst.1797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/20/2016] [Accepted: 11/04/2016] [Indexed: 01/27/2023]
Abstract
Patient heterogeneity may complicate dose-finding in phase 1 clinical trials if the dose-toxicity curves differ between subgroups. Conducting separate trials within subgroups may lead to infeasibly small sample sizes in subgroups having low prevalence. Alternatively,it is not obvious how to conduct a single trial while accounting for heterogeneity. To address this problem,we consider a generalization of the continual reassessment method on the basis of a hierarchical Bayesian dose-toxicity model that borrows strength between subgroups under the assumption that the subgroups are exchangeable. We evaluate a design using this model that includes subgroup-specific dose selection and safety rules. A simulation study is presented that includes comparison of this method to 3 alternative approaches,on the basis of nonhierarchical models,that make different types of assumptions about within-subgroup dose-toxicity curves. The simulations show that the hierarchical model-based method is recommended in settings where the dose-toxicity curves are exchangeable between subgroups. We present practical guidelines for application and provide computer programs for trial simulation and conduct.
Collapse
Affiliation(s)
- Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Peter F Thall
- Department of Biostatistics, The University of Texas, M. D. Anderson Cancer Center, Houston, TX, USA
| | - Kentaro Takeda
- Department of Biostatistics and Epidemiology, Yokohama City University, Yokohama, Japan.,Biostatistics Group,Data Science,Global Development, Astellas Pharma INC, Tokyo, Japan
| |
Collapse
|
16
|
Minami H, Ando Y, Ma BBY, Hsiang Lee J, Momota H, Fujiwara Y, Li L, Fukino K, Ito K, Tajima T, Mori A, Lin CC. Phase I, multicenter, open-label, dose-escalation study of sonidegib in Asian patients with advanced solid tumors. Cancer Sci 2016; 107:1477-1483. [PMID: 27467121 PMCID: PMC5084670 DOI: 10.1111/cas.13022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 12/28/2022] Open
Abstract
Sonidegib is a selective inhibitor of Smoothened receptor, which is a key regulator of the Hedgehog signaling pathway. The purpose of this study was to determine the maximum tolerated dose based on dose‐limiting toxicity (DLT) and the recommended dose (RD) of sonidegib in Asian patients with advanced solid tumors. This was an open‐label, single‐arm, multicenter, two‐group, parallel, dose‐escalation, phase I study undertaken in Asian patients; group 1 included patients from Japan and group 2 included patients from Hong Kong and Taiwan. Dose escalation was guided by a Bayesian logistic regression model dependent on DLTs in cycle 1 and other safety findings. A total of 45 adult Asian patients with confirmed advanced solid tumors were enrolled. Group 1 included 21 patients (12 treated with 400 mg q.d. [once daily] and 9 treated with 600 mg q.d.) and group 2 included 24 patients (12 treated with 400 mg q.d., 8 treated with 600 mg q.d., and 4 treated with 800 mg q.d.). Elevation in creatine kinase was the DLT in both groups. The most common adverse events suspected to be related to sonidegib in both patient groups were increase in creatine kinase levels, myalgia, fatigue, and abnormal hepatic function. The RD of 400 mg q.d. was defined in both groups. Difference in tolerability was noted between the East Asian patients and Western population. The RD in East Asian patients (400 mg q.d.) was lower than in patients from Europe and the USA (800 mg q.d. and 250 mg twice daily). (Registered with Clinicaltrials.gov: NCT01208831.) Sonidegib showed a similar safety profile in East Asian patients as that of Western population. No new AEs were reported in the Asian population. The recommended dose of sonidegib in East Asian patients (400 mg) was lower than Western MTD (800 mg daily or 250 mg twice daily) suggesting a difference in tolerability between the 2 populations.
Collapse
Affiliation(s)
- Hironobu Minami
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Brigette Buig Yue Ma
- Department of Clinical Oncology, Phase I Clinical Trial Centre, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jih- Hsiang Lee
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hiroyuki Momota
- Department of Neurosurgery, Nagoya University Hospital, Nagoya, Japan
| | - Yutaka Fujiwara
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Leung Li
- Department of Clinical Oncology, Prince of Wales Hospital, Shatin, Hong Kong
| | | | - Koji Ito
- Translational Clinical Oncology Department, Biomarkers and Support Group, Novartis Pharma, Tokyo, Japan
| | - Takeshi Tajima
- Oncology Clinical Development Department, Oncology Clinical Pharmacology Group, Novartis Pharma, Tokyo, Japan
| | | | - Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Urology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
17
|
Dialysis encephalopathy: precipitating factors and improvement in prognosis. Clin Nephrol 1981; 13:60. [PMID: 32456660 PMCID: PMC7249421 DOI: 10.1186/s13045-020-00901-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to the initiation, recurrence, and metastasis of cancer; however, there are still no drugs targeting CSCs in clinical application. There are several signaling pathways playing critical roles in CSC progression, such as the Wnt, Hedgehog, Notch, Hippo, and autophagy signaling pathways. Additionally, targeting the ferroptosis signaling pathway was recently shown to specifically kill CSCs. Therefore, targeting these pathways may suppress CSC progression. The structure of small-molecule drugs shows a good spatial dispersion, and its chemical properties determine its good druggability and pharmacokinetic properties. These characteristics make small-molecule drugs show a great advantage in drug development, which is increasingly popular in the market. Thus, in this review, we will summarize the current researches on the small-molecule compounds suppressing CSC progression, including inhibitors of Wnt, Notch, Hedgehog, and autophagy pathways, and activators of Hippo and ferroptosis pathways. These small-molecule compounds emphasize CSC importance in tumor progression and propose a new strategy to treat cancer in clinic via targeting CSCs.
Collapse
|