1
|
Gao A, Zhang M, Zhu SQ, Zou S, Chen H, Li X, He C, Zhou L, Mei Y, Ding W, Zhou J, Zhou Y, Cao Y. DNA polymerase iota promotes EMT and metastasis of esophageal squamous cell carcinoma by interacting with USP7 to stabilize HIF-1α. Cell Death Dis 2024; 15:171. [PMID: 38402183 PMCID: PMC10894303 DOI: 10.1038/s41419-024-06552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancer types, with a low 5-year survival rate of ~20%. Our prior research has suggested that DNA Polymerase iota (Pol ι), a member of Y-family DNA polymerase, plays a crucial role in the invasion and metastasis of ESCC. However, the underlying mechanism is not well understood. In this study, we utilized ChIP-PCR and luciferase reporter assays to investigate the binding of HIF-1α to the promoter of the Pol ι gene. Transwell, wound healing, and mouse models were employed to assess the impact of Pol ι and HIF-1α on the motility of ESCC cells. Co-immunoprecipitation and Western blot were carried out to explore the interaction between Pol ι and HIF-1α, while qRT-PCR and Western blot were conducted to confirm the regulation of Pol ι and HIF-1α on their downstream targets. Our results demonstrate that HIF-1α activates the transcription of the Pol ι gene in ESCC cells under hypoxic conditions. Furthermore, the knockdown of Pol ι impeded HIF-1α-induced invasion and metastasis. Additionally, we found that Pol ι regulates the expression of genes involved in epithelial-mesenchymal transition (EMT) and initiates EMT through the stabilization of HIF-1α. Mechanistically, Pol ι maintains the protein stability of HIF-1α by recruiting USP7 to mediate the deubiquitination of HIF-1α, with the residues 446-578 of Pol being crucial for the interaction between Pol ι and USP7. Collectively, our findings unveil a novel feedforward molecular axis of HIF-1α- Pol ι -USP7 in ESCC that contributes to ESCC metastasis. Hence, our results present an attractive target for intervention in ESCC.
Collapse
Affiliation(s)
- Aidi Gao
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Mingxia Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Shuang Qi Zhu
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Hengrui Chen
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Xiaoqin Li
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Chao He
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Liangsu Zhou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Yan Mei
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Weiqun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China.
| | - Yue Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Yuandong Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
2
|
TAB182 aggravates progression of esophageal squamous cell carcinoma by enhancing β-catenin nuclear translocation through FHL2 dependent manner. Cell Death Dis 2022; 13:900. [PMID: 36289198 PMCID: PMC9606255 DOI: 10.1038/s41419-022-05334-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
TAB182 (also named TNKS1BP1), a binding protein of tankyrase 1, has been found to participate in DNA repair. Our previous study has revealed the involvement of TAB182 in the radioresistance of esophageal squamous cell carcinoma (ESCC) cells. However, whether TAB182 contributes to the ESCC tumorigenesis and progression remains unclear. In this study, we found that highly expressed TAB182 is closely associated with a poor prognosis of patients with ESCC. TAB182 silencing reduced ESCC cell proliferation and invasion in vitro, tumorigenicity and metastasis in vivo. RNA-seq and IP-MS analysis revealed that TAB182 could affect the β-catenin signaling pathway via interacting with β-catenin. Furthermore, TAB182 prevented β-catenin to be phosphorylated by GSK3β and recruited four and a half of LIM-only protein 2 (FHL2), which thereby promoted β-catenin nucleus translocation to result in activation of the downstream targets transcription in ESCC cells. Our findings demonstrate that TAB182 enhances tumorigenesis of esophageal cancer by promoting the activation of the β-catenin signaling pathway, which provides new insights into the molecular mechanisms by which TAB182 accelerates progression of ESCC.
Collapse
|
3
|
Sun MC, Fang K, Li ZX, Chu Y, Xu AP, Zhao ZY, Leng ZY, Zhang YW, Zhang ZH, Zhang L, Chen T, Xu MD. ETV5 overexpression promotes progression of esophageal squamous cell carcinoma by upregulating SKA1 and TRPV2. Int J Med Sci 2022; 19:1072-1081. [PMID: 35813298 PMCID: PMC9254378 DOI: 10.7150/ijms.71892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/30/2022] [Indexed: 01/23/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is notorious for the rapid progression especially early tumor metastasis due to the unclear mechanism. Recently, ETV5 attracts much attention for its potential role as an oncogenic transcription factor involved in multiple cancers. However, no one reported the mechanism behind the association between ETV5 expression and esophageal squamous cell carcinoma progression. In this study, we found that ETV5 was upregulated in ESCC both from online database and our ESCC tissues and ETV5 was associated with tumor staging and prognosis. Knockdown of ETV5 or its downstream genes SKA1 and TRPV2 significantly suppress ESCC cells migration and invasion, respectively. Additionally, in vivo study showed knockdown of ETV5 inhibited tumor metastasis. Further experiments unveiled ETV5 could transcriptionally upregulate the expression of SKA1 and TRPV2 and further activate MMPs in ESCC progression. In conclusion, ETV5 was associated with ESCC tumor staging and ESCC prognosis clinically. ETV5 promoted metastasis of ESCC by activating MMPs through augmenting the transcription of SKA1 and TRPV2. ETV5 was likely to be a novel oncogene and therapeutic target in ESCC.
Collapse
Affiliation(s)
- Ming-Chuang Sun
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Kang Fang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhao-Xing Li
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yuan Chu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ai-Ping Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zi-Ying Zhao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhu-Yun Leng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yun-Wei Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ze-Hua Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Zhang
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mei-Dong Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| |
Collapse
|
4
|
Su Z, Gao A, Li X, Zou S, He C, Wu J, Ding WQ, Zhou J. DNA Polymerase Iota Promotes Esophageal Squamous Cell Carcinoma Proliferation Through Erk-OGT-Induced G6PD Overactivation. Front Oncol 2021; 11:706337. [PMID: 34354953 PMCID: PMC8329663 DOI: 10.3389/fonc.2021.706337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers with rapid progression and a high mortality rate. Our previous study demonstrated that DNA polymerase iota (Pol ι) is overexpressed in ESCC tumors and correlates with poor prognosis. However, its role in ESCC proliferation remains obscure. We report here that Pol ι promotes ESCC proliferation and progression through Erk- O-GlcNAc transferase (OGT) regulated Glucose-6-phosphate dehydrogenase (G6PD) overactivation. Cell clonogenic ability was assessed by colony formation assay. Cell proliferation was assessed by EdU incorporation assay. Our transcriptome data was reanalyzed by GSEA and validated by analysis of cellular metabolism, G6PD activity, and cellular NADPH concentration. The level of Pol ι, OGT, G6PD and O-GlcNAcylation in ESCC cells and patient samples were analyzed. The MEK inhibitor PD98059 was applied to confirm OGT expression regulation by the Erk signaling. The G6PD inhibitor polydatin was used to examine the role of G6PD activation in Pol ι promoted proliferation. We found that Pol ι promotes ESCC proliferation. It shunted the glucose flux towards the pentose phosphate pathway (PPP) by activating G6PD through OGT-promoted O-GlcNAcylation. The expression of OGT was positively correlated with Pol ι expression and O-GlcNAcylation. Notably, elevated O-GlcNAcylation was correlated with poor prognosis in ESCC patients. Pol ι was shown to stimulate Erk signaling to enhance OGT expression, and the G6PD inhibitor polydatin attenuated Pol ι induced tumor growth in vitro and in vivo. In conclusion, Pol ι activates G6PD through Erk-OGT-induced O-GlcNAcylation to promote the proliferation and progression of ESCC, supporting the notion that Pol ι is a potential biomarker and therapeutic target of ESCC.
Collapse
Affiliation(s)
- Zhenzi Su
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Aidi Gao
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xiaoqing Li
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chao He
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jinchang Wu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Jundong Zhou
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
5
|
DNA Polymerase and dRP-lyase activities of polymorphic variants of human Pol ι. Biochem J 2021; 478:1399-1412. [PMID: 33600564 DOI: 10.1042/bcj20200491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022]
Abstract
Y-family DNA polymerase iota (Pol ι) is involved in DNA damage response and tolerance. Mutations and altered expression level of POLI gene are linked to a higher incidence of cancer. We biochemically characterized five active site polymorphic variants of human Pol ι: R71G (rs3218778), P118L (rs554252419), I236M (rs3218784), E251K (rs3218783) and P365R (rs200852409). We analyzed fidelity of nucleotide incorporation on undamaged DNA, efficiency and accuracy of DNA damage bypass, as well as 5'-deoxyribophosphate lyase (dRP-lyase) activity. The I236M and P118L variants were indistinguishable from the wild-type Pol ι in activity. The E251K and P365R substitutions altered the spectrum of nucleotide incorporation opposite several undamaged DNA bases. The P365R variant also reduced the dRP-lyase activity and possessed the decreased TLS activity opposite 8-oxo-G. The R71G mutation dramatically affected the catalytic activities of Pol ι. The reduced DNA polymerase activity of the R71G variant correlated with an enhanced fidelity of nucleotide incorporation on undamaged DNA, altered lesion-bypass activity and reduced dRP-lyase activity. Therefore, this amino acid substitution likely alters Pol ι functions in vivo.
Collapse
|
6
|
Shilkin ES, Boldinova EO, Stolyarenko AD, Goncharova RI, Chuprov-Netochin RN, Khairullin RF, Smal MP, Makarova AV. Translesion DNA Synthesis and Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2021; 85:425-435. [PMID: 32569550 DOI: 10.1134/s0006297920040033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA template structure and efficiently incorporate nucleotides opposite DNA lesions. However, these polymerases display low accuracy of DNA synthesis and can introduce mutations in genomic DNA. Impaired functioning of these enzymes can lead to an increased risk of cancer.
Collapse
Affiliation(s)
- E S Shilkin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - E O Boldinova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - R I Goncharova
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - R N Chuprov-Netochin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - R F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420012, Russia
| | - M P Smal
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus.
| | - A V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
7
|
McIntyre J. Polymerase iota - an odd sibling among Y family polymerases. DNA Repair (Amst) 2019; 86:102753. [PMID: 31805501 DOI: 10.1016/j.dnarep.2019.102753] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
It has been two decades since the discovery of the most mutagenic human DNA polymerase, polymerase iota (Polι). Since then, the biochemical activity of this translesion synthesis (TLS) enzyme has been extensively explored, mostly through in vitro experiments, with some insight into its cellular activity. Polι is one of four members of the Y-family of polymerases, which are the best characterized DNA damage-tolerant polymerases involved in TLS. Polι shares some common Y-family features, including low catalytic efficiency and processivity, high infidelity, the ability to bypass some DNA lesions, and a deficiency in 3'→5' exonucleolytic proofreading. However, Polι exhibits numerous properties unique among the Y-family enzymes. Polι has an unusual catalytic pocket structure and prefers Hoogsteen over Watson-Crick pairing, and its replication fidelity strongly depends on the template; further, it prefers Mn2+ ions rather than Mg2+ as catalytic activators. In addition to its polymerase activity, Polι possesses also 5'-deoxyribose phosphate (dRP) lyase activity, and its ability to participate in base excision repair has been shown. As a highly error-prone polymerase, its regulation is crucial and mostly involves posttranslational modifications and protein-protein interactions. The upregulation and downregulation of Polι are correlated with different types of cancer and suggestions regarding the possible function of this polymerase have emerged from studies of various cancer lines. Nonetheless, after twenty years of research, the biological function of Polι certainly remains unresolved.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
8
|
A transcriptional signature associated with non-Hodgkin lymphoma in the blood of patients with Q fever. PLoS One 2019; 14:e0217542. [PMID: 31181104 PMCID: PMC6557487 DOI: 10.1371/journal.pone.0217542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii, the agent causing Q fever, has been associated with B-cell non-Hodgkin lymphoma (NHL). To better clarify this link, we analysed the genetic transcriptomic profile of peripheral blood leukocytes from patients with C. burnetii infection to identify possible links to lymphoma. Microarray analyses revealed that 1189 genes were expressed differently (p <.001 and fold change ≥4) in whole blood of patients with C. burnetii infection compared to controls. In addition, 95 genes expressed in patients with non-Hodgkin lymphoma (NHL) and in patients with C. burnetii persistent infection have allowed us to establish the 'C. burnetii-associated NHL signature'. Among these, 33 genes previously found modulated in C. burnetii-associated -NHL by the microarray analysis were selected and their mRNA expression levels were measured in distinct C. burnetii-induced pathologies, namely, acute Q fever, focalized persistent infection, lymphadenitis and C.burnetii-associated NHL. Specific genes involved in anti-apoptotic process were found highly expressed in leukocytes from patients with C. burnetii associated-NHL: MIR17HG, REL and SP100. This signature differed from that found for NHL-control group. Patients with C. burnetii lymphadenitis presented significant elevated levels of BCL2 and ETS1 mRNAs. Altogether, we identified a specific transcriptionnal signature for NHL during C. burnetii infection reflecting the up-regulation of anti-apoptotic processes and the fact that lymphadenitis might constitute a critical step towards lymphomagenesis.
Collapse
|
9
|
Gallo D, Brown GW. Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Crit Rev Biochem Mol Biol 2019; 54:301-332. [PMID: 31429594 DOI: 10.1080/10409238.2019.1651817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.
Collapse
Affiliation(s)
- David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| |
Collapse
|
10
|
Wang W, Ma J, Lu J, Fang D, Xiong X, Yang X, Xie T. Circ0043898 acts as a tumor inhibitor and performs regulatory effect on the inhibition of esophageal carcinoma. Cancer Biol Ther 2018; 19:1117-1127. [PMID: 30252576 DOI: 10.1080/15384047.2018.1480889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective: The study aimed to investigate candidate circular RNAs (circRNAs) in regulating the pathogenic process of esophageal carcinoma. Methods: Specimens were collected from the patients with esophageal carcinoma. Total RNA was purified and treated with RNase R followed by RNA-seq in the purpose of screening the circRNAs in significant differentially expression. The expression level of the screened circRNAs were further validated using RT-PCR. The circular structure of the circRNA was validated with divergent and convergent primers. Overexpression vector was prepared in the purpose of raising the expression level of circ0043898 in the ECA-109 and Kyse-520 cells. The cell colony assay and MTS assay were conducted to determine the capacity of cell proliferation. Chamber assays were applied to determine the capacity of cell migration and invasion while flowcytometry was applied to determine the cell cycle and cell apoptosis. In vivo animal assay was conducted by injecting the cells to the chest of the mice. RNA-seq was performed followed by GO and KEGG study to further verify the regulation mechanism of circ0043898. Results: circ0043898 was validated that down-regulated expressed in the specimens from the patients with esophageal carcinoma. The cell assays proved that overexpression of circ0043898 can obviously inhibit the cell proliferation, cell migration and invasion and induce cell apoptosis and death in the cancerous cells. The in vivo animal study also suggested that the circ0043898 performed inhibitory functions on oncogenesis. The RNA-seq presented the potential regulation mechanism of circ0043898. Histone H3 and BMI1 were presented significantly differential expression in both ECA-109 and Kyse-520 cells, indicating they might be the targets of circ0043898. Conclusion: circ0043898 is presented as tumor inhibitor and could be a candidate biomarker in the therapeutic target and diagnosis of esophageal carcinoma.
Collapse
Affiliation(s)
- Wei Wang
- a Department of Thoracic Surgery, the Second Affiliated Hospital of Guangzhou Medical University , Guang Zhou , China
| | - Jun Ma
- b Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Jianjun Lu
- b Department of Thoracic Surgery, the First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Danqing Fang
- a Department of Thoracic Surgery, the Second Affiliated Hospital of Guangzhou Medical University , Guang Zhou , China
| | - Xinming Xiong
- a Department of Thoracic Surgery, the Second Affiliated Hospital of Guangzhou Medical University , Guang Zhou , China
| | - Xin Yang
- a Department of Thoracic Surgery, the Second Affiliated Hospital of Guangzhou Medical University , Guang Zhou , China
| | - Tingting Xie
- c Department of Gastroenterology, the Second Affiliated Hospital of Guangzhou Medical University , Guang Zhou , China
| |
Collapse
|
11
|
Wu J, Gao F, Xu T, Deng X, Wang C, Yang X, Hu Z, Long Y, He X, Liang G, Ren D, Dai T. miR-503 suppresses the proliferation and metastasis of esophageal squamous cell carcinoma by triggering autophagy via PKA/mTOR signaling. Int J Oncol 2018; 52:1427-1442. [PMID: 29568867 PMCID: PMC5873897 DOI: 10.3892/ijo.2018.4320] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/14/2018] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miR)-503 is involved in the regulation of the malignant phenotype in multiple tumor types, and has been proven to be a novel diagnostic and therapeutic target; however, its function and mechanisms of action have not yet been fully elucidated in esophageal squamous cell carcinoma (ESCC). In the current study, we detected miR‑503 expression by RT‑qPCR and found that miR‑503 expression was increased in ESCC, but negatively correlated with lymph node metastasis, TNM stage and tumor differentiation. Functionally, we confirmed that miR‑503 inhibited the proliferation and metastasis of ESCC cells by triggering cellular autophagy. Mechanistically, we confirmed that miR‑503 exerted its biological effects by targeting protein kinase CAMP‑activated catalytic subunit alpha (PRKACA) in ESCC by dual luciferase reporter assay. Moreover, miR‑503 was found to trigger autophagy in ESCC cells through the protein kinase A (PKA)/mammalian target of rapamycin (mTOR) pathway. Taken together, our results demonstrate that miR‑503 suppresses the proliferation and metastasis of ESCC via the activation of autophagy, mediated by the PKA/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jian Wu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fengxia Gao
- Department of Immunology, College of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xin Deng
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chao Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoyan Yang
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhi Hu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yang Long
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xuemei He
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Guannan Liang
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Delian Ren
- Department of Immunology, College of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tianyang Dai
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
12
|
He C, Wu S, Gao A, Su Y, Min H, Shang ZF, Wu J, Yang L, Ding WQ, Zhou J. Phosphorylation of ETS-1 is a critical event in DNA polymerase iota-induced invasion and metastasis of esophageal squamous cell carcinoma. Cancer Sci 2017; 108:2503-2510. [PMID: 28905458 PMCID: PMC5715348 DOI: 10.1111/cas.13399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023] Open
Abstract
An aberrantly elevated expression of DNA polymerase ι (Pol ι) is significantly associated with poor prognosis of patients with esophageal squamous cell carcinoma (ESCC), yet the mechanisms behind this phenomenon remain obscure. Based on the RNA-Seq transcriptome and real-time PCR analysis, we identified ETS-1 as a candidate gene involved in Pol ι-mediated progression of ESCC. Wound-healing and transwell assay indicated that downregulation of ETS-1 attenuates Pol ι-mediated invasiveness of ESCC. Signaling pathway analysis showed that Pol ι enhances ETS-1 phosphorylation at threonine-38 through the Erk signaling pathway in ESCC cells. Kaplan-Meier analysis, based on 93 clinical tissue samples, revealed that ETS-1 phosphorylation at threonine-38 is associated with poor prognosis of ESCC patients. The present study thus demonstrates that phosphorylation of ETS-1 is a critical event in the Pol ι-induced invasion and metastasis of ESCC.
Collapse
Affiliation(s)
- Chao He
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| | - Shuhua Wu
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Aidi Gao
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| | - Ye Su
- Jerry M. Wallace School of Osteopathic Medicine, Leon Levine Hall of Medical Science, Campbell University, Lillington, North Carolina, USA
| | - Han Min
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Jinchang Wu
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| |
Collapse
|