1
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of chemokines in aging and age-related diseases. Mech Ageing Dev 2024; 223:112009. [PMID: 39631472 DOI: 10.1016/j.mad.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Chemokines (chemotactic cytokines) play essential roles in developmental process, immune cell trafficking, inflammation, immunity, angiogenesis, cellular homeostasis, aging, neurodegeneration, and tumorigenesis. Chemokines also modulate response to immunotherapy, and consequently influence the therapeutic outcome. The mechanisms underlying these processes are accomplished by interaction of chemokines with their cognate cell surface G protein-coupled receptors (GPCRs) and subsequent cellular signaling pathways. Chemokines play crucial role in influencing aging process and age-related diseases across various tissues and organs, primarily through inflammatory responses (inflammaging), recruitment of macrophages, and orchestrated trafficking of other immune cells. Chemokines are categorized in four distinct groups based on the position and number of the N-terminal cysteine residues; namely, the CC, CXC, CX3C, and (X)C. They mediate inflammatory responses, and thereby considerably impact aging process across multiple organ-systems. Therefore, understanding the underlying mechanisms mediated by chemokines may be of crucial importance in delaying and/or modulating the aging process and preventing age-related diseases. In this review, we highlight recent progress accomplished towards understanding the role of chemokines and their cellular signaling pathways involved in aging and age-relaed diseases of various organs. Moreover, we explore potential therapeutic strategies involving anti-chemokines and chemokine receptor antagonists aimed at reducing aging and mitigating age-related diseases. One of the modern methods in this direction involves use of chemokine receptor antagonists and anti-chemokines, which suppress the pro-inflammatory response, thereby helping in resolution of inflammation. Considering the wide-spectrum of functional involvements of chemokines in aging and associated diseases, several clinical trials are being conducted to develop therapeutic approaches using anti-chemokine and chemokine receptor antagonists to improve life span and promote healthy aging.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi 110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Bhardwaj
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Road, Faridabad, Haryana 121001, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Kogue Y, Kobayashi H, Nakamura Y, Takano T, Furuta C, Kawano O, Yasuma T, Nishimura T, D’Alessandro-Gabazza CN, Fujimoto H, Gabazza EC, Kobayashi T, Fukai I. Prognostic Value of CXCL12 in Non-Small Cell Lung Cancer Patients Undergoing Tumor Resection. Pharmaceuticals (Basel) 2023; 16:255. [PMID: 37227446 PMCID: PMC9967107 DOI: 10.3390/ph16020255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 08/30/2023] Open
Abstract
Adjuvant chemotherapy is commonly indicated in lung cancer patients undergoing surgical therapy because tumor recurrence is frequent. A biomarker that can predict tumor recurrence in the postoperative period is currently unavailable. CXCR4 receptor and its ligand CXCL12 play important roles in metastasis. This study investigated the value of tumor CXCL12 expression to predict prognosis and indicate adjuvant chemotherapy in non-small cell lung cancer patients. This study enrolled 82 non-small cell lung cancer patients. The expression of CXCL12 was evaluated by immunohistochemistry. The degree of CXCL12 expression was assessed using the Allred score system. Among all subjects, the progression-free survival and overall survival were significantly prolonged in cancer patients with low tumor expression of CXCL12 compared to patients with high tumor expression. Multivariate analysis showed that the increased level of CXCL12 is a significant predictor of progression-free survival and overall survival in NSCLC patients. Among subjects with high tumor CXCL12 expression, progression-free survival and overall survival were significantly improved in patients treated with adjuvant chemotherapy compared to untreated patients. These results suggest the potential value of tumor CXCL12 expression as a marker to predict prognosis and to indicate adjuvant chemotherapy after surgical tumor resection in non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Yurie Kogue
- Department of Pulmonary Medicine, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
- Department of Pulmonary and Critical Care Medicine, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Hiroyasu Kobayashi
- Department of Pulmonary Medicine, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Yutaka Nakamura
- Department of Pathology, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Takatsugu Takano
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Chihiro Furuta
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Osamu Kawano
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Taro Yasuma
- Department of Immunology, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Tadashi Nishimura
- Department of Pulmonary Medicine, Mie Chuo Medical Center, Hisaimyojincho, Tsu 514-1101, Japan
| | | | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Ichiro Fukai
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| |
Collapse
|
3
|
Biodetection Techniques for Quantification of Chemokines. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemokines are a class of cytokine whose special properties, together with their involvement and relevant role in various diseases, make them a restricted group of biomarkers suitable for diagnosis and monitoring. Despite their importance, biodetection techniques dedicated to the selective determination of one or more chemokines are very scarce. For some years now, the critical diagnosis of inflammatory diseases by detecting both cytokine and chemokine biomarkers, has had a strong impact on the development of multiple detection platforms. However, it would be desirable to implement methodologies with a higher degree of selectivity for chemokines, in order to provide more precise information. In addition, better development of biosensor technology applied to this specific field would make it possible to address the main challenges of detection methods for several diseases with a high incidence in the population, avoiding high costs and low sensitivity. Taking this into account, this review aims to present the state of the art of chemokine biodetection techniques and emphasize the role of these systems in the prevention, monitoring and treatment of various diseases associated with chemokines as a starting point for future developments that are also analyzed throughout the article.
Collapse
|
4
|
Chemokines and NSCLC: Emerging role in prognosis, heterogeneity, and therapeutics. Semin Cancer Biol 2022; 86:233-246. [PMID: 35787939 DOI: 10.1016/j.semcancer.2022.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022]
Abstract
Lung cancer persists to contribute to one-quarter of cancer-associated deaths. Among the different histologies, non-small cell lung cancer (NSCLC) alone accounts for 85% of the cases. The development of therapies involving immune checkpoint inhibitors and angiogenesis inhibitors has increased patients' survival probability and reduced mortality rates. Developing targeted therapies against essential genetic alterations also translates to better treatment strategies. But the benefits still seem farfetched due to the development of drug resistance and refractory tumors. In this review, we have highlighted the interplay of different tumor microenvironment components, essentially discussing the chemokine families (CC, CXC, C, and CX3C) that regulate the tumor biology in NSCLC and promote tumor growth, metastasis, and associated heterogeneity. The development of therapeutics and prognostic markers is a complex and multipronged approach. However, some essential chemokines can act as critical players for being considered potential prognostic markers and therapeutic targets.
Collapse
|
5
|
Qiu L, Xu Y, Xu H, Yu B. The clinicopathological and prognostic value of CXCR4 expression in patients with lung cancer: a meta-analysis. BMC Cancer 2022; 22:681. [PMID: 35729596 PMCID: PMC9210617 DOI: 10.1186/s12885-022-09756-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Background The C-X-C chemokine receptor 4 (CXCR4) has been suggested to play an important role in several types of cancers and is related to biological behaviors connected with tumor progression. However, the clinical significance and application of CXCR4 in lung cancer remain disputable. Thus, we conducted a meta-analysis to investigate the impact of CXCR4 expression on survival and clinicopathological features in lung cancer. Methods Comprehensive literature searches were conducted in PubMed, Embase and Web of Science for relevant studies. We pooled hazard ratios (HRs)/odds ratios (ORs) with 95% confidence intervals (CIs) by STATA 12.0 to evaluate the potential value of CXCR4 expression. Results Twenty-seven relevant articles involving 2932 patients with lung cancer were included in our meta-analysis. The results revealed that CXCR4 expression was apparently associated with poor overall survival (OS) (HR 1.61, 95% CI 1.42–1.82) and disease-free survival (HR 3.39, 95% CI 2.38–4.83). Furthermore, a significant correlation with poor OS was obvious in non-small cell lung cancer patients (HR 1.59, 95% CI 1.40–1.81) and in patients showing CXCR4 expression in the cytoplasm (HR 2.10, 95% CI 1.55–2.84) and the membrane (HR 1.74, 95% CI 1.24–2.45). CXCR4 expression was significantly associated with men (OR 1.32, 95% CI 1.08–1.61), advanced tumor stages (T3-T4) (OR 2.34, 95% CI 1.28–4.28), advanced nodal stages (N > 0) (OR 2.34, 95% CI 1.90–2.90), distant metastasis (OR 3.65, 95% CI 1.53–8.69), advanced TNM stages (TNM stages III, IV) (OR 3.10, 95% CI 1.95–4.93) and epidermal growth factor receptor (EGFR) expression (OR 2.44, 95% CI 1.44–4.12) but was not associated with age, smoking history, histopathology, differentiation, lymphatic vessel invasion or local recurrence. Conclusion High expression of CXCR4 is related to tumor progression and might be an adverse prognostic factor for lung cancer.
Collapse
Affiliation(s)
- Liping Qiu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Zhejiang, 315000, China
| | - Yuanyuan Xu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Zhejiang, 315000, China
| | - Hui Xu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Zhejiang, 315000, China
| | - Biyun Yu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Zhejiang, 315000, China.
| |
Collapse
|
6
|
Alsayed RKME, Khan AQ, Ahmad F, Ansari AW, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic Regulation of CXCR4 Signaling in Cancer Pathogenesis and Progression. Semin Cancer Biol 2022; 86:697-708. [PMID: 35346802 DOI: 10.1016/j.semcancer.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023]
Abstract
Signaling involving chemokine receptor CXCR4 and its ligand SDF-1/CXL12 has been investigated for many years for its possible role in cancer progression and pathogenesis. Evidence emerging from clinical studies in recent years has further established diagnostic as well as prognostic importance of CXCR4 signaling. CXCR4 and SDF-1 are routinely reported to be elevated in tumors, distant metastases, which correlates with poor survival of patients. These findings have kindled interest in the mechanisms that regulate CXCR4/SDF-1 expression. Of note, there is a particular interest in the epigenetic regulation of CXCR4 signaling that may be responsible for upregulated CXCR4 in primary as well as metastatic cancers. This review first lists the clinical evidence supporting CXCR4 signaling as putative cancer diagnostic and/or prognostic biomarker, followed by a discussion on reported epigenetic mechanisms that affect CXCR4 expression. These mechanisms include regulation by non-coding RNAs, such as, microRNAs, long non-coding RNAs and circular RNAs. Additionally, we also discuss the regulation of CXCR4 expression through methylation and acetylation. Better understanding and appreciation of epigenetic regulation of CXCR4 signaling can invariably lead to identification of novel therapeutic targets as well as therapies to regulate this oncogenic signaling.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Abdul Wahid Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York, 10065, NY, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar.
| |
Collapse
|
7
|
CXC Chemokine Signaling in Progression of Epithelial Ovarian Cancer: Theranostic Perspectives. Int J Mol Sci 2022; 23:ijms23052642. [PMID: 35269786 PMCID: PMC8910147 DOI: 10.3390/ijms23052642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with epithelial ovarian cancer (EOC) are often diagnosed at an advanced stage due to nonspecific symptoms and ineffective screening approaches. Although chemotherapy has been available and widely used for the treatment of advanced EOC, the overall prognosis remains dismal. As part of the intrinsic defense mechanisms against cancer development and progression, immune cells are recruited into the tumor microenvironment (TME), and this process is directed by the interactions between different chemokines and their receptors. In this review, the functional significance of CXC chemokine ligands/chemokine receptors (CXCL/CXCR) and their roles in modulating EOC progression are summarized. The status and prospects of CXCR/CXCL-based theranostic strategies in EOC management are also discussed.
Collapse
|
8
|
Li Q, Wang M, Zeng L, Guo W, Xu Y, Li C, Lai Y, Ye L, Peng X. Deletion of Wild-type p53 Facilitates Bone Metastatic Function by Blocking the AIP4 Mediated Ligand-Induced Degradation of CXCR4. Front Pharmacol 2022; 12:792293. [PMID: 35177982 PMCID: PMC8844016 DOI: 10.3389/fphar.2021.792293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Management of patients with prostate cancer and bone metastatic disease remains a major clinical challenge. Loss or mutation of p53 has been identified to be involved in the tumor progression and metastasis. Nevertheless, direct evidence of a specific role for wild-type p53 (wt-p53) in bone metastasis and the mechanism by which this function is mediated in prostate cancer remain obscure. Methods: The expression and protein levels of wt-53, AIP4, and CXCR4 in prostate cancer cells and clinical specimens were assessed by real-time PCR, immunohistochemistry and western blot analysis. The role of wt-p53 in suppressing aggressive and metastatic tumor phenotypes was assessed using in vitro transwell chemotaxis, wound healing, and competitive colocalization assays. Furthermore, whether p53 deletion facilitates prostate cancer bone-metastatic capacity was explored using an in vivo bone-metastatic model. The mechanistic model of wt-p53 in regulating gene expression was further explored by a luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. Results: Our findings revealed that wt-p53 suppressed the prostate cancer cell migration rate, chemotaxis and attachment toward the osteoblasts in vitro. The bone-metastatic model showed that deletion of wt-p53 remarkably increased prostate cancer bone-metastatic capacity in vivo. Mechanistically, wt-p53 could induce the ligand-induced degradation of the chemokine receptor CXCR4 by transcriptionally upregulating the expression of ubiquitin ligase AIP4. Treatment with the CXCR4 inhibitor AMD3100 or transduction of the AIP4 plasmid abrogated the pro-bone metastasis effects of TP53 deletion. Conclusion: Wt-p53 suppresses the metastasis of prostate cancer cells to bones by regulating the CXCR4/CXCL12 activity in the tumor cells/bone marrow microenvironment interactions. Our findings suggest that targeting the wt-p53/AIP4/CXCR4 axis might be a promising therapeutic strategy to manage prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Qiji Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangzhou, China
| | - Min Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangzhou, China.,Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wei Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuandong Xu
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chenxin Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingrong Lai
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liping Ye
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangzhou, China.,Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Molina-Peña R, Haji Mansor M, Najberg M, Thomassin JM, Gueza B, Alvarez-Lorenzo C, Garcion E, Jérôme C, Boury F. Nanoparticle-containing electrospun nanofibrous scaffolds for sustained release of SDF-1α. Int J Pharm 2021; 610:121205. [PMID: 34670119 DOI: 10.1016/j.ijpharm.2021.121205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
Chemokines such as stromal cell-derived factor-1α (SDF-1α) regulate the migration of cancer cells that can spread from their primary tumor site by migrating up an SDF-1α concentration gradient, facilitating their local invasion and metastasis. Therefore, the implantation of SDF-1α-releasing scaffolds can be a useful strategy to trap cancer cells expressing the CXCR4 receptor. In this work, SDF-1α was encapsulated into poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles and subsequently electrospun with chitosan to produce nanofibrous scaffolds of average fiber diameter of 261 ± 45 nm, intended for trapping glioblastoma (GBM) cells. The encapsulated SDF-1α maintained its biological activity after the electrospinning process as assessed by its capacity to induce the migration of cancer cells. The scaffolds could also provide sustained release of SDF-1α for at least 5 weeks. Using NIH3T3 mouse fibroblasts, human Thp-1 macrophages, and rat primary astrocytes we showed that the scaffolds possessed high cytocompatibility in vitro. Furthermore, a 7-day follow-up of Fischer rats bearing implanted scaffolds demonstrated the absence of adverse effects in vivo. In addition, the nanofibrous structure of the scaffolds provided excellent anchoring sites to support the adhesion of human GBM cells by extension of their pseudopodia. The scaffolds also demonstrated slow degradation kinetics, which may be useful in maximizing the time window for trapping GBM cells. As surgical resection does not permit a complete removal of GBM tumors, our results support the future implantation of these scaffolds into the walls of the resection cavity to evaluate their capacity to attract and trap the residual GBM cells in the brain.
Collapse
Affiliation(s)
- Rodolfo Molina-Peña
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France
| | - Muhammad Haji Mansor
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France; Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
| | - Mathie Najberg
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jean-Michel Thomassin
- Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
| | - Baya Gueza
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Emmanuel Garcion
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM-UR, University of Liège, B-4000 Liège, Belgium
| | - Frank Boury
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
10
|
Fei X, Hu C, Wang X, Lu C, Chen H, Sun B, Li C. Construction of a Ferroptosis-Related Long Non-coding RNA Prognostic Signature and Competing Endogenous RNA Network in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:751490. [PMID: 34820377 PMCID: PMC8606539 DOI: 10.3389/fcell.2021.751490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis-related genes play an important role in the progression of lung adenocarcinoma (LUAD). However, the potential function of ferroptosis-related lncRNAs in LUAD has not been fully elucidated. Thus, to explore the potential role of ferroptosis-related lncRNAs in LUAD, the transcriptome RNA-seq data and corresponding clinical data of LUAD were downloaded from the TCGA dataset. Pearson correlation was used to mine ferroptosis-related lncRNAs. Differential expression and univariate Cox analysis were performed to screen prognosis related lncRNAs. A ferroptosis-related lncRNA prognostic signature (FLPS), which included six ferroptosis-related lncRNAs, was constructed by the least absolute shrinkage and selection operator (LASSO) Cox regression. Patients were divided into a high risk-score group and low risk-score group by the median risk score. Receiver operating characteristic (ROC) curves, principal component analysis (PCA), and univariate and multivariate Cox regression were performed to confirm the validity of FLPS. Enrichment analysis showed that the biological processes, pathways and markers associated with malignant tumors were more common in high-risk subgroups. There were significant differences in immune microenvironment and immune cells between high- and low-risk groups. Then, a nomogram was constructed. We further investigated the relationship between six ferroptosis-related lncRNAs and tumor microenvironment and tumor stemness. A competing endogenous RNA (ceRNA) network was established based on the six ferroptosis-related lncRNAs. Finally, we detected the expression levels of ferroptosis-related lncRNAs in clinical samples through quantitative real-time polymerase chain reaction assay (qRT-PCR). In conclusion, we identified the prognostic ferroptosis-related lncRNAs in LUAD and constructed a prognostic signature which provided a new strategy for the evaluation and prediction of prognosis in LUAD.
Collapse
Affiliation(s)
- Xiang Fei
- Department of Thoracic Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Congli Hu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xinyu Wang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaojing Lu
- Department of Thoracic Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Hezhong Chen
- Department of Thoracic Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, China
| | - Chunguang Li
- Department of Thoracic Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Okikawa S, Higashijima J, Nishi M, Yoshimoto T, Eto S, Takasu C, Kashihara H, Tokunaga T, Yoshikawa K, Shimada M. SDF-1 expression after preoperative chemoradiotherapy is associated with prognosis in patients with advanced lower rectal cancer. THE JOURNAL OF MEDICAL INVESTIGATION 2021; 68:309-314. [PMID: 34759150 DOI: 10.2152/jmi.68.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Stromal cell-derived factor-1 (SDF-1) expression is associated with cancer progression, as a biomarker of prognosis. We clarified the significance of SDF-1 expression on chemoradiotherapy (CRT) resistance and prognosis in advanced lower rectal cancer patients. We evaluated 98 patients with advanced lower rectal cancer who underwent preoperative CRT. All patients received 40 Gy of radiation therapy, with concurrent chemotherapy containing fluorinated pyrimidines, followed by surgical resection. SDF-1 expression in surgical specimens was examined by immunohistochemistry. We divided the patients into SDF-1-positive- (n = 52) and SDF-1-negative groups (n = 46) and compared the clinicopathological factors and survival rates. The SDF-1-positive group was more resistant to CRT than the SDF-1-negative group (non-responder rate, 63.5% vs. 47.8%, respectively ; p = 0.12). Overall survival (OS) in the SDF-1 positive group was significantly poorer vs. the SDF-1-negative group (5-year OS, 73.4% vs. 88.0%, respectively ; p = 0.02), and disease-free survival (DFS) was worse (5-year DFS, 61.0% vs. 74.1%, respectively ; p = 0.07). Multivariate analysis confirmed that SDF-1 expression was a significant independent prognostic predictor of OS (p = 0.04). SDF-1 expression after preoperative CRT is significantly associated with a poor prognosis in advanced lower rectal cancer patients and is a promising biomarker. J. Med. Invest. 68 : 309-314, August, 2021.
Collapse
Affiliation(s)
- Shohei Okikawa
- Department of Digestive and Pediatric Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Jun Higashijima
- Department of Digestive and Pediatric Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Masaaki Nishi
- Department of Digestive and Pediatric Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Toshiaki Yoshimoto
- Department of Digestive and Pediatric Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Shohei Eto
- Department of Digestive and Pediatric Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Chie Takasu
- Department of Digestive and Pediatric Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Hideya Kashihara
- Department of Digestive and Pediatric Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Takuya Tokunaga
- Department of Digestive and Pediatric Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Kozo Yoshikawa
- Department of Digestive and Pediatric Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Digestive and Pediatric Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
12
|
Chai X, Yinwang E, Wang Z, Wang Z, Xue Y, Li B, Zhou H, Zhang W, Wang S, Zhang Y, Li H, Mou H, Sun L, Qu H, Wang F, Zhang Z, Chen T, Ye Z. Predictive and Prognostic Biomarkers for Lung Cancer Bone Metastasis and Their Therapeutic Value. Front Oncol 2021; 11:692788. [PMID: 34722241 PMCID: PMC8552022 DOI: 10.3389/fonc.2021.692788] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Bone metastasis, which usually accompanies severe skeletal-related events, is the most common site for tumor distant dissemination and detected in more than one-third of patients with advanced lung cancer. Biopsy and imaging play critical roles in the diagnosis of bone metastasis; however, these approaches are characterized by evident limitations. Recently, studies regarding potential biomarkers in the serum, urine, and tumor tissue, were performed to predict the bone metastases and prognosis in patients with lung cancer. In this review, we summarize the findings of recent clinical research studies on biomarkers detected in samples obtained from patients with lung cancer bone metastasis. These markers include the following: (1) bone resorption-associated markers, such as N-terminal telopeptide (NTx)/C-terminal telopeptide (CTx), C-terminal telopeptide of type I collagen (CTx-I), tartrate-resistant acid phosphatase isoform 5b (TRACP-5b), pyridinoline (PYD), and parathyroid hormone related peptide (PTHrP); (2) bone formation-associated markers, including total serum alkaline phosphatase (ALP)/bone specific alkaline phosphatase(BAP), osteopontin (OP), osteocalcin (OS), amino-terminal extension propeptide of type I procollagen/carboxy-terminal extension propeptide of type I procollagen (PICP/PINP); (3) signaling markers, including epidermal growth factor receptor/Kirsten rat sarcoma/anaplastic lymphoma kinase (EGFR/KRAS/ALK), receptor activator of nuclear factor κB ligand/receptor activator of nuclear factor κB/osteoprotegerin (RANKL/RANK/OPG), C-X-C motif chemokine ligand 12/C-X-C motif chemokine receptor 4 (CXCL12/CXCR4), complement component 5a receptor (C5AR); and (4) other potential markers, such as calcium sensing receptor (CASR), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2), cytokeratin 19 fragment/carcinoembryonic antigen (CYFRA/CEA), tissue factor, cell-free DNA, long non-coding RNA, and microRNA. The prognostic value of these markers is also investigated. Furthermore, we listed some clinical trials targeting hotspot biomarkers in advanced lung cancer referring for their therapeutic effects.
Collapse
Affiliation(s)
- Xupeng Chai
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Eloy Yinwang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yongxing Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Haochen Mou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Lingling Sun
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hao Qu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Fangqian Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zengjie Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Kachuri L, Jeon S, DeWan AT, Metayer C, Ma X, Witte JS, Chiang CWK, Wiemels JL, de Smith AJ. Genetic determinants of blood-cell traits influence susceptibility to childhood acute lymphoblastic leukemia. Am J Hum Genet 2021; 108:1823-1835. [PMID: 34469753 PMCID: PMC8546033 DOI: 10.1016/j.ajhg.2021.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Despite overlap between genetic risk loci for ALL and hematologic traits, the etiological relevance of dysregulated blood-cell homeostasis remains unclear. We investigated this question in a genome-wide association study (GWAS) of childhood ALL (2,666 affected individuals, 60,272 control individuals) and a multi-trait GWAS of nine blood-cell indices in the UK Biobank. We identified 3,000 blood-cell-trait-associated (p < 5.0 × 10-8) variants, explaining 4.0% to 23.9% of trait variation and including 115 loci associated with blood-cell ratios (LMR, lymphocyte-to-monocyte ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio). ALL susceptibility was genetically correlated with lymphocyte counts (rg = 0.088, p = 4.0 × 10-4) and PLR (rg = -0.072, p = 0.0017). In Mendelian randomization analyses, genetically predicted increase in lymphocyte counts was associated with increased ALL risk (odds ratio [OR] = 1.16, p = 0.031) and strengthened after accounting for other cell types (OR = 1.43, p = 8.8 × 10-4). We observed positive associations with increasing LMR (OR = 1.22, p = 0.0017) and inverse effects for NLR (OR = 0.67, p = 3.1 × 10-4) and PLR (OR = 0.80, p = 0.002). Our study shows that a genetically induced shift toward higher lymphocyte counts, overall and in relation to monocytes, neutrophils, and platelets, confers an increased susceptibility to childhood ALL.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Soyoung Jeon
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew T DeWan
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA; Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA
| | - Catherine Metayer
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
14
|
Grasso C, Pierie C, Mebius RE, van Baarsen LGM. Lymph node stromal cells: subsets and functions in health and disease. Trends Immunol 2021; 42:920-936. [PMID: 34521601 DOI: 10.1016/j.it.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/04/2023]
Abstract
Lymph nodes (LNs) aid the interaction between lymphocytes and antigen-presenting cells, resulting in adequate and prolonged adaptive immune responses. LN stromal cells (LNSCs) are crucially involved in steering adaptive immune responses at different levels. Most knowledge on LNSCs has been obtained from mouse studies, and few studies indicate similarities with their human counterparts. Recent advances in single-cell technologies have revealed significant LNSC heterogeneity among different subsets with potential selective functions in immunity. This review provides an overview of current knowledge of LNSCs based on human and murine studies describing the role of these cells in health and disease.
Collapse
Affiliation(s)
- C Grasso
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands
| | - C Pierie
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands
| | - R E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
| | - L G M van Baarsen
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
KRT8 and KRT19, associated with EMT, are hypomethylated and overexpressed in lung adenocarcinoma and link to unfavorable prognosis. Biosci Rep 2021; 40:225236. [PMID: 32519739 PMCID: PMC7335829 DOI: 10.1042/bsr20193468] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer. To date, the prognosis of patients with LUAD remains dismal. Methods: Three datasets were downloaded from the GEO database. Differentially expressed genes (DEGs) were obtained. FunRich was used to perform pathway enrichment analysis. Protein–protein interaction (PPI) networks were established and hub genes were obtained by Cytoscape software. GEPIA was utilized to conduct correlation and survival analysis. Upstream miRNAs of DEGs were predicted via miRNet database, and methylation status of promoters of DEGs was determined through UALCAN database. Results: A total of 375 DEGs, including 105 and 270 up-regulated and down-regulated genes in LUAD, were commonly appeared in three datasets. These DEGs were significantly enriched in mesenchymal-to-epithelial transition (MET) and epithelial-to-mesenchymal transition (EMT). About 8 up-regulated and 5 down-regulated DEGs were commonly appeared in EMT/MET-related gene set and the top 50 hub gene set. Among the 13 genes, increased expression of KRT8 and KRT19 indicated unfavorable prognosis whereas high expression of DCN and CXCL12 suggested favorable prognosis in LUAD. Correlation analysis showed that KRT8 (DCN) expression was linked to KRT19 (CXCL12) expression. Further analysis displayed that KRT8 and KRT19 could jointly forecast poor prognosis in LUAD. About 42 and 2 potential miRNAs were predicted to target KRT8 and KRT19, respectively. Moreover, methylation level analysis demonstrated that KRT8 and KRT19 were significantly hypomethylated in LUAD compared with normal controls. Conclusions: All these findings suggest that KRT8 and KRT19 are hypomethylated and overexpressed in LUAD and associated with unfavorable prognosis.
Collapse
|
16
|
Xu L, Li C, Hua F, Liu X. The CXCL12/CXCR7 signalling axis promotes proliferation and metastasis in cervical cancer. Med Oncol 2021; 38:58. [DOI: 10.1007/s12032-021-01481-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
|
17
|
Yu JL, Chan S, Fung MKL, Chan GCF. Mesenchymal stem cells accelerated growth and metastasis of neuroblastoma and preferentially homed towards both primary and metastatic loci in orthotopic neuroblastoma model. BMC Cancer 2021; 21:393. [PMID: 33838662 PMCID: PMC8035760 DOI: 10.1186/s12885-021-08090-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022] Open
Abstract
Background Majority of neuroblastoma patients develop metastatic disease at diagnosis and their prognosis is poor with current therapeutic approach. Major challenges are how to tackle the mechanisms responsible for tumorigenesis and metastasis. Human mesenchymal stem cells (hMSCs) may be actively involved in the constitution of cancer microenvironment. Methods An orthotopic neuroblastoma murine model was utilized to mimic the clinical scenario. Human neuroblastoma cell line SK-N-LP was transfected with luciferase gene, which were inoculated with/without hMSCs into the adrenal area of SCID-beige mice. The growth and metastasis of neuroblastoma was observed by using Xenogen IVIS 100 in vivo imaging and evaluating gross tumors ex vivo. The homing of hMSCs towards tumor was analyzed by tracing fluorescence signal tagged on hMSCs using CRI Maestro™ imaging system. Results hMSCs mixed with neuroblastoma cells significantly accelerated tumor growth and apparently enhanced metastasis of neuroblastoma in vivo. hMSCs could be recruited by primary tumor and also become part of the tumor microenvironment in the metastatic lesion. The metastatic potential was consistently reduced in lung and tumor when hMSCs were pre-treated with stromal cell derived factor-1 (SDF-1) blocker, AMD3100, suggesting that the SDF-1/CXCR4 axis was one of the prime movers in the metastatic process. Conclusions hMSCs accelerated and facilitated tumor formation, growth and metastasis. Furthermore, the homing propensity of hMSCs towards both primary tumor and metastatic loci can also provide new therapeutic insights in utilizing bio-engineered hMSCs as vehicles for targeted anti-cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08090-2.
Collapse
Affiliation(s)
- Jiao-Le Yu
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Shing Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Marcus Kwong-Lam Fung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China. .,Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
18
|
Liang GQ, Liu J, Zhou XX, Lin ZX, Chen T, Chen G, Wei H. Anti-CXCR4 Single-Chain Variable Fragment Antibodies Have Anti-Tumor Activity. Front Oncol 2021; 10:571194. [PMID: 33392074 PMCID: PMC7775505 DOI: 10.3389/fonc.2020.571194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Monoclonal antibodies (mAbs) are large and have limitations as cancer therapeutics. Human single-chain variable fragment (scFv) is a small antibody as a good alternative. It can easily enter cancer tissues, has no immunogenicity and can be produced in bacteria to decrease the cost. The chemokine receptor CXCR4 is overexpressed in different cancer cells. It plays an important role in tumor growth and metastasis. Its overexpression is associated with poor prognosis in cancer patients and is regarded as an attractive target for cancer treatment. In this study, a peptide on the CXCR4 extracellular loop 2 (ECL2) was used as an antigen for screening a human scFv antibody library by yeast two-hybrid method. Three anti-CXCR4 scFv antibodies were isolated. They could bind to CXCR4 protein and three cancer cell lines (DU145, PC3, and MDA-MB-231) and not to 293T and 3T3 cells as negative controls. These three scFvs could decrease the proliferation, migration, and invasion of these cancer cells and promote their apoptosis. The two scFvs were further examined in a mouse xenograft model, and they inhibited the tumor growth. Tumor immunohistochemistry also demonstrated that the two scFvs decreased cancer cell proliferation and tumor angiogenesis and increased their apoptosis. These results show that these anti-CXCR4 scFvs can decrease cancer cell proliferation and inhibit tumor growth in mice, and may provide therapy for various cancers.
Collapse
Affiliation(s)
- Guang-Quan Liang
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Liu
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Xin Zhou
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ze-Xiong Lin
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tao Chen
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Henry Wei
- Department of Cell Biology and Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Portella L, Bello AM, Scala S. CXCL12 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:51-70. [PMID: 34286441 DOI: 10.1007/978-3-030-62658-7_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor microenvironment (TME) is the local environment of tumor, composed of tumor cells and blood vessels, extracellular matrix (ECM), immune cells, and metabolic and signaling molecules. Chemokines and their receptors play a fundamental role in the crosstalk between tumor cells and TME, regulating tumor-related angiogenesis, specific leukocyte infiltration, and activation of the immune response and directly influencing tumor cell growth, invasion, and cancer progression. The chemokine CXCL12 is a homeostatic chemokine that regulates physiological and pathological process such as inflammation, cell proliferation, and specific migration. CXCL12 activates CXCR4 and CXCR7 chemokine receptors, and the entire axis has been shown to be dysregulated in more than 20 different tumors. CXCL12 binding to CXCR4 triggers multiple signal transduction pathways that regulate intracellular calcium flux, chemotaxis, transcription, and cell survival. CXCR7 binds with high-affinity CXCL12 and with lower-affinity CXCL11, which binds also CXCR3. Although CXCR7 acts as a CXCL12 scavenger through ligand internalization and degradation, it transduces the signal mainly through β-arrestin with a pivotal role in endothelial and neural cells. Recent studies demonstrate that TME rich in CXCL12 leads to resistance to immune checkpoint inhibitors (ICI) therapy and that CXCL12 axis inhibitors sensitize resistant tumors to ICI effect. Thus targeting the CXCL12-mediated axis may control tumor and tumor microenvironment exerting an antitumor dual action. Herein CXCL12 physiology, role in cancer biology and in composite TME, prognostic role, and the relative inhibitors are addressed.
Collapse
Affiliation(s)
- Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Anna Maria Bello
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy.
| |
Collapse
|
20
|
Yang P, Hu Y, Zhou Q. The CXCL12-CXCR4 Signaling Axis Plays a Key Role in Cancer Metastasis and is a Potential Target for Developing Novel Therapeutics against Metastatic Cancer. Curr Med Chem 2020; 27:5543-5561. [PMID: 31724498 DOI: 10.2174/0929867326666191113113110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Metastasis is the main cause of death in cancer patients; there is currently no effective treatment for cancer metastasis. This is primarily due to our insufficient understanding of the metastatic mechanisms in cancer. An increasing number of studies have shown that the C-X-C motif chemokine Ligand 12 (CXCL12) is overexpressed in various tissues and organs. It is a key niche factor that nurtures the pre-metastatic niches (tumorigenic soil) and recruits tumor cells (oncogenic "seeds") to these niches, thereby fostering cancer cell aggression and metastatic capabilities. However, the C-X-C motif chemokine Receptor 4 (CXCR4) is aberrantly overexpressed in various cancer stem/progenitor cells and functions as a CXCL12 receptor. CXCL12 activates CXCR4 as well as multiple downstream multiple tumorigenic signaling pathways, promoting the expression of various oncogenes. Activation of the CXCL12-CXCR4 signaling axis promotes Epithelial-Mesenchymal Transition (EMT) and mobilization of cancer stem/progenitor cells to pre-metastatic niches. It also nurtures cancer cells with high motility, invasion, and dissemination phenotypes, thereby escalating multiple proximal or distal cancer metastasis; this results in poor patient prognosis. Based on this evidence, recent studies have explored either CXCL12- or CXCR4-targeted anti-cancer therapeutics and have achieved promising results in the preclinical trials. Further exploration of this new strategy and its potent therapeutics effect against metastatic cancer through the targeting of the CXCL12- CXCR4 signaling axis may lead to a novel therapy that can clean up the tumor microenvironment ("soil") and kill the cancer cells, particularly the cancer stem/progenitor cells ("seeds"), in cancer patients. Ultimately, this approach has the potential to effectively treat metastatic cancer.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine (School of Nursing), Nantong University, Nantong, Jiangsu 226000, China
| | - Yae Hu
- Department of Pathophysiology, School of Medicine (School of Nursing), Nantong University, Nantong, Jiangsu 226000, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University; Suzhou, Jiangsu 215123, China
| |
Collapse
|
21
|
Liu H, Cheng Q, Xu DS, Wang W, Fang Z, Xue DD, Zheng Y, Chang AH, Lei YJ. Overexpression of CXCR7 accelerates tumor growth and metastasis of lung cancer cells. Respir Res 2020; 21:287. [PMID: 33129326 PMCID: PMC7603767 DOI: 10.1186/s12931-020-01518-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background Under physiological conditions, CXCL12 modulates cell proliferation, survival, angiogenesis, and migration mainly through CXCR4. Interestingly, the newly discovered receptor CXCR7 for CXCL12 is highly expressed in many tumor cells as well as tumor-associated blood vessels, although the level of CXCR7 in normal cells is low. Recently, many studies have suggested that CXCR7 promotes cell growth and metastasis in more than 20 human malignancies, among which lung cancer is the leading cause of cancer-associated deaths worldwide. Thus, the mechanism of CXCR7 in the progression of lung cancer is urgently needed. Methods First, we explored CXCR4 and CXCR7 expression in human lung cancer specimens and cell lines by immunohistochemistry, western blot and flow cytometry. Then, we chose the human lung adenocarcinoma cell line A549 that stably overexpressed CXCR7 through the way of lentivirus-mediated transduction. Next, “wound healing” assay and transwell assay were applied to compare the cell migration and invasion ability, and stripe assay was used to evaluate the cell polarization. Last, our team established a mouse xenograft model of human lung cancer and monitored tumor proliferation and metastasis by firefly luciferase bioluminescence imaging in SCID/Beige mice. Results In clinical lung cancer samples, CXCR7 expression was almost not detected in normal tissue but upregulated in lung tumor tissue, whereas, CXCR4 was highly expressed in both normal and tumor tissues. Furthermore, overexpression of CXCR7 enhanced A549 cell migration and polarization in vitro. Besides, mouse xenograft model of human lung cancer showed that CXCR7 promoted primary lung tumor’s growth and metastasis to the second organ, such as liver or bone marrow in SCID/Beige mice in vivo. Conclusions This study describes the multiple functions of CXCR7 in lung cancer. Thus, these results suggest that CXCR7 may be a malignancy marker and may provide a novel target for anticancer therapy.
Collapse
Affiliation(s)
- Huan Liu
- Department of Traditional Chinese Medicine, Xijing Hospital Affiliated to the Fourth Military Medical University, Xi'an, 710032, China.,Department of Immunology and Microbiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Qian Cheng
- Department of Anesthesiology, Cancer Hospital Affiliated to Fudan University, Shanghai, 200032, China
| | - Dong-Sheng Xu
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Wang
- Department of Traditional Chinese Medicine, Xijing Hospital Affiliated to the Fourth Military Medical University, Xi'an, 710032, China
| | - Zheng Fang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Dong-Dong Xue
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Ya Zheng
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065, China
| | - Alex H Chang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200438, China.
| | - Yan-Jun Lei
- Department of Immunology and Microbiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
22
|
Xia L, Wang H, Xiao H, Lan B, Liu J, Yang Z. EEF1A2 and ERN2 could potentially discriminate metastatic status of mediastinal lymph node in lung adenocarcinomas harboring EGFR 19Del/L858R mutations. Thorac Cancer 2020; 11:2755-2766. [PMID: 32881299 PMCID: PMC7529558 DOI: 10.1111/1759-7714.13554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Background Early data has indicated that EGFR 19Del mutation and EGFR L585R mutation are two different types of non‐small cell lung cancer (NSCLC). However, how the different molecular mechanisms participate in the process of mediastinal lymph node metastasis (MLNM) in lung adenocarcinoma (LA) harboring EGFR 19Del and EGFR L858R mutation remains unknown. We thus explored the genes responsible for MLNM in LA with EGFR 19Del or L858R mutation. Methods We performed transcriptome sequencing and bioinformatics analysis from 10 patients with LA resection specimens of primary tumors. Quantitative reverse transcription‐polymerase chain reaction was used to validate gene expressions. Results There were 69 mRNAs upregulated and 100 mRNAs downregulated in five samples with MLNM compared with samples without MLN metastasis. EEF1A2 and ERN2 were observed exhibiting different expression patterns in EGFR 19Del and EGFR L858R samples with MLNM. In samples harboring EGFR 19Del mutation, the expression of EEF1A2 gene in samples with MLNM was significantly lower compared with samples without MLN metastasis, and in samples with EGFR L858R, it was significantly higher in samples with MLNM. The expression pattern of ERN2 was opposite to EEF1A2. In addition, several other genes including SLC6A11, IGHV3‐48, IGHV3‐43, DUSP9, and HOXA9 were also shown to be associated with invasion and metastasis and exhibited an expression pattern similar to EEF1A2 and ERN2 in EGRF 19Del and L858R mutation tumors. Conclusions EEF1A2 and ERN2 were for the first time observed exhibiting distinct expression patterns in MLNM in lung adenocarcinomas harboring EGFR 19Del and EGFR L858R mutation by interindividual DEGs analysis. Key points Significant findings of the study In our study, we focused on the mechanisms of metastasis and invasion that different EGFR mutations conferred and identified two critical genes separately involved in this process in EGFR 19Del and L858R mutation tumors. What this study adds Our findings not only reinforced theoretical foundations that the EGFR 19Del and L858R mutation tumors should be considered as two kinds of diseases, but also laid the fundamentals for precise determination of the mediastinal lymph node radiation field and improvement of clinical outcome.
Collapse
Affiliation(s)
- Lei Xia
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Hui Wang
- Cancer Center, Institute of Surgery Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - He Xiao
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Baohua Lan
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Jie Liu
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Zhenzhou Yang
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| |
Collapse
|
23
|
Li Z, Wang Y, Shen Y, Qian C, Oupicky D, Sun M. Targeting pulmonary tumor microenvironment with CXCR4-inhibiting nanocomplex to enhance anti-PD-L1 immunotherapy. SCIENCE ADVANCES 2020; 6:eaaz9240. [PMID: 32440550 PMCID: PMC7228744 DOI: 10.1126/sciadv.aaz9240] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/02/2020] [Indexed: 05/19/2023]
Abstract
Anti-programmed cell death 1 ligand 1 (PD-L1) therapy is extraordinarily effective in select patients with cancer. However, insufficient lymphocytic infiltration, weak T cell-induced inflammation, and immunosuppressive cell accumulation in the tumor microenvironment (TME) may greatly diminish the efficacy. Here, we report development of the FX@HP nanocomplex composed of fluorinated polymerized CXCR4 antagonism (FX) and paclitaxel-loaded human serum albumin (HP) for pulmonary delivery of anti-PD-L1 small interfering RNA (siPD-L1) to treat orthotopic lung tumors. FX@HP induced T cell infiltration, increased expression of calreticulin on tumor cells, and reduced the myeloid-derived suppressor cells/regulatory T cells in the TME, thereby acting synergistically with siPD-L1 for effective immunotherapy. Our work suggests that the CXCR4-inhibiting nanocomplex decreases tumor fibrosis, facilitates T cell infiltration and relieves immunosuppression to modulate the immune process to improve the objective response rate of anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Zhaoting Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yixin Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuexin Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chenggen Qian
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Minjie Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
24
|
Zhang Y, Ou DH, Zhuang DW, Zheng ZF, Lin ME. In silico analysis of the immune microenvironment in bladder cancer. BMC Cancer 2020; 20:265. [PMID: 32228629 PMCID: PMC7106767 DOI: 10.1186/s12885-020-06740-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/12/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Infiltrating immune and stromal cells are vital components of the bladder cancer (BC) microenvironment, which can significantly affect BC progression and outcome. However, the contribution of each subset of tumour-infiltrating immune cells is unclear. The objective of this study was to perform cell phenotyping and transcriptional profiling of the tumour immune microenvironment and analyse the association of distinct cell subsets and genes with BC prognosis. METHODS Clinical data of 412 patients with BC and 433 transcription files for normal and cancer tissues were downloaded from The Cancer Genome Atlas. The CIBERSORT algorithm was used to determine the relative abundance of 22 immune cell types in each sample and the ESTIMATE algorithm was used to identify differentially expressed genes within the tumour microenvironment of BC, which were subjected to functional enrichment and protein-protein interaction (PPI) analyses. The association of cell subsets and differentially expressed genes with patient survival and clinical parameters was examined by Cox regression analysis and the Kaplan-Meier method. RESULTS Resting natural killer cells and activated memory CD4+ and CD8+ T cells were associated with favourable patient outcome, whereas resting memory CD4+ T cells were associated with poor outcome. Differential expression analysis revealed 1334 genes influencing both immune and stromal cell scores; of them, 97 were predictive of overall survival in patients with BC. Among the top 10 statistically significant hub genes in the PPI network, CXCL12, FN1, LCK, and CXCR4 were found to be associated with BC prognosis. CONCLUSION Tumour-infiltrating immune cells and cancer microenvironment-related genes can affect the outcomes of patients and are likely to be important determinants of both prognosis and response to immunotherapy in BC.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, Guangdong, China
- Shantou University Medical College, No. 22, Xinling Road, Jinping District, Shantou, Guangdong, China
| | - De-Hua Ou
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, Guangdong, China
- Shantou University Medical College, No. 22, Xinling Road, Jinping District, Shantou, Guangdong, China
| | - Dong-Wu Zhuang
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, Guangdong, China
- Shantou University Medical College, No. 22, Xinling Road, Jinping District, Shantou, Guangdong, China
| | - Ze-Feng Zheng
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, Guangdong, China
- Shantou University Medical College, No. 22, Xinling Road, Jinping District, Shantou, Guangdong, China
| | - Ming-En Lin
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, Guangdong, China.
| |
Collapse
|
25
|
Wang H, Mao J, Huang Y, Zhang J, Zhong L, Wu Y, Huang H, Yang J, Wei Y, Tang J. Prognostic roles of miR-124-3p and its target ANXA7 and their effects on cell migration and invasion in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:357-370. [PMID: 32269673 PMCID: PMC7137028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
Recent studies have indicated that ANXA7 promotes progression and metastasis of hepatocellular carcinoma (HCC). In this study we found a significant negative correlation between the levels of miR-124-3p and ANXA7 protein in HCC. Level of miR-124-3p in tumor tissues was negatively correlated, while ANXA7 protein was positively correlated, with TNM stage and tumor metastasis. Furthermore, we confirmed ANXA7 was a target gene of miR-124-3p by a dual luciferase reporter assay. In vitro, up-regulation of miR-124-3p promotes apoptosis and inhibits migration and invasion of Hca-F. Bcl-2 correlates X protein (Bax) protein level was up-regulated, while ANXA7, B-cell lymphoma-2 (Bcl-2), Matrix metalloproteinase (MMP-9) and C-X-C motif chemokine 12 (CXCL12) protein levels were suppressed relative to miR-124-3p over-expression. In vivo, up-regulation of miR-124-3p suppresses lymph node metastasis (LNM) and tumorigenicity of Hca-F cells. The expression of ANXA7, MMP-9, and CXCL12 protein in transplanted tumors was suppressed relative to miR-124-3p overexpression. In addition, we found the levels of Bcl-2, MMP-9, and CXCL12 in Hca-F cells decreased significantly after transfection of shRNA-Anxa7 in vitro. In conclusion, our study revealed miR-124-3p inhibits tumor growth, invasion, and lymphatic metastasis in HCC by down-regulation of ANXA7 gene, thereby reducing the expression of Bcl-2, MMP-9, and CXCL12.
Collapse
Affiliation(s)
- Honghai Wang
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning Province, China
| | - Jun Mao
- Teaching Laboratory of Morphology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning Province, China
| | - Yuhong Huang
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning Province, China
- Key Laboratory for Tumor Metastasis and Intervention of Liaoning ProvinceDalian, Liaoning Province, China
| | - Jun Zhang
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning Province, China
- Key Laboratory for Tumor Metastasis and Intervention of Liaoning ProvinceDalian, Liaoning Province, China
| | - Lin Zhong
- Department of Pathology, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Ying Wu
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning Province, China
| | - He Huang
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning Province, China
| | - Jiayu Yang
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning Province, China
| | - Yuanyi Wei
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning Province, China
- Key Laboratory for Tumor Metastasis and Intervention of Liaoning ProvinceDalian, Liaoning Province, China
| | - Jianwu Tang
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical UniversityDalian, Liaoning Province, China
- Key Laboratory for Tumor Metastasis and Intervention of Liaoning ProvinceDalian, Liaoning Province, China
| |
Collapse
|
26
|
Weng Y, Lou J, Liu X, Lin S, Xu C, Du C, Tang L. Effects of high glucose on proliferation and function of circulating fibrocytes: Involvement of CXCR4/SDF‑1 axis. Int J Mol Med 2019; 44:927-938. [PMID: 31257476 PMCID: PMC6657976 DOI: 10.3892/ijmm.2019.4260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to further investigate the effects of high glucose on the function of circulating fibrocytes and its underlying mechanisms. The total peripheral blood mononuclear cells were obtained from normal glucose tolerance patients and type 2 diabetic mellitus patients. Circulating fibrocytes were stimulated with different glucose concentrations for different time periods (24, 48 and 72 h). Cell proliferation was determined by Cell Counting Kit-8 assay. The expression of connective tissue growth factor (CTGF) was detected by western blotting. The expression of COL-I was detected by flow cytometry. The apoptotic bodies of cells were detected by fluorescence microscopy after Hoechst33258 staining. The invasive and migration abilities of fibrocytes were detected by Transwell chamber assay. Secretion of stromal cell-derived factor 1 (SDF-1) was measured by ELISA. The circulating fibrocytes showed a typical spindle-shape and were double-positive for cluster of differentiation 45 (green) and COL-I (red). Compared with the 5.5 mmol/l glucose group, a high glucose concentration significantly promoted the proliferation of circulating fibrocytes and showed the most significant effects at 30 mmol/l after treatment for 48 h. AMD3100 showed no effects on the proliferation of circulating fibrocytes. Flow cytometry revealed that 30 mmol/l glucose significantly promoted the expression of COL-I vs. 5.5 mmol/l glucose group (P<0.01), while AMD3100 reversed this (P<0.05). Hoechst33258 staining showed no differences in the apoptotic bodies between experimental groups (P>0.05). Western blotting revealed that the expression of CTGF was decreased significantly by AMD3100 pretreatment (P<0.01). Transwell chamber assay showed that 30 mmol/l glucose significantly promoted the invasive and transfer abilities (P<0.01) of fibrocytes when compared with the 5.5 mmol/l glucose group. While AMD3100 reversed the cell migratory effects induced by high glucose (P<0.01). In addition, the secretion of SDF-1 stimulated by 30 mmol/l glucose DMEM showed no differences compared with 5.5 mmol/l glucose DMEM (P>0.05). High glucose stimulated the expressions of CTGF and COL-I, and promoted migration of circulating fibrocytes via the CXC chemokine receptor 4/SDF-1 axis.
Collapse
Affiliation(s)
- Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Jiangjie Lou
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Senna Lin
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Chenkai Xu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Changqing Du
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
27
|
Wang S, Yu ZH, Chai KQ. Identification of CFTR as a novel key gene in chromophobe renal cell carcinoma through bioinformatics analysis. Oncol Lett 2019; 18:1767-1774. [PMID: 31423244 PMCID: PMC6607225 DOI: 10.3892/ol.2019.10476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Chromophobe renal cell carcinoma (chRCC), the third most common histological subtype of RCC, comprises 5–7% of all RCC cases. The aim of the present study was to identify potential biomarkers for chRCC and to examine the underlying mechanisms. A total of 4 profile datasets were downloaded from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs were performed with the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network was constructed to predict hub genes. Hub gene expression within chRCC across multiple datasets, as well as overall survival, were investigated by utilizing the Oncomine platform and UALCAN dataset, separately. A total of 266 DEGs (88 upregulated genes and 168 downregulated genes) were identified from 4 profile datasets. Integrating the results from the PPI network, Oncomine platform and survival analysis, CFTR was screened as a key factor in the prognosis of chRCC. GO and KEGG analysis revealed that 266 DEGs were mainly enriched in 17 terms and 9 pathways. The present study identified key genes and potential molecular mechanisms underlying the development of chRCC, and CFTR may be a potential prognostic biomarker and novel therapeutic target for chRCC.
Collapse
Affiliation(s)
- Sheng Wang
- The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310053, P.R. China.,Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhi-Hong Yu
- Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310053, P.R. China
| | - Ke-Qun Chai
- Department of Oncology, Tongde Hospital of Zhejiang, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
28
|
Du H, Gao L, Luan J, Zhang H, Xiao T. C-X-C Chemokine Receptor 4 in Diffuse Large B Cell Lymphoma: Achievements and Challenges. Acta Haematol 2019; 142:64-70. [PMID: 31096215 DOI: 10.1159/000497430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/02/2019] [Indexed: 12/24/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL), an aggressive cancer of the B cells, is the most common subtype of non-Hodgkin lymphoma (NHL) worldwide. In China, the cases of DLBCL increase yearly. C-X-C chemokine receptor 4 (CXCR4) has been implicated in the migration and trafficking of malignant B cells in several hematological malignancies, and only a few reports have been published on the role of CXCR4 in the metastasis of DLBCL. This review summarizes the relevant perspectives on the functional mechanism, prognostic significance, and therapeutic applications of the CXCL12/CXCR4 axis in DLBCL, in particular DLBCL with bone marrow involvement.
Collapse
Affiliation(s)
- Hui Du
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China,
| | - Lei Gao
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Jing Luan
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Hangfan Zhang
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Taiwu Xiao
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
29
|
Guo C, You DY, Li H, Tuo XY, Liu ZJ. Spherical silica nanoparticles promote malignant transformation of BEAS-2B cells by stromal cell-derived factor-1α (SDF-1α). J Int Med Res 2019; 47:1264-1278. [PMID: 30727793 PMCID: PMC6421376 DOI: 10.1177/0300060518814333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective This study aimed to examine the role of spherical silica nanoparticles
(SiNPs) on human bronchial epithelial (BEAS-2B) cells through
inflammation. Methods Human mononuclear (THP-1) cells and BEAS-2B cells were co-cultured in
transwell chambers and treated with 800 mmol/L
benzo[a]pyrene-7, 8-dihydrodiol-9, 10-epoxide (BPDE) and
12.5 µg/mL SiNPs for 24 hours. For controls, cells were treated with BPDE
alone. Subcutaneous tumorigenicity and epithelial-mesenchymal transition
(EMT) of BEAS-2B cells were measured. The cells were blocked with a stromal
cell-derived factor-1α (SDF-1α)-specific antibody. EMT was analyzed in cells
treated with 800 mmol/L BPDE and 12.5 µg/mL SiNPs relative to matched
control cells and xenografts in vivo. Serum SDF-1α levels
were measured in 23 patients with lung adenocarcinoma in Xuanwei, in 25 with
lung adenocarcinoma outside Xuanwei, and in 22 with benign pulmonary lesions
in Xuanwei. Results SiNPs significantly promoted tumorigenesis and EMT, induced the release of
SDF-1α, and activated AKT (ser473) in BEAS-2B cells. EMT and phosphorylated
AKT (ser473) and glycogen synthase kinase-3β levels were decreased when
blocked by SDF-1α antibody in BEAS-2B cells. SDF-1α was mainly secreted by
THP-1 cells. Conclusion SiNPs combined with BPDE promote EMT of BEAS-2B cells via the AKT pathway by
inducing release of SDF-1α from THP-1 cells.
Collapse
Affiliation(s)
- Chong Guo
- 1 Department of Laboratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,2 Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, China
| | - Ding-Yun You
- 3 School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Huan Li
- 1 Department of Laboratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiao-Yu Tuo
- 2 Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, China
| | - Zi-Jie Liu
- 1 Department of Laboratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,2 Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, China
| |
Collapse
|
30
|
Wald O. CXCR4 Based Therapeutics for Non-Small Cell Lung Cancer (NSCLC). J Clin Med 2018; 7:jcm7100303. [PMID: 30257500 PMCID: PMC6210654 DOI: 10.3390/jcm7100303] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/16/2018] [Accepted: 09/23/2018] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the second most common malignancy. Unfortunately, despite advances in multimodality therapeutics for the disease, the overall five-year survival rate among newly diagnosed lung cancer patients remains in the range region of 15%. In addition, although immune checkpoint inhibitors are increasingly being incorporated into lung cancer treatment protocols, the proportion of patients that respond to these agents remains low and the duration of response is often short. Therefore, novel methodologies to enhance the efficacy of immunotherapy in lung cancer are highly desirable. Chemokines are small chemotactic cytokines that interact with their 7 transmembrane G-protein⁻coupled receptors, to guide immune cell trafficking in the body under both physiologic and pathologic conditions. Tumor cells highjack a small repertoire of the chemokine/chemokine receptor system and utilize it in a manner that benefits local tumor growth and distant spread. The chemokine receptor, CXCR4 is expressed in over 30 types of malignant tumors and, through interaction with its ligand CXCL12, was shown exert pleotropic pro-tumorigenic effects. In this review, the pathologic roles that CXCL12/CXCR4 play in lung cancer propagation are presented. Furthermore, the challenges and potential benefits of incorporating drugs that target CXCL12/CXCR4 into immune-based lung cancer therapeutic protocols are discussed.
Collapse
Affiliation(s)
- Ori Wald
- Department of Cardiothoracic Surgery, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel.
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel.
| |
Collapse
|
31
|
Krikun G. The CXL12/CXCR4/CXCR7 axis in female reproductive tract disease: Review. Am J Reprod Immunol 2018; 80:e13028. [PMID: 30106199 DOI: 10.1111/aji.13028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 12/21/2022] Open
Abstract
Initial studies on the chemokine stromal derived factor 1 (now referred to as CXCL12) were proposed to be enhanced in several diseases including those which affect the female reproductive tract. These include endometriosis, Asherman's syndrome, endometrial cancers, and ovarian cancers. Additionally, recent studies from our laboratory suggest that CXCL12 signaling is involved in leiomyomas (fibroids). These diseases present an inflammatory/hypoxic environment which further promotes pathology. At first, studies focused on signaling by CXCL12 via its well-known receptor, CXCR4. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in endometrial disease and cancer progression has questioned the potential of "selective blockade"' of CXCR4 to treat these ailments. This review will focus on the signaling and effects of the potent chemokine CXCL12, and its long-known G protein-coupled receptor CXCR4, as well as the alternate receptor CXCR7 on the female reproductive tract and related diseases such as endometriosis, Asherman's syndrome, leiomyomas, endometrial cancer, and ovarian cancer. Although several other mechanisms are inherent to these diseases such as gene mutations, differential expression of miRNAs and epigenetics, for this review, we will focus on the CXCL12/CXCR4/CXCR7 axis as a novel target.
Collapse
Affiliation(s)
- Graciela Krikun
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
32
|
Zhou LL, Xu XY, Ni J, Zhao X, Zhou JW, Feng JF. T-cell lymphomas associated gene expression signature: Bioinformatics analysis based on gene expression Omnibus. Eur J Haematol 2018; 100:575-583. [PMID: 29505095 DOI: 10.1111/ejh.13051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Due to the low incidence and the heterogeneity of subtypes, the biological process of T-cell lymphomas is largely unknown. Although many genes have been detected in T-cell lymphomas, the role of these genes in biological process of T-cell lymphomas was not further analyzed. METHODS Two qualified datasets were downloaded from Gene Expression Omnibus database. The biological functions of differentially expressed genes were evaluated by gene ontology enrichment and KEGG pathway analysis. The network for intersection genes was constructed by the cytoscape v3.0 software. Kaplan-Meier survival curves and log-rank test were employed to assess the association between differentially expressed genes and clinical characters. RESULTS The intersection mRNAs were proved to be associated with fundamental processes of T-cell lymphoma cells. These intersection mRNAs were involved in the activation of some cancer-related pathways, including PI3K/AKT, Ras, JAK-STAT, and NF-kappa B signaling pathway. PDGFRA, CXCL12, and CCL19 were the most significant central genes in the signal-net analysis. The results of survival analysis are not entirely credible. CONCLUSIONS Our findings uncovered aberrantly expressed genes and a complex RNA signal network in T-cell lymphomas and indicated cancer-related pathways involved in disease initiation and progression, providing a new insight for biotargeted therapy in T-cell lymphomas.
Collapse
Affiliation(s)
- Lei-Lei Zhou
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.,Department of Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiao-Yue Xu
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jie Ni
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xia Zhao
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Jian-Wei Zhou
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ji-Feng Feng
- Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Katsura M, Shoji F, Okamoto T, Shimamatsu S, Hirai F, Toyokawa G, Morodomi Y, Tagawa T, Oda Y, Maehara Y. Correlation between CXCR4/CXCR7/CXCL12 chemokine axis expression and prognosis in lymph-node-positive lung cancer patients. Cancer Sci 2017; 109:154-165. [PMID: 29032612 PMCID: PMC5765305 DOI: 10.1111/cas.13422] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
The CXCR4/CXCR7/CXCL12 chemokine axis plays important roles in the migration of tumor cells during cancer development by modulating site‐specific distant metastasis including to regional lymph nodes. We investigated the correlation of these chemokine expressions to prognosis in lymph‐node‐positive non‐small‐cell lung cancer (NSCLC) patients. A total of 140 surgically resected specimens of primary site (PS) and metastatic lymph nodes (MLN) of NSCLC involving hilar and/or mediastinal lymph nodes (N1‐2) were collected. CXCR4, CXCR7 and CXCL12 expressions were evaluated. Cox regression analysis was performed to determine whether these chemokines were independent prognostic factors in N1‐2 NSCLC. High expression of CXCR4 in PS and CXCL12 in MLN was associated with poor overall survival (OS) (P = .025 and .033, respectively). Significant correlations between CXCR4 expression in PS and CXCL12 expression in MLN were observed (P = .040). There was significant difference in OS between 2 groups according to expressions of CXCR4 in PS and CXCL12 in MLN (P = .0033). Expression of CXCL12 in MLN was identified as an independent prognostic factor (HR 1.79, 95% CI 1.08‐3.04, P = .023). CXCL12 in MLN was mainly expressed by tumor cells compared with stromal cells (56% vs 25%, respectively, P < .0001). CXCR4/CXCL12 may play roles in tumor progression in MLN and is associated with poor prognosis of lymph‐node‐positive NSCLC patients.
Collapse
Affiliation(s)
- Masakazu Katsura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiro Shoji
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichiro Shimamatsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Hirai
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gouji Toyokawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yosuke Morodomi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|