1
|
Hajdú B, Csabai L, Márton M, Holczer M, Korcsmáros T, Kapuy O. Oscillation of Autophagy Induction under Cellular Stress and What Lies behind It, a Systems Biology Study. Int J Mol Sci 2023; 24:7671. [PMID: 37108830 PMCID: PMC10143760 DOI: 10.3390/ijms24087671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
One of the main inducers of autophagy-dependent self-cannibalism, called ULK1, is tightly regulated by the two sensor molecules of nutrient conditions and energy status, known as mTOR and AMPK kinases, respectively. Recently, we developed a freely available mathematical model to explore the oscillatory characteristic of the AMPK-mTOR-ULK1 regulatory triangle. Here, we introduce a systems biology analysis to explain in detail the dynamical features of the essential negative and double-negative feedback loops and also the periodic repeat of autophagy induction upon cellular stress. We propose an additional regulatory molecule in the autophagy control network that delays some of AMPK's effect on the system, making the model output more consistent with experimental results. Furthermore, a network analysis on AutophagyNet was carried out to identify which proteins could be the proposed regulatory components in the system. These regulatory proteins should satisfy the following rules: (1) they are induced by AMPK; (2) they promote ULK1; (3) they down-regulate mTOR upon cellular stress. We have found 16 such regulatory components that have been experimentally proven to satisfy at least two of the given rules. Identifying such critical regulators of autophagy induction could support anti-cancer- and ageing-related therapeutic efforts.
Collapse
Affiliation(s)
- Bence Hajdú
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Luca Csabai
- Earlham Institute, Norwich Research Park, Norwich NR4 7UG, UK
- Department of Genetics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Margita Márton
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Marianna Holczer
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás Korcsmáros
- Earlham Institute, Norwich Research Park, Norwich NR4 7UG, UK
- Department of Genetics, Eötvös Loránd University, 1117 Budapest, Hungary
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
2
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
3
|
Dalidowska I, Orlowska A, Smreczak M, Bieganowski P. Hsp90 Activity Is Necessary for the Maturation of Rabies Virus Polymerase. Int J Mol Sci 2022; 23:6946. [PMID: 35805948 PMCID: PMC9266396 DOI: 10.3390/ijms23136946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mononegavirales is an order of viruses with a genome in the form of a non-segmented negative-strand RNA that encodes several proteins. The functional polymerase complex of these viruses is composed of two proteins: a large protein (L) and a phosphoprotein (P). The replication of viruses from this order depends on Hsp90 chaperone activity. Previous studies have demonstrated that Hsp90 inhibition results in the degradation of mononegaviruses L protein, with exception of the rabies virus, for which the degradation of P protein was observed. Here, we demonstrated that Hsp90 inhibition does not affect the expression of rabies L and P proteins, but it inhibits binding of the P protein and L protein into functional viral polymerase. Rabies and the vesicular stomatitis virus, but not the measles virus, L proteins can be expressed independently of the presence of a P protein and in the presence of an Hsp90 inhibitor. Our results suggest that the interaction of L proteins with P proteins and Hsp90 in the process of polymerase maturation may be a process specific to particular viruses.
Collapse
Affiliation(s)
- Iga Dalidowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Anna Orlowska
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (A.O.); (M.S.)
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (A.O.); (M.S.)
| | - Pawel Bieganowski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
4
|
Sager RA, Backe SJ, Ahanin E, Smith G, Nsouli I, Woodford MR, Bratslavsky G, Bourboulia D, Mollapour M. Therapeutic potential of CDK4/6 inhibitors in renal cell carcinoma. Nat Rev Urol 2022; 19:305-320. [PMID: 35264774 PMCID: PMC9306014 DOI: 10.1038/s41585-022-00571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The treatment of advanced and metastatic kidney cancer has entered a golden era with the addition of more therapeutic options, improved survival and new targeted therapies. Tyrosine kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors and immune checkpoint blockade have all been shown to be promising strategies in the treatment of renal cell carcinoma (RCC). However, little is known about the best therapeutic approach for individual patients with RCC and how to combat therapeutic resistance. Cancers, including RCC, rely on sustained replicative potential. The cyclin-dependent kinases CDK4 and CDK6 are involved in cell-cycle regulation with additional roles in metabolism, immunogenicity and antitumour immune response. Inhibitors of CDK4 and CDK6 are now commonly used as approved and investigative treatments in breast cancer, as well as several other tumours. Furthermore, CDK4/6 inhibitors have been shown to work synergistically with other kinase inhibitors, including mTOR inhibitors, as well as with immune checkpoint inhibitors in preclinical cancer models. The effect of CDK4/6 inhibitors in kidney cancer is relatively understudied compared with other cancers, but the preclinical studies available are promising. Collectively, growing evidence suggests that targeting CDK4 and CDK6 in kidney cancer, alone and in combination with current therapeutics including mTOR and immune checkpoint inhibitors, might have therapeutic benefit and should be further explored.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Garrett Smith
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Imad Nsouli
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Syracuse VA Medical Center, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Syracuse VA Medical Center, Syracuse, NY, USA.
| |
Collapse
|
5
|
Wang X, Liu Q, Wu S, Xu N, Li H, Feng A. Identifying the Effect of Celastrol Against Ovarian Cancer With Network Pharmacology and In Vitro Experiments. Front Pharmacol 2022; 13:739478. [PMID: 35370699 PMCID: PMC8971755 DOI: 10.3389/fphar.2022.739478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: We aimed to reveal the function of celastrol in the treatment of ovarian cancer using network pharmacology and molecular docking.Background: Ovarian cancer is a growth of cells that forms in the ovaries. Celastrol is a useful bioactive compound derived from the root of the thunder god vine.Method: Celastrol and ovarian cancer targets were determined by analyzing datasets. Protein–protein interaction (PPI) networks were obtained with network pharmacology. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Molecular docking using SWISS-MODEL, CB-Dock and Discovery Studio was conducted. A methylthiazolyltetrazolium bromide (MTT) assay was performed to evaluate cell proliferation. Cell apoptosis and cell cycle were measured with a fluorescence assay. Reverse transcription PCR (RT-PCR) and Western blot were performed to measure the expression of core targets.Result: Celastrol possessed 29 potential targets, while ovarian cancer possessed 471 potential targets. The core PPI network contained 163 nodes and 4,483 edges. The biological processes identified in the GO analysis indicated that the targets were related with the cellular response to DNA damage stimulus, DNA recombination, and cell proliferation, among other processes. The KEGG analysis indicated that the pathways were related with the cell cycle, viral carcinogenesis, and MAPK signaling pathway, among others. The three core targets shared between the core PPI network and celastrol targets were MYC, CDC37, and FN1. Celastrol directly combined with the targets according to the results from CB-Dock and Discovery Studio. Celastrol inhibited ovarian cancer cell proliferation and promoted ovarian cancer cell apoptosis in a dose-dependent manner. RT-PCR and Western blot analyses showed that celastrol inhibited core target expression. In addition, celastrol also influenced the related inflammatory signaling pathways in ovarian cancer cells.Conclusion: Celastrol exerts effective antitumor activity toward ovarian cancer. Celastrol regulated cell proliferation, DNA repair and replication, apoptotic processes, and inflammatory responses in ovarian cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Hua Li
- *Correspondence: Hua Li, ; Aihua Feng,
| | | |
Collapse
|
6
|
Feng Q, Xia W, Wang S, Dai G, Jiao W, Guo N, Li H, Zhang G. Etodolac improves collagen induced rheumatoid arthritis in rats by inhibiting synovial inflammation, fibrosis and hyperplasia. MOLECULAR BIOMEDICINE 2021; 2:33. [PMID: 35006449 PMCID: PMC8607370 DOI: 10.1186/s43556-021-00052-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Synovial hyperplasia is the main cause of chronic rheumatoid arthritis (RA), but the mechanism of synovial hyperplasia is still unclear. Etodolac (ETD) is a selective COX-2 inhibitor for relieving pain and stiffness in RA, but the disease modifying effect is still lack of evidence. Proteomics method was used to study the differential proteome of synovial tissue in collagen induced arthritis (CIA) in rats. With the help of STRING analysis, the upregulated proteins enriched in the cluster of complement and coagulation cascades and platelet degranulation were highlighted, these proteins with fibrogenic factors Lum, CIV, CXI and Tgfbi participated in the synovial inflammation, fibrosis and hyperplasia in CIA. Based on KOG function class analysis, the proteins involved in the events of the central dogma was explored. They might be hyperplasia related proteins for most of them are related to the proliferation of cancer. ETD significantly attenuated synovial inflammation, fibrosis and hyperplasia in CIA rats by downregulating these proteins. Several proteins have not been observed in RA so far, such as Tmsb4x, Pura, Nfic, Ruvbl1, Snrpd3, U2af2, Srrm2, Srsf7, Elavl1, Hnrnph1, Wars, Yars, Bzw2, Mcts1, Eif4b, Ctsh, Lamp1, Dpp7, Ptges3, Cdc37 and Septin9, they might be potentials targets for RA. Blood biochemistry tests showed the safety of 7 months use of ETD on rats. In conclusion, present study displayed a comprehensive mechanism of synovial hyperplasia in CIA rats, on this basis, the clinical value of ETD in the treatment of RA was well confirmed.
Collapse
Affiliation(s)
- Qin Feng
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China.,National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Wenkai Xia
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Shenglan Wang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Guoxin Dai
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Weimei Jiao
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Na Guo
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Honghua Li
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China. .,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China. .,National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China.
| |
Collapse
|
7
|
Abi Zamer B, El-Huneidi W, Eladl MA, Muhammad JS. Ins and Outs of Heat Shock Proteins in Colorectal Carcinoma: Its Role in Carcinogenesis and Therapeutic Perspectives. Cells 2021; 10:cells10112862. [PMID: 34831085 PMCID: PMC8616065 DOI: 10.3390/cells10112862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer cells can reprogram their metabolic activities and undergo uncontrolled proliferation by utilizing the power of heat shock proteins (HSPs). HSPs are highly conserved chaperones that facilitate the folding of intracellular proteins under stress. Constitutively, HSPs are expressed at low levels, but their expression upregulates in response to a wide variety of insults, including anticancer drugs, allowing cancer cells to develop chemoresistance. In recent years, several researchers have reported that HSPs could be an important therapeutic target in difficult-to-treat cancers such as colorectal carcinoma (CRC). Worldwide, CRC is the second most common type of cancer and the second leading cause of cancer-related deaths. The molecular complexity of CRC and the coexisting inflammatory conditions present a significant obstacle to developing effective treatment. Recently, considerable progress has been made in enhancing our understanding of the role of HSPs in CRC pathogenesis. Moreover, novel therapeutic strategies targeting HSPs, either alone or in combination with other anticancer agents, have been reported. Herein, we present an overview of the functional mechanisms and the diagnostic and prognostic potential of HSPs in CRC. We also discuss emerging anti-CRC strategies based on targeting HSPs.
Collapse
Affiliation(s)
- Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.E.-H.); (M.A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6-5057293
| |
Collapse
|
8
|
Wang C, Li H, Wu L, Jiao X, Jin Z, Zhu Y, Fang Z, Zhang X, Huang H, Zhao L. Coiled-Coil Domain-Containing 68 Downregulation Promotes Colorectal Cancer Cell Growth by Inhibiting ITCH-Mediated CDK4 Degradation. Front Oncol 2021; 11:668743. [PMID: 33968776 PMCID: PMC8100586 DOI: 10.3389/fonc.2021.668743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Coiled-coil domain-containing 68 (CCDC68) plays different roles in cancer and is predicted as a tumor suppressor in human colorectal cancer (CRC). However, the specific role of CCDC68 in CRC and the underlying mechanisms remain unknown. Here, we showed that CCDC68 expression was lower in CRC than that in corresponding normal tissues, and CCDC68 level was positively correlated with disease-free survival. Ectopic expression of CCDC68 decreased CRC cell proliferation in vitro and suppressed the growth of CRC xenograft tumors in vivo. CCDC68 caused G0/G1 cell cycle arrest, downregulated CDK4, and upregulated ITCH, the E3 ubiquitin ligase responsible for CDK4 protein degradation. This increased CDK4 degradation, which decreased CDK4 protein levels and inhibited CRC tumor growth. Collectively, the present results identify a novel CDK4 regulatory axis consisting of CCDC68 and ITCH, which suggest that CCDC68 is a promising target for the treatment of CRC.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyan Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Wu
- Department of General Surgery, Heze Municipal Hospital, Heze, China
| | - Xueli Jiao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zihui Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yujie Zhu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ziling Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Zhang
- Department of Colorectal anal surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haishan Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lingling Zhao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Siddiqui FA, Parkkola H, Manoharan GB, Abankwa D. Medium-Throughput Detection of Hsp90/Cdc37 Protein-Protein Interaction Inhibitors Using a Split Renilla Luciferase-Based Assay. SLAS DISCOVERY 2019; 25:195-206. [PMID: 31662027 DOI: 10.1177/2472555219884033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The protein-folding chaperone Hsp90 enables the maturation and stability of various oncogenic signaling proteins and is thus pursued as a cancer drug target. Folding in particular of protein kinases is assisted by the co-chaperone Cdc37. Several inhibitors against the Hsp90 ATP-binding site have been developed. However, they displayed significant toxicity in clinical trials. By contrast, the natural product conglobatin A has an exceptionally low toxicity in mice. It targets the protein-protein interface (PPI) of Hsp90 and Cdc37, suggesting that interface inhibitors have an interesting drug development potential. In order to identify inhibitors of the Hsp90/Cdc37 PPI, we have established a mammalian cell lysate-based, medium-throughput amenable split Renilla luciferase assay. This assay employs N-terminal and C-terminal fragments of Renilla luciferase fused to full-length human Hsp90 and Cdc37, respectively. We expect that our assay will allow for the identification of novel Hsp90/Cdc37 interaction inhibitors. Such tool compounds will help to evaluate whether the toxicity profile of Hsp90/Cdc37 PPI inhibitors is in general more favorable than that of ATP-competitive Hsp90 inhibitors. Further development of such tool compounds may lead to new classes of Hsp90 inhibitors with applications in cancer and other diseases.
Collapse
Affiliation(s)
- Farid Ahmad Siddiqui
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hanna Parkkola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ganesh Babu Manoharan
- Cancer Cell Biology and Drug Discovery Group, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniel Abankwa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Cancer Cell Biology and Drug Discovery Group, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
10
|
Xu M, Zhang Y, Cui M, Wang X, Lin Z. Mortalin contributes to colorectal cancer by promoting proliferation and epithelial-mesenchymal transition. IUBMB Life 2019; 72:771-781. [PMID: 31647608 DOI: 10.1002/iub.2176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/14/2019] [Indexed: 12/24/2022]
Abstract
This study focused on the expression of mortalin in colorectal cancer (CRC). Mortalin activated the Wnt/β-catenin pathway to accelerate cell proliferation and the epithelial-mesenchymal transition (EMT) program. Data from online databases displayed that the expression of mortalin was high in CRC, which was further validated using clinical specimens. Meanwhile, high mortalin expression was positively associated with a poor overall survival rate. Suppression of mortalin inhibited CRC cell proliferation as evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), colony formation, and immunofluorescence staining assays. In addition, depletion of mortalin inhibited CRC cell EMT progression and deactivated the Wnt/β-catenin pathway. Altogether, mortalin is highly expressed in CRC and may indicate a poor prognosis. Mortalin accelerated CRC progression by stimulating cell proliferation and the EMT program. This study may provide a potential clinical therapeutic target for CRC.
Collapse
Affiliation(s)
- Ming Xu
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Yuan Zhang
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Minghua Cui
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Yanbian University, Department of Jilin Province, Yanji, China
| | - Xinyue Wang
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Zhenhua Lin
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Yanbian University, Department of Jilin Province, Yanji, China
| |
Collapse
|
11
|
Zhu J, Yan F, Tao J, Zhu X, Liu J, Deng S, Zhang X. Cdc37 facilitates cell survival of colorectal carcinoma via activating the CDK4 signaling pathway. Cancer Sci 2018; 109:656-665. [PMID: 29288563 PMCID: PMC5834791 DOI: 10.1111/cas.13495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 01/03/2023] Open
Abstract
Cell division cycle 37 (Cdc37) is an important partner for heat shock protein 90 (HSP90), assisting in molecular chaperone activities, particularly with regard to the regulation of protein kinases. Given its influence on cell growth pathways, Cdc37 has been discussed as a potential intermediate in carcinogenesis. However, to date, the potential functional roles and molecular mechanisms by which Cdc37 regulates cell survival in colorectal carcinoma (CRC) remain unclear. Here, we investigated the expression of Cdc37 and its clinical significance in CRC, and systematically explored the role and the underlying mechanism of Cdc37 in CRC cell survival both in vitro and in vivo. Our results showed that Cdc37 was remarkably up-regulated in CRC, which facilitated cell survival mainly by promoting cell proliferation, G1-S transition, and inhibiting cell apoptosis. Our data further indicated that Cdc37 increased the stability of cyclin-dependent kinase 4 (CDK4) to activate the retinoblastoma 1 (RB1) signaling pathway, followed by increased expression of Bcl-2 and Bcl-xL, which ultimately promoted cell survival in CRC. Moreover, knockdown of CDK4 reversed the Cdc37-mediated effect in promoting the progression of CRC. Our findings showed that Cdc37 played a critical role in promoting CRC cell survival by increasing CDK4 stability to activate the RB1 signaling pathway. Thereby, Cdc37 might serve as a potential therapeutic target in CRC patients.
Collapse
Affiliation(s)
- Jianjun Zhu
- Department of Human Anatomy and Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Fang Yan
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Tao
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaohua Zhu
- Department of Human Anatomy and Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Jiayou Liu
- Department of Human Anatomy and Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Shishan Deng
- Department of Human Anatomy and Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|