1
|
Guo J, Xue S, Wang X, Wang L, Wen SY. Emerging insights on the role of Elovl6 in human diseases: Therapeutic challenges and opportunities. Life Sci 2025; 361:123308. [PMID: 39675554 DOI: 10.1016/j.lfs.2024.123308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
ELOVL6, elongation-of-very-long-chain-fatty acids 6, a crucial enzyme in lipid metabolism, primarily responsible for the elongation of carbon chains of C12-C16 saturated fatty acids. It plays a significant role in various human diseases, particularly those associated with metabolic disorders related to fatty acid synthesis, such as insulin resistance, non-alcoholic fatty liver disease, cancer, and cardiovascular diseases. Emerging research also links ELOVL6 to kidney diseases, neurological conditions such as epilepsy, and pulmonary fibrosis. The enzyme's expression is regulated by various factors including diet, oxidative stress, and circadian rhythms. For instance, a high-carbohydrate diet can promote an increase in ELOVL6 expression. This abnormality leads to an accumulation of long-chain fatty acids and lipid deposition, ultimately resulting in pathological consequences across multiple systems in the body. As a biological target, ELOVL6 holds promise for diagnostic and therapeutic applications, with future research expected to uncover its mechanisms and therapeutic potential, paving the way for novel interventions in multiple disease areas. Here, the expression regulation and function of ELOVL6 in various human diseases are reviewed. This review underscores ELOVL6 as a significant therapeutic target for human diseases, with its potential for diagnostic and therapeutic applications anticipated to drive future research and enable innovative interventions in various pathological conditions.
Collapse
Affiliation(s)
- Jiao Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Shulan Xue
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Shen X, Miao S, Zhang Y, Guo X, Li W, Mao X, Zhang Q. Stearic acid metabolism in human health and disease. Clin Nutr 2025; 44:222-238. [PMID: 39709650 DOI: 10.1016/j.clnu.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
Named after the Greek term for "hard fat", stearic acid has gradually entered people's field of vision. As an important component of various physiological cellular functions, stearic acid plays a regulatory role in diverse aspects of energy metabolism and signal transduction. Its applications range from serving as a bodily energy source to participating in endogenous biosynthesis. Similar to palmitate, stearic acid serves as a primary substrate for the stearoyl coenzyme A desaturase, which catalyzes the conversion of stearate to oleate and is involved in the synthesis of triglyceride and other complex lipids. Additionally, stearic acid functions as a vital signaling molecule in pathological processes such as cardiovascular diseases, diabetes development, liver injury and even nervous system disorders. Therefore, we conduct a comprehensive review of stearic acid, summarizing its role in various diseases and attempting to provide a systematic overview of its homeostasis, physiological functions, and pathological process. From a medical standpoint, we also explore potential applications and discuss stearic acid as a potential therapeutic target for the treatment of human diseases.
Collapse
Affiliation(s)
- Xinyi Shen
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuo Miao
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yaping Zhang
- Department of Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingying Guo
- Department of Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenxian Li
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Riedel S, Abel S, Burger HM, Swanevelder S, Gelderblom WCA. Fumonisin B 1 protects against long-chained polyunsaturated fatty acid-induced cell death in HepG2 cells - implications for cancer promotion. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184310. [PMID: 38479610 DOI: 10.1016/j.bbamem.2024.184310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Fumonisin B1 (FB1), a food-borne mycotoxin, is a cancer promoter in rodent liver and augments proliferation of initiated cells while inhibiting the growth of normal hepatocytes by disrupting lipid biosynthesis at various levels. HepG2 cancer cells exhibited resistance to FB1-induced toxic effects presumably due to their low content of polyunsaturated fatty acids (PUFA) even though FB1-typical lipid changes were observed, e.g. significantly increased phosphatidylethanolamine (PE), decreased sphingomyelin and cholesterol content, increased sphinganine (Sa) and sphinganine/sphingosine ratio, increased C18:1ω-9, decreased C20:4ω-6 content in PE and decreased C20:4ω-6_PC/PE ratio. Increasing PUFA content of HepG2 cells with phosphatidylcholine (PC) vesicles containing C20:4ω-6 (SAPC) or C22:6ω-3 (SDPC) disrupted cell survival, cellular redox status and induced oxidative stress and apoptosis. A partially protective effect of FB1 was evident in PUFA-enriched HepG2 cells which may be related to the FB1-induced reduction in oxidative stress and the disruption of key cell membrane constituents indicative of a resistant lipid phenotype. Interactions between different ω-6 and ω-3 PUFA, membrane constituents including cholesterol, and the glycerophospho- and sphingolipids and FB1 in this cell model provide further support for the resistant lipid phenotype and its role in the complex cellular effects underlying the cancer promoting potential of the fumonisins.
Collapse
Affiliation(s)
- Sylvia Riedel
- Biomedical Research and Innovation Platform, South African Medical Research Council, PO Box 19070, Tygerberg 7505, South Africa; Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| | - Stefan Abel
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - Hester-Mari Burger
- Unit of Research Integrity, Research Directorate, Cape Peninsula University of Technology, Bellville 7535, South Africa.
| | - Sonja Swanevelder
- Biostatistics Research Unit, South African Medical Research Council, PO Box 19070, Tygerberg 7505, South Africa.
| | - Wentzel C A Gelderblom
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
4
|
Zhang J, Chen F. Integrated transcriptome and metabolome study reveal the therapeutic effects of nicotinamide riboside and nicotinamide mononucleotide on nonalcoholic fatty liver disease. Biomed Pharmacother 2024; 175:116701. [PMID: 38729053 DOI: 10.1016/j.biopha.2024.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) have received considerable attention as anti-aging and anti-metabolic disease nutraceuticals. However, few studies have focused on their role in ameliorating hepatic metabolic disturbances. In the present study, the effects of NMN and NR on the liver of mice with nonalcoholic fatty liver disease (NAFLD) were investigated via transcriptome and metabolome analyses. NMN and NR reduced body weight gain, improved glucose homeostasis, regulated plasma lipid levels, and ameliorated liver injury, oxidative stress, and lipid accumulation in mice with HFD-induced NAFLD. Integrated transcriptome and metabolome analyses indicated that NMN and NR altered the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, and linoleic acid metabolism pathways, increased saturated fatty acid (palmitic acid, stearate, and arachidic acid) content, and increased polyunsaturated fatty acid (linoleic acid and eicosapentaenoic acid) content. Quantitative reverse transcription PCR (qRT-PCR) showed that NMN and NR primarily promoted arachidonic acid and linoleic acid catabolism via cytochrome P450 (CYP450) enzymes. This study established a theoretical foundation for the potential use of NMN and NR in future clinical settings.
Collapse
Affiliation(s)
- Jingting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; College of Management, Liaoning Economy Vocational and Technical College, Shenyang, Liaoning 110122, China.
| | - Fu Chen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China.
| |
Collapse
|
5
|
Istiqamah N, Matsuzaka T, Shimizu M, Motomura K, Ohno H, Hasebe S, Sharma R, Okajima Y, Matsuda E, Han SI, Mizunoe Y, Osaki Y, Aita Y, Suzuki H, Sone H, Takeuchi Y, Sekiya M, Yahagi N, Nakagawa Y, Shimano H. Identification of key microRNAs regulating ELOVL6 and glioblastoma tumorigenesis. BBA ADVANCES 2023; 3:100078. [PMID: 37082255 PMCID: PMC10074970 DOI: 10.1016/j.bbadva.2023.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
ELOVL fatty acid elongase 6 (ELOVL6) controls cellular fatty acid (FA) composition by catalyzing the elongation of palmitate (C16:0) to stearate (C18:0) and palmitoleate (C16:1n-7) to vaccinate (C18:1n-7). Although the transcriptional regulation of ELOVL6 has been well studied, the post-transcriptional regulation of ELOVL6 is not fully understood. Therefore, this study aims to evaluate the role of microRNAs (miRNAs) in regulating human ELOVL6. Bioinformatic analysis identified five putative miRNAs: miR-135b-5p, miR-135a-5p, miR-125a-5p, miR-125b-5p, and miR-22-3p, which potentially bind ELOVL6 3'-untranslated region (UTR). Results from dual-luciferase assays revealed that these miRNAs downregulate ELOVL6 by directly interacting with the 3'-UTR of ELOVL6 mRNA. Moreover, miR-135b-5p and miR-135a-5p suppress cell proliferation and migration in glioblastoma multiforme cells by inhibiting ELOVL6 at the mRNA and protein levels. Taken together, our results provide novel regulatory mechanisms for ELOVL6 at the post-transcriptional level and identify potential candidates for the treatment of patients with glioblastoma multiforme.
Collapse
Affiliation(s)
- Nurani Istiqamah
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
- Corresponding authors.
| | - Momo Shimizu
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaori Motomura
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shiho Hasebe
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rahul Sharma
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuka Okajima
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Erika Matsuda
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Song-Iee Han
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuhei Mizunoe
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Corresponding authors.
| |
Collapse
|
6
|
Endoplasmic reticulum stress: Multiple regulatory roles in hepatocellular carcinoma. Biomed Pharmacother 2021; 142:112005. [PMID: 34426262 DOI: 10.1016/j.biopha.2021.112005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress is a basic cellular stress response that maintains cellular protein homeostasis under endogenous or exogenous stimuli, which depends on the stimulus, its intensity, and action time. The ER produces a corresponding cascade reaction for crosstalk of adaptive and/or pro-death regulation with other organelles. Hepatocellular carcinoma(HCC) is one of the most common malignant solid tumors with an extremely poor prognosis. Viral hepatitis infection, cirrhosis, and steatohepatitis are closely related to the occurrence and development of HCC, and ER stress has gradually been shown to be a major mechanism. Moreover, an increasing need for protein and lipid products and relative deficiencies of oxygen and nutrients for rapid proliferation and endoplasmic reticulum stress are undoubtedly involved. Therefore, to fully and comprehensively understand the regulatory role of endoplasmic reticulum stress in the occurrence and progression of HCC is of vital importance to explore its pathogenesis and develop novel anti-cancer strategies. METHODOLOGY We searched for relevant publications in the PubMed databases using the keywords "Endoplasmic reticulum stress", "hepatocellular carcinoma" in last five years,and present an overview of the current knowledge that links ER stress and HCC, which includes carcinogenesis, progression, and anti-cancer strategies, and propose directions of future research. RESULT ER stress were confirmed to be multiple regulators or effectors of cancer, which also be confirmed to drive tumorigenesis and progression of HCC. Targeting ER stress signaling pathway and related molecules could play a critical role for anti-HCC and has become a research hotspot for anti-cancer in recent years. CONCLUSION ER stress are critical for the processes of the tumorigenesis and progression of tumors. For HCC, ER stress was associated with tumorigenesis, development, metastasis, angiogenesis and drug resistance, targeting ER stress has emerged as a potential anti-tumor strategy.
Collapse
|
7
|
The fatty acid elongase ELOVL6 regulates bortezomib resistance in multiple myeloma. Blood Adv 2021; 5:1933-1946. [PMID: 33821992 DOI: 10.1182/bloodadvances.2020002578] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Resistance to the proteasome inhibitor bortezomib (BTZ) represents a major obstacle in the treatment of multiple myeloma (MM). The contribution of lipid metabolism in the resistance of MM cells to BTZ is mostly unknown. Here we report that levels of fatty acid elongase 6 (ELOVL6) were lower in MM cells from BTZ-nonresponsive vs BTZ-responsive patients and in cultured MM cells selected for BTZ resistance compared with parental counterparts. Accordingly, depletion of ELOVL6 in parental MM cells suppressed BTZ-induced endoplasmic reticulum (ER) stress and cytotoxicity, whereas restoration of ELOVL6 levels in BTZ-resistant MM cells sensitized them to BTZ in tissue culture settings and, as xenografts, in a plasmacytoma mouse model. Furthermore, for the first time, we identified changes in the BTZ-induced lipidome between parental and BTZ-resistant MM cell lines underlying a functional difference in their response to BTZ. We demonstrated that restoration of ELOVL6 levels in BTZ-resistant MM cells resensitized them to BTZ largely via upregulation of ELOVL6-dependent ceramide species, which was a prerequisite for BTZ-induced ER stress and cell death in these cells. Our data characterize ELOVL6 as a major clinically relevant regulator of MM cell resistance to BTZ, which can emerge from the impaired ability of these cells to alter ceramide composition in response to BTZ.
Collapse
|
8
|
Hall Z, Chiarugi D, Charidemou E, Leslie J, Scott E, Pellegrinet L, Allison M, Mocciaro G, Anstee QM, Evan GI, Hoare M, Vidal-Puig A, Oakley F, Vacca M, Griffin JL. Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma. Hepatology 2021; 73:1028-1044. [PMID: 32460431 DOI: 10.1002/hep.31391] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Hepatocytes undergo profound metabolic rewiring when primed to proliferate during compensatory regeneration and in hepatocellular carcinoma (HCC). However, the metabolic control of these processes is not fully understood. In order to capture the metabolic signature of proliferating hepatocytes, we applied state-of-the-art systems biology approaches to models of liver regeneration, pharmacologically and genetically activated cell proliferation, and HCC. APPROACH AND RESULTS Integrating metabolomics, lipidomics, and transcriptomics, we link changes in the lipidome of proliferating hepatocytes to altered metabolic pathways including lipogenesis, fatty acid desaturation, and generation of phosphatidylcholine (PC). We confirm this altered lipid signature in human HCC and show a positive correlation of monounsaturated PC with hallmarks of cell proliferation and hepatic carcinogenesis. CONCLUSIONS Overall, we demonstrate that specific lipid metabolic pathways are coherently altered when hepatocytes switch to proliferation. These represent a source of targets for the development of therapeutic strategies and prognostic biomarkers of HCC.
Collapse
Affiliation(s)
- Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- Biomolecular MedicineDivision of Systems MedicineDepartment of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Davide Chiarugi
- Metabolic Research LaboratoriesWellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
| | - Evelina Charidemou
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Jack Leslie
- Institute of Cellular MedicineFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Emma Scott
- Institute of Cellular MedicineFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Luca Pellegrinet
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Michael Allison
- Department of MedicineAddenbrooke's HospitalCambridge Biomedical Research CentreCambridgeUnited Kingdom
| | - Gabriele Mocciaro
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Quentin M Anstee
- Institute of Cellular MedicineFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Newcastle NIHR Biomedical Research CentreNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Gerard I Evan
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Matthew Hoare
- Department of MedicineAddenbrooke's HospitalCambridge Biomedical Research CentreCambridgeUnited Kingdom
- CRUK Cambridge InstituteRobinson WayCambridgeUnited Kingdom
| | - Antonio Vidal-Puig
- Metabolic Research LaboratoriesWellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
| | - Fiona Oakley
- Institute of Cellular MedicineFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Michele Vacca
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- Metabolic Research LaboratoriesWellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- Biomolecular MedicineDivision of Systems MedicineDepartment of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| |
Collapse
|
9
|
Unsupervised machine learning using an imaging mass spectrometry dataset automatically reassembles grey and white matter. Sci Rep 2019; 9:13213. [PMID: 31519997 PMCID: PMC6744563 DOI: 10.1038/s41598-019-49819-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Current histological and anatomical analysis techniques, including fluorescence in situ hybridisation, immunohistochemistry, immunofluorescence, immunoelectron microscopy and fluorescent fusion protein, have revealed great distribution diversity of mRNA and proteins in the brain. However, the distributional pattern of small biomolecules, such as lipids, remains unclear. To this end, we have developed and optimised imaging mass spectrometry (IMS), a combined technique incorporating mass spectrometry and microscopy, which is capable of comprehensively visualising biomolecule distribution. We demonstrated the differential distribution of phospholipids throughout the cell body and axon of neuronal cells using IMS analysis. In this study, we used solarix XR, a high mass resolution and highly sensitive MALDI-FT-ICR-MS capable of detecting higher number of molecules than conventional MALDI-TOF-MS instruments, to create a molecular distribution dataset. We examined the diversity of biomolecule distribution in rat brains using IMS and hypothesised that unsupervised machine learning reconstructs brain structures such as the grey and white matters. We have demonstrated that principal component analysis (PCA) can reassemble the grey and white matters without assigning brain anatomical regions. Hierarchical clustering allowed us to classify the 10 groups of observed molecules according to their distributions. Furthermore, the group of molecules specifically localised in the cerebellar cortex was estimated to be composed of phospholipids.
Collapse
|
10
|
Takeda M, Sakaguchi T, Hiraide T, Shibasaki Y, Morita Y, Kikuchi H, Ikegami K, Setou M, Konno H, Takeuchi H. Role of caveolin-1 in hepatocellular carcinoma arising from non-alcoholic fatty liver disease. Cancer Sci 2018; 109:2401-2411. [PMID: 29896915 PMCID: PMC6113505 DOI: 10.1111/cas.13659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023] Open
Abstract
The molecular features of hepatocellular carcinoma arising from non-alcoholic fatty liver disease (NAFLD-HCC) are not well known. In this study, we investigated the mechanism by which NAFLD-HCC survives in a fat-rich environment. We found that caveolin (CAV)-1 was overexpressed in clinical specimens from NAFLD-HCC patients. HepG2, HLE, and HuH-7 HCC cell lines showed decreased proliferation in the presence of the saturated fatty acids palmitic acid and stearic acid, although only HLE cells expressed high levels of CAV-1. HLE cells treated with oleic acid (OA) showed robust proliferation, whereas CAV-null HepG2 cells showed reduced proliferation and increased apoptosis. CAV-1 knockdown in HLE cells attenuated the OA-induced increase in proliferation and enhanced apoptosis. Liquid chromatography-tandem mass spectrometry analysis revealed that the levels of OA-containing ceramide, a pro-apoptotic factor, were higher in HepG2 and CAV-1-deficient HLE cells than in HLE cells, suggesting that CAV-1 inhibits apoptosis by decreasing the level of OA-containing ceramide. These results indicate that CAV-1 is important for NAFLD-HCC survival in fatty acid-rich environments and is a potential therapeutic target.
Collapse
Affiliation(s)
- Makoto Takeda
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Cellular and Molecular Anatomy, International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takanori Sakaguchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takanori Hiraide
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasushi Shibasaki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshifumi Morita
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotoshi Kikuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Koji Ikegami
- Department of Cellular and Molecular Anatomy, International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Pre-eminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Anatomy, The University of Hong Kong, Hong Kong, China
| | - Hiroyuki Konno
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
11
|
Shibasaki Y, Horikawa M, Ikegami K, Kiuchi R, Takeda M, Hiraide T, Morita Y, Konno H, Takeuchi H, Setou M, Sakaguchi T. Stearate-to-palmitate ratio modulates endoplasmic reticulum stress and cell apoptosis in non-B non-C hepatoma cells. Cancer Sci 2018; 109:1110-1120. [PMID: 29427339 PMCID: PMC5891190 DOI: 10.1111/cas.13529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/25/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
The increased prevalence of hepatocellular carcinoma (HCC) without viral infection, namely, NHCC, is a major public health issue worldwide. NHCC is frequently derived from non‐alcoholic fatty liver (NAFL) and non‐alcoholic steatohepatitis, which exhibit dysregulated fatty acid (FA) metabolism. This raises the possibility that NHCC evolves intracellular machineries to adapt to dysregulated FA metabolism. We herein aim to identify NHCC‐specifically altered FA and key molecules to achieve the adaptation. To analyze FA, imaging mass spectrometry (IMS) was performed on 15 HCC specimens. The composition of saturated FA (SFA) in NHCC was altered from that in typical HCC. The stearate‐to‐palmitate ratio (SPR) was significantly increased in NHCC. Associated with the SPR increase, the ELOVL6 protein level was upregulated in NHCC. The knockdown of ELOVL6 reduced SPR, and enhanced endoplasmic reticulum stress, inducing apoptosis of Huh7 and HepG2 cells. In conclusion, NHCC appears to adapt to an FA‐rich environment by modulating SPR through ELOVL6.
Collapse
Affiliation(s)
- Yasushi Shibasaki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Makoto Horikawa
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Koji Ikegami
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ryota Kiuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Makoto Takeda
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takanori Hiraide
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yoshifumi Morita
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroyuki Konno
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takanori Sakaguchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|