1
|
Walczak-Szeffer A, Piastowska-Ciesielska AW. Endoplasmic reticulum stress as a target for retinoids in cancer treatment. Life Sci 2024; 352:122892. [PMID: 38971363 DOI: 10.1016/j.lfs.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Retinoids, natural and synthetic derivatives of vitamin A, have various regulatory activities including controlling cellular proliferation, differentiation, and death. Furthermore, they have been used to treat specific cancers with satisfying results. Nevertheless, retinoids have yet to be converted into effective systemic therapies for the majority of tumor types. Regulation of unfolded protein response signaling, and persistent activation of endoplasmic reticulum stress (ER-stress) are promising treatment methods for cancer. The present article reviews the current understanding of how vitamin A and its derivatives may aid to cause ER-stress-activated apoptosis, as well as therapeutic options for exploiting ER-stress for achieving beneficial goal. The therapeutic use of some retinoids discussed in this article was related to decreased disease recurrence and improved therapeutic outcomes via ER-stress activation and promotion, indicating that retinoids may play an important role in cancer treatment and prevention. More research is needed to expand the use of vitamin A derivatives in cancer therapy, either alone or in combination with unfolded protein response inducers.
Collapse
Affiliation(s)
- Anna Walczak-Szeffer
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Poland.
| | | |
Collapse
|
2
|
Zhang F, Wu J, Zhang L, Zhang J, Yang R. Alterations in serum metabolic profiles of early-stage hepatocellular carcinoma patients after radiofrequency ablation therapy. J Pharm Biomed Anal 2024; 243:116073. [PMID: 38484637 DOI: 10.1016/j.jpba.2024.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE To investigate the alterations in serum metabolic profiles and early-stage hepatocellular carcinoma (HCC) patient characteristics after radiofrequency ablation (RFA) therapy. This evaluation aimed to assess treatment effectiveness and identify potential novel approaches and targets for HCC treatment and prognosis monitoring. METHODS Untargeted metabolomics technology was employed to analyze serum metabolic profiles in healthy volunteer controls (NCs) and early stage HCC patients before and after RFA therapy. Additionally, Human Metabolome Database and Kyoto Encyclopedia of Genes and Genomes database were used to identify the differential metabolites (DMs) and metabolic pathways. Cystoscape was utilized to construct DM gene networks. Amino acid analyses were performed to validate our findings. RESULTS We identified 11, 14, and six DMs between the NC and HCC groups, HCC patients before and after RFA therapy, and post-RFA HCC and NC groups, respectively. The expression levels of these DMs, particularly those of amino acids and lipids, significantly changed. Compared with the NC group, higher levels of L-tyrosine, aspartate, and 18-oxo-oleate were observed in HCC patients, which were significantly reduced in patients after RFA therapy. Meanwhile, HCC patients after RFA therapy had increased levels of L-arginine, phosphatidic acid (20:3), and lysophosphatidyl choline (LPC) (20:4) compared to those before therapy, while their levels before therapy were lower than those of NC. Moreover, most metabolites in the post-RFA and NC groups showed no significant changes in expression, except for L-tyrosine and LPC (16:0). These metabolites could potentially serve as characteristic factors of early-stage HCC patients after RFA therapy. Joint pathway analysis revealed striking changes, mainly in phenylalanine, tyrosine, and tryptophan biosynthesis; alanine, aspartate, and glutamate metabolism; and arginine and aminoacyl-tRNA biosynthesis. Bioinformatics analysis of publicly available data preliminarily identified 187 DM-related metabolic enzymes. CONCLUSION Our study proposed novel targets for early-stage HCC treatment, laying the groundwork for improving treatment efficacy and prognosis of early-stage HCC patients.
Collapse
Affiliation(s)
- Fengmei Zhang
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Jing Wu
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China.
| | - Lei Zhang
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Jian Zhang
- The Second Hospital of Tianjin Medical University, Tianjin 300000, China
| | - Rui Yang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300000, China.
| |
Collapse
|
3
|
Mehrotra S, Sharma S, Pandey RK. A journey from omics to clinicomics in solid cancers: Success stories and challenges. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:89-139. [PMID: 38448145 DOI: 10.1016/bs.apcsb.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The word 'cancer' encompasses a heterogenous group of distinct disease types characterized by a spectrum of pathological features, genetic alterations and response to therapies. According to the World Health Organization, cancer is the second leading cause of death worldwide, responsible for one in six deaths and hence imposes a significant burden on global healthcare systems. High-throughput omics technologies combined with advanced imaging tools, have revolutionized our ability to interrogate the molecular landscape of tumors and has provided unprecedented understanding of the disease. Yet, there is a gap between basic research discoveries and their translation into clinically meaningful therapies for improving patient care. To bridge this gap, there is a need to analyse the vast amounts of high dimensional datasets from multi-omics platforms. The integration of multi-omics data with clinical information like patient history, histological examination and imaging has led to the novel concept of clinicomics and may expedite the bench-to-bedside transition in cancer. The journey from omics to clinicomics has gained momentum with development of radiomics which involves extracting quantitative features from medical imaging data with the help of deep learning and artificial intelligence (AI) tools. These features capture detailed information about the tumor's shape, texture, intensity, and spatial distribution. Together, the related fields of multiomics, translational bioinformatics, radiomics and clinicomics may provide evidence-based recommendations tailored to the individual cancer patient's molecular profile and clinical characteristics. In this chapter, we summarize multiomics studies in solid cancers with a specific focus on breast cancer. We also review machine learning and AI based algorithms and their use in cancer diagnosis, subtyping, prognosis and predicting treatment resistance and relapse.
Collapse
|
4
|
Alvarez-Frutos L, Barriuso D, Duran M, Infante M, Kroemer G, Palacios-Ramirez R, Senovilla L. Multiomics insights on the onset, progression, and metastatic evolution of breast cancer. Front Oncol 2023; 13:1292046. [PMID: 38169859 PMCID: PMC10758476 DOI: 10.3389/fonc.2023.1292046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer is the most common malignant neoplasm in women. Despite progress to date, 700,000 women worldwide died of this disease in 2020. Apparently, the prognostic markers currently used in the clinic are not sufficient to determine the most appropriate treatment. For this reason, great efforts have been made in recent years to identify new molecular biomarkers that will allow more precise and personalized therapeutic decisions in both primary and recurrent breast cancers. These molecular biomarkers include genetic and post-transcriptional alterations, changes in protein expression, as well as metabolic, immunological or microbial changes identified by multiple omics technologies (e.g., genomics, epigenomics, transcriptomics, proteomics, glycomics, metabolomics, lipidomics, immunomics and microbiomics). This review summarizes studies based on omics analysis that have identified new biomarkers for diagnosis, patient stratification, differentiation between stages of tumor development (initiation, progression, and metastasis/recurrence), and their relevance for treatment selection. Furthermore, this review highlights the importance of clinical trials based on multiomics studies and the need to advance in this direction in order to establish personalized therapies and prolong disease-free survival of these patients in the future.
Collapse
Affiliation(s)
- Lucia Alvarez-Frutos
- Laboratory of Cell Stress and Immunosurveillance, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Daniel Barriuso
- Laboratory of Cell Stress and Immunosurveillance, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Mercedes Duran
- Laboratory of Molecular Genetics of Hereditary Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Mar Infante
- Laboratory of Molecular Genetics of Hereditary Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, Paris, France
| | - Roberto Palacios-Ramirez
- Laboratory of Cell Stress and Immunosurveillance, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Laura Senovilla
- Laboratory of Cell Stress and Immunosurveillance, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid – Centro Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
5
|
Ma Y, Yu S, Mu D, Cheng J, Qiu L, Cheng X. Liquid chromatography-tandem mass spectrometry in fat-soluble vitamin deficiency. Clin Chim Acta 2023; 548:117469. [PMID: 37419302 DOI: 10.1016/j.cca.2023.117469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Fat-soluble vitamins, including vitamins A, D, E, and K, are essential for maintaining normal body function and metabolism. Fat-soluble vitamin deficiency may lead to bone diseases, anemia, bleeding, xerophthalmia, etc. Early detection and timely interventions are significant for preventing vitamin deficiency-related diseases. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is developing into a potent instrument for the precise detection of fat-soluble vitamins due to its high sensitivity, high specificity, and high resolution.
Collapse
Affiliation(s)
- Yichen Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jin Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Xinqi Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
6
|
Bailleux C, Chardin D, Gal J, Guigonis JM, Lindenthal S, Graslin F, Arnould L, Cagnard A, Ferrero JM, Humbert O, Pourcher T. Metabolomic Signatures of Scarff-Bloom-Richardson (SBR) Grade in Non-Metastatic Breast Cancer. Cancers (Basel) 2023; 15:cancers15071941. [PMID: 37046602 PMCID: PMC10093598 DOI: 10.3390/cancers15071941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE Identification of metabolomic biomarkers of high SBR grade in non-metastatic breast cancer. METHODS This retrospective bicentric metabolomic analysis included a training set (n = 51) and a validation set (n = 49) of breast cancer tumors, all classified as high-grade (grade III) or low-grade (grade I-II). Metabolomes of tissue samples were studied by liquid chromatography coupled with mass spectrometry. RESULTS A molecular signature of the top 12 metabolites was identified from a database of 602 frequently predicted metabolites. Partial least squares discriminant analyses showed that accuracies were 0.81 and 0.82, the R2 scores were 0.57 and 0.55, and the Q2 scores were 0.44431 and 0.40147 for the training set and validation set, respectively; areas under the curve for the Receiver Operating Characteristic Curve were 0.882 and 0.886. The most relevant metabolite was diacetylspermine. Metabolite set enrichment analyses and metabolic pathway analyses highlighted the tryptophan metabolism pathway, but the concentration of individual metabolites varied between tumor samples. CONCLUSIONS This study indicates that high-grade invasive tumors are related to diacetylspermine and tryptophan metabolism, both involved in the inhibition of the immune response. Targeting these pathways could restore anti-tumor immunity and have a synergistic effect with immunotherapy. Recent studies could not demonstrate the effectiveness of this strategy, but the use of theragnostic metabolomic signatures should allow better selection of patients.
Collapse
Affiliation(s)
- Caroline Bailleux
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
- Medical Oncology Department, Centre Antoine Lacassagne, University Côte d'Azur, 06189 Nice, France
| | - David Chardin
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
- Department of Nuclear Medicine, Antoine Lacassagne Centre, 06189 Nice, France
| | - Jocelyn Gal
- Department of Epidemiology and Biostatistics, Antoine Lacassagne Centre, University of Côte d'Azur, 06189 Nice, France
| | - Jean-Marie Guigonis
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
| | - Sabine Lindenthal
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
| | - Fanny Graslin
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
- Department of Nuclear Medicine, Antoine Lacassagne Centre, 06189 Nice, France
| | - Laurent Arnould
- Department of Tumour Biology and Pathology, Georges-François Leclerc Centre, 21079 Dijon, France
- Cenre de Ressources Biologiques (CRB) Ferdinand Cabanne, 21000 Dijon, France
| | - Alexandre Cagnard
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
| | - Jean-Marc Ferrero
- Medical Oncology Department, Centre Antoine Lacassagne, University Côte d'Azur, 06189 Nice, France
| | - Olivier Humbert
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
- Department of Nuclear Medicine, Antoine Lacassagne Centre, 06189 Nice, France
| | - Thierry Pourcher
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
| |
Collapse
|
7
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
8
|
Metabolomics of Breast Cancer: A Review. Metabolites 2022; 12:metabo12070643. [PMID: 35888767 PMCID: PMC9325024 DOI: 10.3390/metabo12070643] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women worldwide. Major advances have been made towards breast cancer prevention and treatment. Unfortunately, the incidence of breast cancer is still increasing globally. Metabolomics is the field of science which studies all the metabolites in a cell, tissue, system, or organism. Metabolomics can provide information on dynamic changes occurring during cancer development and progression. The metabolites identified using cutting-edge metabolomics techniques will result in the identification of biomarkers for the early detection, diagnosis, and treatment of cancers. This review briefly introduces the metabolic changes in cancer with particular focus on breast cancer.
Collapse
|
9
|
Jin Y, Teh SS, Lau HLN, Xiao J, Mah SH. Retinoids as anti-cancer agents and their mechanisms of action. Am J Cancer Res 2022; 12:938-960. [PMID: 35411232 PMCID: PMC8984900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023] Open
Abstract
Retinoids (vitamin A) have been reported extensively for anti-cancer properties due to their high receptor-binding affinities and gene regulation abilities. However, the anti-cancer potential of retinoids has not been reviewed in recent years. Thus, this review focused on the anti-cancer effects of retinoids and their synergistic effects with other drugs, together with their mechanisms of action in different types of cancers reported in the past five years. The retinoids were well studied in breast cancer, melanoma, and colorectal cancer. Synthetic retinoids have shown higher selectivity, stronger effectiveness, and lower toxicity than endogenous retinoids. Interestingly, the combination treatment of endogenous retinoids with chemotherapy drugs showed enhanced anti-cancer effects. The mechanisms of action reported for retinoids mainly involved the RAR/RXR signaling pathway. However, limited clinical studies were conducted in recent years. Thus, retinoids which are highly potential anti-cancer agents are worth further study in clinical, especially as a combination therapy with chemotherapy drugs.
Collapse
Affiliation(s)
- Ying Jin
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
| | - Soek Sin Teh
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil BoardKajang, Selangor, Malaysia
| | - Harrison Lik Nang Lau
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil BoardKajang, Selangor, Malaysia
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense CampusOurense, Spain
| | - Siau Hui Mah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University (Lakeside Campus)Subang Jaya, Selangor, Malaysia
| |
Collapse
|
10
|
Luo J, Shaikh JA, Huang L, Zhang L, Iqbal S, Wang Y, Liu B, Zhou Q, Ajmal A, Rizvi M, Ajmal M, Liu Y. Human Plasma Metabolomics Identify 9-cis-retinoic Acid and Dehydrophytosphingosine Levels as Novel biomarkers for Early Ventricular Fibrillation after ST-elevated Myocardial Infarction. Bioengineered 2022; 13:3334-3350. [PMID: 35094641 PMCID: PMC8974221 DOI: 10.1080/21655979.2022.2027067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The relevant metabolite biomarkers for risk prediction of early onset of ventricular fibrillation (VF) after ST-segment elevation myocardial infarction (STEMI) remain unstudied. Here, we aimed to identify these imetabolites and the important metabolic pathways involved, and explore whether these metabolites could be used as predictors for the phenotype. Plasma samples were obtained retrospectively from a propensity-score matched cohort including 42 STEMI patients (21 consecutive VF and 21 non-VF). Ultra-performance liquid chromatography and mass spectrometry in combination with a comprehensive analysis of metabolomic data using Metaboanalyst 5.0 version were performed. As a result, the retinal metabolism pathway proved to be the most discriminative for the VF phenotype. Furthermore, 9-cis-Retinoic acid (9cRA) and dehydrophytosphingosine proved to be the most discriminative biomarkers. Biomarker analysis through receiver operating characteristic (ROC) curve showed the 2-metabolite biomarker panel yielding an area under the curve (AUC) of 0.836. The model based on Monte Carlo cross-validation found that 9cRA had the greatest probability of appearing in the predictive panel of biomarkers in the model. Validation of model efficiency based on an ROC curve showed that the combination model constructed by 9cRA and dehydrophytosphingosine had a good predictive value for early-onset VF after STEMI, and the AUC was 0.884 (95% CI 0.714–1). Conclusively, the retinol metabolism pathway was the most powerful pathway for differentiating the post-STEMI VF phenotype. 9cRA was the most important predictive biomarker of VF, and a plasma biomarker panel made up of two metabolites, may help to build a potent predictive model for VF.
Collapse
Affiliation(s)
- Jieying Luo
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Faculty of Life Science and Medicine, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Junaid Ahmed Shaikh
- GKT School of Medical Education, Faculty of Life Science and Medicine, King’s College London, London SE1 IUL, UK
| | - Lei Huang
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Faculty of Life Science and Medicine, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Lei Zhang
- Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, China
| | - Shahid Iqbal
- GKT School of Medical Education, Faculty of Life Science and Medicine, King’s College London, London SE1 IUL, UK
| | - Yu Wang
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Bojiang Liu
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Quan Zhou
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Aisha Ajmal
- St George’s Hospital Medical School, St. George’s, University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Maryam Rizvi
- GKT School of Medical Education, Faculty of Life Science and Medicine, King’s College London, London SE1 IUL, UK
| | - Maryam Ajmal
- GKT School of Medical Education, Faculty of Life Science and Medicine, King’s College London, London SE1 IUL, UK
| | - Yingwu Liu
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Faculty of Life Science and Medicine, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
11
|
An Updated Comprehensive Review on Vitamin A and Carotenoids in Breast Cancer: Mechanisms, Genetics, Assessment, Current Evidence, and Future Clinical Implications. Nutrients 2021; 13:nu13093162. [PMID: 34579037 PMCID: PMC8465379 DOI: 10.3390/nu13093162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Vitamin A and carotenoids are fat-soluble micronutrients that play important role as powerful antioxidants modulating oxidative stress and cancer development. Breast cancer is the most common malignancy in women. As the risk of breast cancer is dependent on various lifestyle factors such as dietary modifications, there is increasing interest surrounding the anti-cancerous properties of vitamin A and carotenoids. Despite the suggested protective roles of vitamin A and carotenoids in breast cancer development, their clinical application for the prevention and treatment of breast cancer is limited. In this narrative review, we discuss the roles of vitamin A and carotenoids along with the evaluation method of vitamin A status. We also exhibit the association of genetic variations involved in metabolism of vitamin A and carotenoids with cancers and other diseases. We demonstrate the epidemiological evidence for the relationship of vitamin A and carotenoids with breast cancer risk, their effects on cancer mechanism, and the recent updates in clinical practice of vitamin A or carotenoids as a potential therapeutic agent against breast cancer. This review provides insight into the preventive and therapeutic roles of vitamin A and carotenoids in breast cancer development and progression.
Collapse
|
12
|
Wei Y, Jasbi P, Shi X, Turner C, Hrovat J, Liu L, Rabena Y, Porter P, Gu H. Early Breast Cancer Detection Using Untargeted and Targeted Metabolomics. J Proteome Res 2021; 20:3124-3133. [PMID: 34033488 DOI: 10.1021/acs.jproteome.1c00019] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Breast cancer (BC) is a common cause of morbidity and mortality, particularly in women. Moreover, the discovery of diagnostic biomarkers for early BC remains a challenging task. Previously, we [Jasbi et al. J. Chromatogr. B. 2019, 1105, 26-37] demonstrated a targeted metabolic profiling approach capable of identifying metabolite marker candidates that could enable highly sensitive and specific detection of BC. However, the coverage of this targeted method was limited and exhibited suboptimal classification of early BC (EBC). To expand the metabolome coverage and articulate a better panel of metabolites or mass spectral features for classification of EBC, we evaluated untargeted liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) data, both individually as well as in conjunction with previously published targeted LC-triple quadruple (QQQ)-MS data. Variable importance in projection scores were used to refine the biomarker panel, whereas orthogonal partial least squares-discriminant analysis was used to operationalize the enhanced biomarker panel for early diagnosis. In this approach, 33 altered metabolites/features were detected by LC-QTOF-MS from 124 BC patients and 86 healthy controls. For EBC diagnosis, significance testing and analysis of the area under receiver operating characteristic (AUROC) curve identified six metabolites/features [ethyl (R)-3-hydroxyhexanoate; caprylic acid; hypoxanthine; and m/z 358.0018, 354.0053, and 356.0037] with p < 0.05 and AUROC > 0.7. These metabolites informed the construction of EBC diagnostic models; evaluation of model performance for the prediction of EBC showed an AUROC = 0.938 (95% CI: 0.895-0.975), with sensitivity = 0.90 when specificity = 0.90. Using the combined untargeted and targeted data set, eight metabolic pathways of potential biological relevance were indicated to be significantly altered as a result of EBC. Metabolic pathway analysis showed fatty acid and aminoacyl-tRNA biosynthesis as well as inositol phosphate metabolism to be most impacted in response to the disease. The combination of untargeted and targeted metabolomics platforms has provided a highly predictive and accurate method for BC and EBC diagnosis from plasma samples. Furthermore, such a complementary approach yielded critical information regarding potential pathogenic mechanisms underlying EBC that, although critical to improved prognosis and enhanced survival, are understudied in the current literature. All mass spectrometry data and deidentified subject metadata analyzed in this study have been deposited to Mendeley Data and are publicly available (DOI: 10.17632/kcjg8ybk45.1).
Collapse
Affiliation(s)
- Yiping Wei
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States
| | - Paniz Jasbi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States.,Systems Biology Institute, Cellular and Molecular Physiology, Yale School of Medicine, West Haven, Connecticut 06516, United States
| | - Cassidy Turner
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States
| | - Jonathon Hrovat
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States
| | - Li Liu
- College of Health Solutions, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States.,Department of Neurology, Mayo Clinic, Scottsdale, Arizona 85259, United States
| | - Yuri Rabena
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Peggy Porter
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States
| |
Collapse
|
13
|
Li X, Zhang Y, Cheng F, Yu Y, Wang D. Metabolomics and Proteomics Reveal the Variation of Substances in Apheresis Platelets during Storage and Their Effects on Cancer Cell Proliferation. Transfus Med Hemother 2021; 48:79-90. [PMID: 33976608 PMCID: PMC8077496 DOI: 10.1159/000509944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/05/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Apheresis platelets (APs) are clinically and crucially important in the prevention and treatment of bleeding in patients with thrombocytopenia or cancer. However, few researchers have addressed the variation of supernatant metabolites and exosome proteins in APs during storage and their effects on cancer cell proliferation. OBJECTIVE This study was designed to explore the change rules of the metabolites and exosomal proteins of APs during storage and their effects on cancer cell proliferation. METHODS Metabolomics and proteomics were separately applied to analyze the variation of AP supernatant metabolites and exosomal proteins between freshly prepared day-0 and day-5 terminal-stored APs. Cell counting kit (CCK)-8 assay was performed to detect the effects of AP supernatants and exosomes on the proliferation of cancer cells. RESULTS We found that the supernatant metabolites and exosomal proteins in APs were significantly different on day 0 and day 5, and that many differential metabolites and exosomal proteins were associated with cancer characteristics. Furthermore, the day-5 AP supernatants had a greater inhibition of the proliferation of K562, HepG2, and HCT116 cancer cells, but the day-5 AP exosomes had no significant effect on the proliferation of these cancer cells. CONCLUSION The variant terminal-stored AP supernatants may inhibit the proliferation of cancer cells but the variant terminal AP exosomes have no effect on cancer cell proliferation.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhang
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fu Cheng
- Department of Blood Transfusion, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Yu
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| | - Deqing Wang
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Cellular Mechanisms of Circulating Tumor Cells During Breast Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21145040. [PMID: 32708855 PMCID: PMC7404335 DOI: 10.3390/ijms21145040] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary site and travel in the blood stream. A higher number of CTCs increases the risk of breast cancer metastasis, and it is inversely associated with the survival rates of patients with breast cancer. Although the numbers of CTCs are generally low and the majority of CTCs die in circulation, the survival of a few CTCs can seed the development of a tumor at a secondary location. An increasing number of studies demonstrate that CTCs undergo modification in response to the dynamic biophysical environment in the blood due in part to fluid shear stress. Fluid shear stress generates reactive oxygen species (ROS), triggers redox-sensitive cell signaling, and alters the function of intracellular organelles. In particular, the mitochondrion is an important target organelle in determining the metastatic phenotype of CTCs. In healthy cells, mitochondria produce adenosine triphosphate (ATP) via oxidative phosphorylation in the electron transport chain, and during oxidative phosphorylation, they produce physiological levels of ROS. Mitochondria also govern death mechanisms such as apoptosis and mitochondrial permeability transition pore opening to, in order eliminate unwanted or damaged cells. However, in cancer cells, mitochondria are dysregulated, causing aberrant energy metabolism, redox homeostasis, and cell death pathways that may favor cancer invasiveness. In this review, we discuss the influence of fluid shear stress on CTCs with an emphasis on breast cancer pathology, then discuss alterations of cellular mechanisms that may increase the metastatic potentials of CTCs.
Collapse
|
15
|
Wang Y, Song X, Geng Y. Effects of IC 50 dose of retinol on metabolomics of RAW264.7 cells. J Food Biochem 2020; 44:e13327. [PMID: 32539219 DOI: 10.1111/jfbc.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/01/2022]
Abstract
Vitamin A is one of the most multifunctional vitamins in normal human physiology and is involved in several basic physiological processes from embryonic development to adulthood, such as embryogenesis, vision, immunity, cell differentiation, and proliferation. In this study, we conducted 1 H- NMR to evaluate the metabolomic changes in RAW264.7 cells after treatment with retinol at an IC50 dose to identify its effects on the differential metabolites and main metabolic pathways. Our results showed that the IC50 dose (140 μM) of retinol affected the metabolism of RAW264.7 cells, with a total of 22 differential metabolites identified via 1 H-NMR, including amino acids, sugars, organic acids, glutathione, glycerin, and creatine. Additionally, multiple metabolic pathways were affected by retinol treatment, including downregulation of amino acid biosynthesis, protein synthesis, and pyruvate metabolism. We speculate that the cytotoxicity of retinol at the IC50 dose is attributed to mitochondrial dysfunction as a result of oxidative stress or lipid peroxidation. PRACTICAL APPLICATIONS: With the general improvement of people's living standards, people use dietary supplements to improve the level of retinol to prevent non-specific diseases. But there are more and more cases of acute or chronic poisoning caused by excessive intake of vitamin A. Therefore, it is necessary to study the toxicity of vitamin A, and more attention should be paid to the excessive intake of vitamin A. From the perspective of metabolomics, this experiment studies the adverse effects of high dose retinol through the changes of metabolites and metabolic pathways at the cellular level. This study will assist further analyses of the toxic mechanism of excessive retinol as fortified foods and nutrient supplementation.
Collapse
Affiliation(s)
- Yali Wang
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Xiao Song
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yue Geng
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
16
|
Aldo-keto reductase 1C3-Assessment as a new target for the treatment of endometriosis. Pharmacol Res 2019; 152:104446. [PMID: 31546014 DOI: 10.1016/j.phrs.2019.104446] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Endometriosis is a common gynecological disorder, which is treated surgically and/ or pharmacologically with an unmet clinical need for new therapeutics. A completed phase I trial and a recent phase II trial that investigated the steroidal aldo-keto reductase 1C3 (AKR1C3) inhibitor BAY1128688 in endometriosis patients prompted this critical assessment on the role of AKR1C3 in endometriosis. This review includes an introduction to endometriosis with emphasis on the roles of prostaglandins and progesterone in its pathophysiology. This is followed by an overview of the major enzymatic activities and physiological functions of AKR1C3 and of the data published to date on the expression of AKR1C3 in endometriosis at the mRNA and protein levels. The review concludes with the rationale for using AKR1C3 inhibitors, a discussion of the effects of AKR1C3 inhibition on the pathophysiology of endometriosis and a brief overview of other drugs under clinical investigation for this indication.
Collapse
|
17
|
Chen Z, Li Z, Li H, Jiang Y. Metabolomics: a promising diagnostic and therapeutic implement for breast cancer. Onco Targets Ther 2019; 12:6797-6811. [PMID: 31686838 PMCID: PMC6709037 DOI: 10.2147/ott.s215628] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women and the leading cause of cancer death. Despite the advent of numerous diagnosis and treatment methods in recent years, this heterogeneous disease still presents great challenges in early diagnosis, curative treatments and prognosis monitoring. Thus, finding promising early diagnostic biomarkers and therapeutic targets and approaches is meaningful. Metabolomics, which focuses on the analysis of metabolites that change during metabolism, can reveal even a subtle abnormal change in an individual. In recent decades, the exploration of cancer-related metabolomics has increased. Metabolites can be promising biomarkers for the screening, response evaluation and prognosis of BC. In this review, we summarized the workflow of metabolomics, described metabolite signatures based on molecular subtype as well as reclassification and then discussed the application of metabolomics in the early diagnosis, monitoring and prognosis of BC to offer new insights for clinicians in breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Zhanghan Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Zehuan Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Haoran Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
18
|
Wu J, Yang R, Zhang L, Li Y, Liu B, Kang H, Fan Z, Tian Y, Liu S, Li T. Metabolomics research on potential role for 9-cis-retinoic acid in breast cancer progression. Cancer Sci 2018; 109:2315-2326. [PMID: 29737597 PMCID: PMC6029828 DOI: 10.1111/cas.13629] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Deciphering the molecular networks that discriminate organ-confined breast cancer from metastatic breast cancer may lead to the identification of critical biomarkers for breast cancer invasion and aggressiveness. Here metabolomics, a global study of metabolites, has been applied to explore the metabolic alterations that characterize breast cancer progression. We profiled a total of 693 metabolites across 87 serum samples related to breast cancer (46 clinically localized and 41 metastatic breast cancer) and 49 normal samples. These unbiased metabolomic profiles were able to distinguish normal individuals, clinically localized and metastatic breast cancer patients. 9-cis-Retinoic acid, an isomer of all-trans retinoic acid, was identified as a differential metabolite that significantly decreased during breast cancer progression to metastasis, and its levels were also reduced in urine samples from biopsy-positive breast cancer patients relative to biopsy-negative individuals and in invasive breast cancer cells relative to benign MCF-10A cells. The addition of exogenous 9-cis-retinoic acid to MDA-MB-231 cells and knockdown of aldehyde dehydrogenase 1 family member A1, a regulatory enzyme for 9-cis-retinoic acid, remarkably impaired cell invasion and migration, presumably through preventing the key regulator cofilin from activation and inhibiting MMP2 and MMP9 expression. Taken together, our study showed the potential inhibitory role for 9-cis-retinoic acid in breast cancer progression by attenuating cell invasion and migration.
Collapse
Affiliation(s)
- Jing Wu
- Department of Clinical Laboratory, Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Rui Yang
- Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Lei Zhang
- Department of Clinical Laboratory, Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - YueGuo Li
- Clinical laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - BingBing Liu
- Department of Clinical Laboratory, Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Hua Kang
- Department of Clinical Laboratory, Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - ZhiJuan Fan
- Department of Clinical Laboratory, Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - YaQiong Tian
- Department of Clinical Laboratory, Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - ShuYe Liu
- Department of Clinical Laboratory, Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Tong Li
- Department of Clinical Laboratory, Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| |
Collapse
|