1
|
Jin C, Liao S, Lu G, Geng BD, Ye Z, Xu J, Ge G, Yang D. Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review). Mol Med Rep 2024; 30:162. [PMID: 38994760 PMCID: PMC11258599 DOI: 10.3892/mmr.2024.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
The treatment of patients with metastatic prostate cancer (PCa) is considered to be a long‑standing challenge. Conventional treatments for metastatic PCa, such as radical prostatectomy, radiotherapy and androgen receptor‑targeted therapy, induce senescence of PCa cells to a certain extent. While senescent cells can impede tumor growth through the restriction of cell proliferation and increasing immune clearance, the senescent microenvironment may concurrently stimulate the secretion of a senescence‑associated secretory phenotype and diminish immune cell function, which promotes PCa recurrence and metastasis. Resistance to established therapies is the primary obstacle in treating metastatic PCa as it can lead to progression towards an incurable state of disease. Therefore, understanding the molecular mechanisms that underly the progression of PCa is crucial for the development of novel therapeutic approaches. The present study reviews the phenomenon of treatment‑induced senescence in PCa, the dual role of senescence in PCa treatments and the mechanisms through which senescence promotes PCa metastasis. Furthermore, the present review discusses potential therapeutic strategies to target the aforementioned processes with the aim of providing insights into the evolving therapeutic landscape for the treatment of metastatic PCa.
Collapse
Affiliation(s)
- Cen Jin
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
- Medical Imaging School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Sijian Liao
- Clinical Medicine School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Guoliang Lu
- Department of Pediatrics, Anshun People's Hospital, Anshun, Guizhou 561000, P.R. China
| | - Bill D. Geng
- School of Natural Science, University of Texas at Austin, Austin, TX 78712, USA
| | - Zi Ye
- Clinical Medicine School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Guo Ge
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Dan Yang
- Department of Surgery, Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| |
Collapse
|
2
|
Zhang M, Li W, Zhao Y, Qi L, Xiao Y, Liu D, Peng T. Molecular characterization analysis of PANoptosis-related genes in colorectal cancer based on bioinformatic analysis. PLoS One 2024; 19:e0307651. [PMID: 39186800 PMCID: PMC11346968 DOI: 10.1371/journal.pone.0307651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and stands as the second principal contributor to cancer-related fatalities. Recently, emerging research has emphasized the role of pan apoptosis (PANoptosis) in tumor development and anti-tumor therapy. In the course of this investigation, we meticulously identified and conducted a correlation analysis between differentially expressed genes associated with PANoptosis in CRC (CPAN_DEGs) and the proportion of immune cells. Subsequently, we formulated a prognostic score based on the CPAN_DEGs. Further our analysis revealed a noteworthy reduction in UNC5D mRNA expression within HCT116, HT29 and SW480 cells, as validated by qRT-PCR assay. Furthermore, scrutinizing the TCGA database unveiled a distinctive trend wherein individuals with the low UNC5D expression exhibited significantly reduced overall survival compared to their counterparts with the high UNC5D levels. The drug susceptibility analysis of UNC5D was further performed, which showed that UNC5D was corassociated with the sensitivity of CRC to 6-Thioguanine. The outcomes of our investigation underscore the mechanisms by which PANoptosis influences immune dysregulation as well as prognostic outcome in CRC.
Collapse
Affiliation(s)
- Mengyang Zhang
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - Wen Li
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
- College of Pharmacy, Dali University, Yunnan, China
| | - Yubo Zhao
- Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - Yonglong Xiao
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - Donglian Liu
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| | - TieLi Peng
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guang Dong, China
| |
Collapse
|
3
|
Baluszek S, Kober P, Rusetska N, Wągrodzki M, Mandat T, Kunicki J, Bujko M. DNA methylation, combined with RNA sequencing, provide novel insight into molecular classification of chordomas and their microenvironment. Acta Neuropathol Commun 2023; 11:113. [PMID: 37434245 DOI: 10.1186/s40478-023-01610-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Chordomas are rare tumors of notochord remnants, occurring mainly in the sacrum and skull base. Despite of their unusually slow growth, chordomas are highly invasive and the involvement of adjacent critical structures causes treatment challenges. Due to the low incidence, the molecular pathogenesis of this entity remains largely unknown. This study aimed to investigate DNA methylation abnormalities and their impact on gene expression profiles in skull base chordomas. 32 tumor and 4 normal nucleus pulposus samples were subjected to DNA methylation and gene expression profiling with methylation microarrays and RNA sequencing. Genome-wide DNA methylation analysis revealed two distinct clusters for chordoma (termed subtypes C and I) with different patterns of aberrant DNA methylation. C Chordomas were characterized by general hypomethylation with hypermethylation of CpG islands, while I chordomas were generally hypermethylated. These differences were reflected by distinct distribution of differentially methylated probes (DMPs). Differentially methylated regions (DMRs) were identified, indicating aberrant methylation in known tumor-related genes in booth chordoma subtypes and regions encoding small RNAs in subtype C chordomas. Correlation between methylation and expression was observed in a minority of genes. Upregulation of TBXT in chordomas appeared to be related to lower methylation of tumor-specific DMR in gene promoter. Gene expression-based clusters of tumor samples did not overlap with DNA methylation-based subtypes. Nevertheless, they differ in transcriptomic profile that shows immune infiltration in I chordomas and up-regulation of cell cycle in C chordomas. Immune enrichment in chordomas I was confirmed with 3 independent deconvolution methods and immunohistochemistry. Copy number analysis showed higher chromosomal instability in C chordomas. Nine out of eight had deletion of CDKN2A/B loci and downregulation of genes encoded in related chromosomal band. No significant difference in patients' survival was observed between tumor subtypes, however, shorter survival was observed in patients with higher number of copy number alterations.
Collapse
Affiliation(s)
- Szymon Baluszek
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Rusetska
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Wągrodzki
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| |
Collapse
|
4
|
Zhang L, Luo B, Lu Y, Chen Y. Targeting Death-Associated Protein Kinases for Treatment of Human Diseases: Recent Advances and Future Directions. J Med Chem 2023; 66:1112-1136. [PMID: 36645394 DOI: 10.1021/acs.jmedchem.2c01606] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The death-associated protein kinase (DAPK) family is a member of the calcium/calmodulin-regulated serine/threonine protein kinase family, and studies have shown that its role, as its name suggests, is mainly to regulate cell death. The DAPK family comprises five members, including DAPK1, DAPK2, DAPK3, DRAK1 and DRAK2, which show high homology in the common N-terminal kinase domain but differ in the extra-catalytic domain. Notably, previous research has suggested that the DAPK family plays an essential role in both the development and regulation of human diseases. However, only a few small-molecule inhibitors have been reported. In this Perspective, we mainly discuss the structure, biological function, and role of DAPKs in diseases and the currently discovered small-molecule inhibitors, providing valuable information for the development of the DAPK field.
Collapse
Affiliation(s)
- Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Boqin Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Xie Y, Cui Z, Wang N, Li P. Research on Potential Network Markers and Signaling Pathways in Type 2 Diabetes Based on Conditional Cell-Specific Network. Genes (Basel) 2022; 13:1155. [PMID: 35885938 PMCID: PMC9320152 DOI: 10.3390/genes13071155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional methods concerning type 2 diabetes (T2D) are limited to grouped cells instead of each single cell, and thus the heterogeneity of single cells is erased. Therefore, it is still challenging to study T2D based on a single-cell and network perspective. In this study, we construct a conditional cell-specific network (CCSN) for each single cell for the GSE86469 dataset which is a single-cell transcriptional set from nondiabetic (ND) and T2D human islet samples, and obtain a conditional network degree matrix (CNDM). Since beta cells are the key cells leading to T2D, we search for hub genes in CCSN of beta cells and find that ATP6AP2 is essential for regulation and storage of insulin, and the renin-angiotensin system involving ATP6AP2 is related to most pathological processes leading to diabetic nephropathy. The communication between beta cells and other endocrine cells is performed and three gene pairs with obvious interaction are found. In addition, different expression genes (DEGs) are found based on CNDM and the gene expression matrix (GEM), respectively. Finally, 'dark' genes are identified, and enrichment analysis shows that NFATC2 is involved in the VEGF signaling pathway and indirectly affects the production of Prostacyclin (PGI2), which may be a potential biomarker for diabetic nephropathy.
Collapse
Affiliation(s)
| | | | | | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China; (Y.X.); (Z.C.); (N.W.)
| |
Collapse
|
6
|
Dong D, Zhang R, Shao J, Zhang A, Wang Y, Zhou Y, Li Y. Promoter methylation-mediated repression of UNC5 receptors and the associated clinical significance in human colorectal cancer. Clin Epigenetics 2021; 13:225. [PMID: 34922605 PMCID: PMC8684698 DOI: 10.1186/s13148-021-01211-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Deregulated methylation of tumor suppressor genes is a hallmark event in colorectal cancer (CRC) carcinogenesis. UNC5 receptors, down-regulated in various human malignancies due to epigenetic alterations, have been proposed as putative tumor suppressor genes. In this study, we focused on the methylation-mediated inhibition of UNC5 receptors and the associated clinical significance in CRC. Methods Methylation and expression analysis was performed in TCGA datasets. And the results were confirmed in vitro in CRC cell lines treated with 5-aza-deoxycytidine. Then, the expression and epigenetic alterations of UNC5 receptors were evaluated in clinical specimens. Moreover, the diagnostic and prognostic values of the methylation alterations were also analyzed. Results Methylation-mediated repression was observed in UNC5C and UNC5D, but not in UNC5A and UNC5B, which was confirmed in CRC cell lines. Except for UNC5B, significantly elevated methylation was observed in UNC5A, UNC5C, and UNC5D in CRC. The discrimination efficiency of the three receptors was comparable with that of SEPT9. Kaplan–Meier curve survival analysis showed that hypermethylation of UNC5A, UNC5C and UNC5D was associated with poor progression-free and overall survival. Moreover, methylation levels of UNC5C and UNC5D were independent predictors of CRC progression-free (P = 0.001, P = 0.003, respectively) and overall survival (P = 0.008, P = 0.004, respectively). Conclusions Hypermethylation of UNC5C and UNC5D mediates the repression and has promising diagnostic and prognostic values in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01211-5.
Collapse
Affiliation(s)
- Dong Dong
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Runshi Zhang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.,Department of Clinical Laboratory, Xi'an No. 1 Hospital, Xi'an, 710002, Shaanxi, People's Republic of China
| | - Jie Shao
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Aimin Zhang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, 318000, Zhejiang Province, People's Republic of China.
| | - Yunli Zhou
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.
| | - Yueguo Li
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
7
|
Zhu Y, Li Y, Nakagawara A. UNC5 dependence receptor family in human cancer: A controllable double-edged sword. Cancer Lett 2021; 516:28-35. [PMID: 34077783 DOI: 10.1016/j.canlet.2021.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/02/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
UNC5 receptor family (UNC5A-D) have been identified as dependence receptors whose functions depend on the availability of their ligand netrin-1. Through binding to netrin-1, these receptors transmit signals for cell survival, migration and differentiation, and participate in diverse physiological and pathological processes. In the lack of netrin-1, however, these receptors initiate apoptosis-inducing signal. Accumulating evidence reveals that netrin-1 and its receptors play a role in tumorigenesis and tumor progression. The expression of UNC5 receptor family is down-regulated in a variety of human tumors. Expression aberrance of UNC5 receptor family in tumors is caused by diverse mechanisms including genomic, epigenetic, transcriptional and post-transcriptional regulation. Notably, blocking netrin-1 binding to its receptors induces apoptotic cell death in tumor cells. In this review, we describe the characters and roles of UNC5 family members in tumorigenesis and tumor progression, discussing the regulatory mechanisms underlying down-regulation of UNC5 family members as well as recent implications of targeting netrin-1/UNC5 on potential clinical application for cancer treatment.
Collapse
Affiliation(s)
- Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
| | - Yuanyuan Li
- Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Akira Nakagawara
- Kyushu International Heavy Particle Beam Cancer Radiotherapy Center (SAGA HIMAT Foundation), Tosu, Japan.
| |
Collapse
|
8
|
Ji S, Yang Z, Gozali L, Kenney T, Kocabas A, Jinsook Park C, Hynes M. Distinct expression of select and transcriptome-wide isolated 3'UTRs suggests critical roles in development and transition states. PLoS One 2021; 16:e0250669. [PMID: 33951080 PMCID: PMC8099112 DOI: 10.1371/journal.pone.0250669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/08/2021] [Indexed: 01/06/2023] Open
Abstract
Mature mRNA molecules are expected to be comprised of a 5'UTR, a 3'UTR and a coding region (CDS). Unexpectedly, however, there have been multiple recent reports of widespread differential expression of mRNA 3'UTRs and their cognate coding regions (CDS), reflecting the expression of isolated 3'UTRs (i3'UTRs); these i3'UTRs can be highly expressed, often in reciprocal patterns to their cognate CDS. As with other long non-coding (lncRNAs), isolated 3'UTRs are likely to play an important role in gene regulation, but little is known about the contexts in which they are deployed. To illuminate the functions of i3'UTRs, here we carry out in vitro, in vivo and in silico analyses of differential 3'UTR/CDS mRNA ratio usage across tissues, development and cell state changes both for a select list of developmentally important genes as well as by unbiased transcriptome-wide analyses. Across two developmental paradigms we find a distinct switch from high i3'UTR expression for stem cell related genes in proliferating cells to high CDS for these genes in newly differentiated cells. Unbiased transcriptome analysis across multiple gene sets shows that regardless of tissue, genes with high 3'UTR to CDS ratios belong predominantly to gene ontology categories related to cell-type specific functions. In contrast, the gene ontology categories of genes with low 3'UTR to CDS ratios are similar across tissues and relate to common cellular functions. We further show that, at least for some genes, traditional transcriptional start site genomic elements correspond to identified RNAseq 3'UTR peak regions, suggesting that some i3'UTRs may be generated by de novo transcription. Our results provide critical information from which detailed hypotheses for individual i3'UTRs can be tested, with a common theme that i3'UTRs appear poised to regulate cell-specific gene expression and state.
Collapse
Affiliation(s)
- Shaoyi Ji
- Dept. of Biology, Stanford University, Stanford, CA, United States of America
| | - Ze Yang
- Dept. of Biology, Stanford University, Stanford, CA, United States of America
| | - Leonardi Gozali
- Dept. of Biology, Stanford University, Stanford, CA, United States of America
| | - Thomas Kenney
- Dept. of Biology, Stanford University, Stanford, CA, United States of America
| | - Arif Kocabas
- Rockefeller University, New York, NY, United States of America
| | | | - Mary Hynes
- Dept. of Biology, Stanford University, Stanford, CA, United States of America
- Rockefeller University, New York, NY, United States of America
| |
Collapse
|
9
|
Zhang M, Zhang L, Li Y, Sun F, Fang Y, Zhang R, Wu J, Zhou G, Song H, Xue L, Han B, Zheng C. Exome sequencing identifies somatic mutations in novel driver genes in non-small cell lung cancer. Aging (Albany NY) 2020; 12:13701-13715. [PMID: 32629428 PMCID: PMC7377869 DOI: 10.18632/aging.103500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide and accounts for more than one-third of all newly diagnosed cancer cases in China. Therefore, it is of great clinical significance to explore new driver gene mutations in non-small-cell lung cancer (NSCLC). Using an initial bioinformatic analysis, we identified somatic gene mutations in 13 patients with NSCLC and confirmed these mutations by targeted sequencing in an extended validation group of 88 patients. Recurrent mutations were detected in UNC5D (7.9%), PREX1 (5.0%), HECW1 (4.0%), DACH1 (2.0%), and GPC5 (2.0%). A functional study was also performed in UNC5D mutants. Mutations in UNC5D promoted tumorigenesis by abolishing the tumor suppressor function of the encoded protein. Additionally, in ten patients with lung squamous cell carcinoma, we identified mutations in KEAP1/NFE2L2 that influenced the expression of target genes in vivo and in vitro. Overall, the results of our study expanded the known spectrum of driver mutations involved in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Manman Zhang
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lele Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Fang
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruijia Zhang
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Wu
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaidong Song
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqiong Xue
- Department of Oncology, Dongfang Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Zheng
- Department of Respiration, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Bai Y, Li S. Long noncoding RNA OIP5-AS1 aggravates cell proliferation, migration in gastric cancer by epigenetically silencing NLRP6 expression via binding EZH2. J Cell Biochem 2019; 121:353-362. [PMID: 31219209 DOI: 10.1002/jcb.29183] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023]
Abstract
The critical role of long noncoding RNAs (lncRNAs) in the development of multiple cancers has been revealed either functioning as a tumor initiator or a cancer suppressor. A widely recognized OIP5 antisense RNA 1 (lncRNA OIP5-AS1) has been validated to be an essential regulator of the tumorigenesis of various malignancies. Whereas, the potential role and the exact mechanism of lncRNA OIP5-AS1 by which OIP5-AS1 mediates gastric cancer (GC) progression remains vague. Therefore, first our work probed its expression levels in GC cell lines and related normal cells by real-time quantitative polymerase chain reaction. The heightened level of OIP5-AS1 was detected in GC cell lines. In terms of its cellular effects, we performed a series of functional experiments and as presented in the assays, the proliferative potential and motility was diminished. However, more apoptotic cells were induced with the introduction of OIP5-AS1 silencing. Meanwhile, higher Nod-like receptor pyrin domain-containing protein 6 (NLRP6) and enhancer of zeste homolog 2 (EZH2) expression in the GC cells was monitored. Besides, OIP5-AS1 was disclosed to locate mainly in the nucleus. In terms of mechanism, OIP5-AS1 directly bound to EZH2 and obstructed NLRP6 expression, speeding up GC progression.
Collapse
Affiliation(s)
- Yunlei Bai
- Department of GI Medicine, The First Hospital of Yulin, Yulin, Shaanxi, China
| | - Sheng Li
- Department of General Surgery, Yulin No. 2 Hospital, Yulin, Shaanxi, China
| |
Collapse
|
11
|
Dong D, Zhang L, Bai C, Ma N, Ji W, Jia L, Zhang A, Zhang P, Ren L, Zhou Y. UNC5D, suppressed by promoter hypermethylation, inhibits cell metastasis by activating death-associated protein kinase 1 in prostate cancer. Cancer Sci 2019; 110:1244-1255. [PMID: 30632669 PMCID: PMC6447834 DOI: 10.1111/cas.13935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 01/19/2023] Open
Abstract
Prostate cancer (PCa) death primarily occurs due to metastasis of the cells, but little is known about the underlying molecular mechanisms. This study aimed to evaluate the expression of UNC5D, a newly identified tumor suppressor gene, analyze its epigenetic alterations, and elucidate its functional relevance to PCa metastasis. Meta-analysis of publicly available microarray datasets revealed that UNC5D expression was frequently downregulated in PCa tissues and inversely associated with PCa metastasis. These results were verified in clinical specimens by real-time PCR and immunohistochemistry assays. Through methylation analysis, the downregulated expression of UNC5D in PCa tissues and cell lines was found to be attributable to the hypermethylation of the promoter. A negative correlation was observed between methylation and UNC5D mRNA expression in PCa samples. The ectopic expression of UNC5D in PCa cells effectively reduced their ability to migrate and invade both in vitro and in vivo, and siRNA-mediated knockdown of UNC5D yielded consistent results. UNC5D can recruit and activate death-associated protein kinase 1, which remained to be essential for its metastatic suppressor function. In conclusion, these results suggested that UNC5D as a novel putative metastatic suppressor gene that is commonly down-regulated by hypermethylation in PCa.
Collapse
Affiliation(s)
- Dong Dong
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Lufang Zhang
- Department of LaboratoryAviation General HospitalBeijingChina
| | - Changsen Bai
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Na Ma
- Cancer BiobankTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Wei Ji
- Public LaboratoryKey Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Li Jia
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Aimin Zhang
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Pengyu Zhang
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Li Ren
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| | - Yunli Zhou
- Department of LaboratoryTianjin Medical University Cancer Institute and HospitalTianjinʼs Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjinChina
| |
Collapse
|
12
|
Neumeyer S, Popanda O, Edelmann D, Butterbach K, Toth C, Roth W, Bläker H, Jiang R, Herpel E, Jäkel C, Schmezer P, Jansen L, Alwers E, Benner A, Burwinkel B, Hoffmeister M, Brenner H, Chang-Claude J. Genome-wide DNA methylation differences according to oestrogen receptor beta status in colorectal cancer. Epigenetics 2019; 14:477-493. [PMID: 30931802 DOI: 10.1080/15592294.2019.1595998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Involvement of sex hormones in colorectal cancer (CRC) development has been linked to oestrogen receptor β (ERβ). Expression of ERβ is found reduced in tumour tissue and inversely related to mortality. However, mechanisms are not well understood. Our study aimed to detect differentially methylated genes associated with ERβ expression, which could point to mechanisms by which ERβ could influence risk and prognosis of CRC. Epigenome-wide DNA methylation profiling was performed using Illumina HumanMethylation450k BeadChip arrays in two independent tumour sample sets of CRC patients recruited in 2003-2010 by the German DACHS study (discovery cohort n = 917, replication cohort n = 907). ERβ expression was measured using immunohistochemistry and scored as negative, moderate and high. Differentially methylated CpG sites and genomic regions were determined using limma in the R-package RnBeads. For the comparison of tumours with moderate/high ERβ versus negative expression, differentially methylated CpG sites were identified but not confirmed by replication. Comparing tumours of high with tumours of negative ERβ expression revealed 2,904 differentially methylated CpG sites of which 403 were replicated (FDR adjusted p-value<0.05). Replicated CpGs were annotated to genes such as CD36, HK1 or LRP5. A survival analysis indicates that 30 of the replicated CpGs are also associated with overall survival (FDR-adjusted p-value<0.05). The regional analysis identified 60 differentially methylated promotor regions. The epigenome-wide analysis identified both novel genes as well as genes already implicated in CRC. Follow-up mechanistic studies to better understand the regulatory role of ERβ could inform potential targets for improving treatment or prevention of CRC.
Collapse
Affiliation(s)
- Sonja Neumeyer
- a Division of Cancer Epidemiology , German Cancer Research Center , Heidelberg , Germany.,b Medical Faculty Heidelberg , Heidelberg University , Heidelberg , Germany
| | - Odilia Popanda
- c Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Dominic Edelmann
- d Division of Biostatistics , German Cancer Research Center , Heidelberg , Germany
| | - Katja Butterbach
- a Division of Cancer Epidemiology , German Cancer Research Center , Heidelberg , Germany.,e Division of Clinical Epidemiology and Aging Research , German Cancer Research Center , Heidelberg , Germany
| | - Csaba Toth
- f Institute of Pathology , Heidelberg University , Heidelberg , Germany
| | - Wilfried Roth
- g Institute of Pathology , Universitätsmedizin der Johannes Gutenberg-Universität Mainz , Mainz , Germany
| | - Hendrik Bläker
- h Institute of Pathology , Charité University Medicine , Berlin , Germany
| | - Ruijingfang Jiang
- a Division of Cancer Epidemiology , German Cancer Research Center , Heidelberg , Germany
| | - Esther Herpel
- f Institute of Pathology , Heidelberg University , Heidelberg , Germany.,i NCT Tissue Bank , National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Cornelia Jäkel
- c Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Peter Schmezer
- c Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Lina Jansen
- e Division of Clinical Epidemiology and Aging Research , German Cancer Research Center , Heidelberg , Germany
| | - Elizabeth Alwers
- e Division of Clinical Epidemiology and Aging Research , German Cancer Research Center , Heidelberg , Germany
| | - Axel Benner
- d Division of Biostatistics , German Cancer Research Center , Heidelberg , Germany
| | - Barbara Burwinkel
- j Division of Molecular Epidemiology , German Cancer Research Center (DKFZ) , Heidelberg , Germany.,k Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer , University of Heidelberg , Heidelberg , Germany
| | - Michael Hoffmeister
- e Division of Clinical Epidemiology and Aging Research , German Cancer Research Center , Heidelberg , Germany
| | - Hermann Brenner
- e Division of Clinical Epidemiology and Aging Research , German Cancer Research Center , Heidelberg , Germany.,l Division of Preventive Oncology , German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) , Heidelberg , Germany.,m German Cancer Consortium (DKTK) , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Jenny Chang-Claude
- a Division of Cancer Epidemiology , German Cancer Research Center , Heidelberg , Germany.,n Cancer Epidemiology Group , University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|