1
|
Hiwasa T, Yoshida Y, Kubota M, Li SY, Zhang BS, Matsutani T, Mine S, Machida T, Ito M, Yajima S, Shirouzu M, Yokoyama S, Sata M, Yamagishi K, Iso H, Sawada N, Tsugane S, Takemoto M, Hayashi A, Yokote K, Kobayashi Y, Matsushita K, Tatsumi K, Takizawa H, Tomiyoshi G, Shimada H, Higuchi Y. Serum anti‑KIAA0513 antibody as a common biomarker for mortal atherosclerotic and cancerous diseases. MEDICINE INTERNATIONAL 2024; 4:45. [PMID: 38983794 PMCID: PMC11228693 DOI: 10.3892/mi.2024.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Numerous antibody biomarkers have been reported for cancer and atherosclerosis-related diseases. The major complications of atherosclerosis and diabetes mellitus (DM) are acute ischemic stroke (AIS), cardiovascular disease (CVD) and chronic kidney disease (CKD). Cancer development is accompanied by arterial disorders, such as angiogenesis and atherosclerosis, and DM is a risk factor for the development of certain types of cancer. Atherosclerosis-related diseases and cancers are therefore interrelated and could be detected using a common biomarker. In the present study, the initial screening using the protein array method identified KIAA0513 as an antigen recognized by serum IgG antibodies in patients with atherosclerosis. The amplified luminescent proximity homogeneous assay-linked immunosorbent assay revealed significantly higher serum antibody levels against recombinant KIAA0513 protein in patients with AIS, transient ischemic attack (TIA), DM, CVD, obstructive sleep apnea syndrome (OSAS), CKD and solid cancers, such as esophageal, gastric, colon, lung and breast cancers, compared with healthy donors. A receiver operating characteristic (ROC) analysis revealed that the highest areas under the ROC curves of anti-KIAA0513 antibodies were obtained for esophageal cancer, nephrosclerosis-type CKD and DM. Spearman's correlation analysis revealed that serum anti-KIAA0513 antibody levels were associated with maximum intima-media thickness and plaque score, which are indices of atherosclerosis and stenosis. Serum anti-KIAA0513 antibody markers appear to be useful for diagnosing AIS, TIA, DM, CVD, OSAS, CKD and solid cancers, and may reflect common arterial alterations leading to atherosclerotic and cancerous diseases.
Collapse
Affiliation(s)
- Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan
| | - Yoichi Yoshida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masaaki Kubota
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shu-Yang Li
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Bo-Shi Zhang
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tomoo Matsutani
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Seiichiro Mine
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Neurological Surgery, Chiba Prefectural Sawara Hospital, Chiba 287-0003, Japan
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba 290-0512, Japan
| | - Toshio Machida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba 290-0512, Japan
- Department of Neurosurgery, Eastern Chiba Medical Center, Chiba 283-8686, Japan
| | - Masaaki Ito
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan
| | - Satoshi Yajima
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | | | - Mizuki Sata
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba 305-8575, Japan
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan
| | - Minoru Takemoto
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Aiko Hayashi
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba 260-8677, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba 260-0025, Japan
| | - Go Tomiyoshi
- Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama 340-0203, Japan
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan
| | - Yoshinori Higuchi
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
2
|
Zhang C, Ni X, Tao C, Zhou Z, Wang F, Gu F, Cui X, Jiang S, Li Q, Lu H, Li D, Wu Z, Zhang R. Targeting PUF60 prevents tumor progression by retarding mRNA decay of oxidative phosphorylation in ovarian cancer. Cell Oncol (Dordr) 2024; 47:157-174. [PMID: 37632669 PMCID: PMC10899302 DOI: 10.1007/s13402-023-00859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/28/2023] Open
Abstract
PURPOSE Ovarian cancer (OC) is the leading cause of death from gynecological malignancies, and its etiology and pathogenesis are currently unclear. Recent studies have found that PUF60 overexpressed in various cancers. However, the exact function of PUF60 in global RNA processing and its role in OC has been unclear. METHODS The expression of PUF60 and its relationship with clinical characteristics were analyzed by multiple database analysis and immunohistochemistry. Phenotypic effects of PUF60 on ovarian cancer cell proliferation and metastasis were examined by in vitro cell proliferation assay, migration assay, and in vivo xenograft models and lung metastasis models. RNA immunoprecipitation, seahorse analyses, RNA stability assay were used to study the effect of PUF60 on the stability of oxidative phosphorylation (OXPHOS)-related genes in OC. RESULTS We report PUF60 is highly expressed in OC with frequent amplification of up to 33.9% and its upregulation predicts a poor prognosis. PUF60 promotes the proliferation and migration of OC cells both in vitro and in vivo. Mechanistically, we demonstrated that silencing of PUF60 enhanced the stability of mRNA transcripts involved in OXPHOS and decreased the formation of processing bodies (P-bodies), ultimately elevating the OXPHOS level. CONCLUSION Our study unveils a novel function of PUF60 in OC energy metabolism. Thus, PUF60 may serve as a novel target for the treatment of patients with OC.
Collapse
Affiliation(s)
- Cancan Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoge Ni
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Chunlin Tao
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Ziyang Zhou
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Fengmian Wang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Fei Gu
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Xiaoxiao Cui
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huan Lu
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Dongxue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhiyong Wu
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Shanghai, 200011, China.
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China.
- Shanghai Geriatric Medical Center, Shanghai, China.
| |
Collapse
|
3
|
Kobayashi S, Hiwasa T, Kitamura K, Kano M, Hoshino T, Hirano S, Hashimoto M, Seimiya M, Shimada H, Nomura F, Matsubara H, Matsushita K. Combinational antibody detection approach increases the clinical validity of colorectal cancer screening. J Clin Lab Anal 2023; 37:e24978. [PMID: 37964630 PMCID: PMC10749486 DOI: 10.1002/jcla.24978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND At different stages of the disease, biomarkers can help to determine disease progression and recurrence and provide a personalized indicator of therapeutic effectiveness. The serological identification of antigens by recombinant cDNA expression cloning (SEREX) has identified five SEREX antigens. RESULTS Compared with healthy donors, anti-FIRΔexon2 and anti-SOHLH antibodies (Abs) in the sera of patients with colorectal cancer (CRC) were markedly higher. Furthermore, no correlation was noted between five SEREX antigens and the three tumor markers (CEA, CA19-9, and anti-p53 Abs), indicating that anti-FIRΔexon2 Abs are an independent candidate marker for patients with CRC. Generally, the levels of anti-FIRΔexon2 Abs combined with clinically available tumor markers were determined to be significantly higher compared with CEA, CA19-9. Moreover, in early-stage CRC, the levels of anti-FIRΔexon2 Abs combined with existing tumor markers were higher than those of CEA, CA19-9. CONCLUSION Due to the highly heterogeneous nature of CRC, a single tumor marker is unlikely to become a standalone diagnostic test due to its commonly insufficient sensitivity and/or specificity. Using a combination antibody detection approach of tumor markers for CRC diagnosis has the potential to be an effective approach. Therefore, the use of serum protein biomarker candidates holds promise for the development of inexpensive, noninvasive, and inexpensive tests for the detection of CRC.
Collapse
Affiliation(s)
- Sohei Kobayashi
- Department of Laboratory Medicine & Division of Clinical GeneticsChiba University HospitalChibaJapan
- Department of Medical Technology & Sciences, School of Health Sciences at NaritaInternational University of Health and WelfareChibaJapan
| | - Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of MedicineChiba UniversityChibaJapan
| | - Kouichi Kitamura
- Department of Laboratory Medicine & Division of Clinical GeneticsChiba University HospitalChibaJapan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of MedicineChiba UniversityChibaJapan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Sho Hirano
- Department of Medical Technology & Sciences, School of Health Sciences at NaritaInternational University of Health and WelfareChibaJapan
| | - Mayuko Hashimoto
- Department of Medical Technology & Sciences, School of Health Sciences at NaritaInternational University of Health and WelfareChibaJapan
| | - Masanori Seimiya
- Department of Medical Technology & Sciences, School of Health Sciences at NaritaInternational University of Health and WelfareChibaJapan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery, Graduate School of MedicineToho UniversityTokyoJapan
| | - Fumio Nomura
- Department of Laboratory Medicine & Division of Clinical GeneticsChiba University HospitalChibaJapan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of MedicineChiba UniversityChibaJapan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical GeneticsChiba University HospitalChibaJapan
| |
Collapse
|
4
|
Xing X, lv Q, Sun C, Song J, Chen Z, Jiang Y, Wang Y, Jiang Y, Wang Z. One-step preparation of PEG segment-functionalized polystyrene microspheres and their application as latex in LOCI. NEW J CHEM 2023. [DOI: 10.1039/d2nj05630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PEG segment-functionalized polystyrene microspheres were prepared by one-step copolymerization of amphiphilic macromolecular monomers, and further used as the latex for photosensitive polymer microspheres in luminescent oxygen channeling assay (LOCI).
Collapse
Affiliation(s)
- Xiaoxiao Xing
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Qingyu lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Chunyu Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jia Song
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Zhixin Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Ye Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
5
|
Ji L, Wang J, Yang B, Zhu J, Wang Y, Jiao J, Zhu K, Zhang M, Zhai L, Gong T, Sun C, Qin J, Wang G. Urinary protein biomarker panel predicts esophageal squamous carcinoma from control cases and other tumors. Esophagus 2022; 19:604-616. [PMID: 35792948 DOI: 10.1007/s10388-022-00932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/07/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Discovery of noninvasive urinary biomarkers for the early diagnosis of esophageal squamous carcinoma (ESCC). METHODS We conducted proteomic analyses of 499 human urine samples obtained from healthy individuals (n = 321) and ESCC (n = 83), bladder cancer (n = 17), breast cancer (n = 12), colorectal cancer (n = 16), lung cancer (n = 33) and thyroid cancer (n = 17) patients from multiple medical centers. Those samples were divided into a discovery set (n = 247) and an independent validation set (n = 157). RESULTS Among urinary proteins identified in the comprehensive quantitative proteomics analysis, we selected a panel of three urinary biomarkers (ANXA1, S100A8, TMEM256), and established a logistic regression model in the discovery set that can correctly classify the majority of ESCC cases in the validation sets with the area under the curve (AUC) values of 0.825. This urinary biomarker panel not only discriminates ESCC patients from healthy individuals but also differentiates ESCC from other common tumors. Notably, the panel distinguishes stage I ESCC patients from healthy individuals with AUC values of 0.886. On the analysis of stage-specific biomarkers, another combination panel of protein (ANXA1, S100A8, SOD3, TMEM256) demonstrated a good AUC value of 0.792 for stage I ESCC. CONCLUSIONS Urinary biomarker panel represents a promising auxiliary diagnostic tool for ESCC, including early-stage ESCC.
Collapse
Affiliation(s)
- Linlin Ji
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jianping Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Bo Yang
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jianping Zhu
- Department of Thoracic Surgery, Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Yini Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jiaqi Jiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Kai Zhu
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Min Zhang
- Department of Oncology, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Liqiang Zhai
- Department of Oncology, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Tongqing Gong
- Beijing Pineal Health Management Co., Ltd, Beijing, 102206, China
| | - Changqing Sun
- Joint Center for Translational Medicine, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Guangshun Wang
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China.
| |
Collapse
|
6
|
wang F, Peng L, Sun Y, Zhang B, Lu S. PUF60 promotes glioblastoma progression through regulation of EGFR stability. Biochem Biophys Res Commun 2022; 636:190-196. [DOI: 10.1016/j.bbrc.2022.10.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022]
|
7
|
Ito M, Hiwasa T, Oshima Y, Yajima S, Suzuki T, Nanami T, Sumazaki M, Shiratori F, Funahashi K, Takizawa H, Kashiwado K, Tochigi N, Shimada H. Identification of serum anti-striatin 4 antibodies as a common marker for esophageal cancer and other solid cancers. Mol Clin Oncol 2021; 15:237. [PMID: 34650804 DOI: 10.3892/mco.2021.2399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 07/21/2021] [Indexed: 12/18/2022] Open
Abstract
Solid cancers have a poor prognosis, and their morbidity and mortality after surgery is high. Even after radical surgery for esophageal cancer, there have been cases of early postoperative death. The present study therefore aimed to explore new tumor markers that can predict the early postoperative prognosis. To identify antibody markers, serological antigens were identified using recombinant cDNA expression cloning (SEREX). The results identified striatin 4 (STRN4) as the antigen recognized by serum IgG antibodies in patients with esophageal cancer. After performing an amplified luminescence proximity homogeneous assay-linked immunosorbent assay (AlphaLISA), it was revealed that when compared with healthy donors, serum anti-STRN4 antibody (STRN4-Ab) levels were significantly higher not only in patients with esophageal cancer but also to lesser extent, in those with gastric cancer, colorectal cancer, lung cancer and breast cancer. Compared with STRN4-Ab-negative patients with esophageal cancer, STRN4-Ab-positive patients had a poorer postoperative prognosis at early stages, suggesting that STRN4-Abs may be useful for predicting poor early-stage prognoses of patients with esophageal cancer. The positive diagnosis rates of esophageal cancer using the STRN4-Ab marker and conventional markers, including squamous cell carcinoma antigen and p53 antibody alone, were 26.4, 35.2 and 19.1% respectively; a result that increased up to 59.1% by combining all three markers. Serum STRN4-Ab may serve as a novel marker of esophageal cancer.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Takaki Hiwasa
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Ota-ku, Tokyo 143-8541, Japan.,Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Yoko Oshima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Satoshi Yajima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Takashi Suzuki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Tatsuki Nanami
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Makoto Sumazaki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Fumiaki Shiratori
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Kimihiko Funahashi
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chuo-ku, Chiba 260-0025, Japan
| | - Koichi Kashiwado
- Department of Neurology, Kashiwado Hospital, Chuo-ku, Chiba 260-0854, Japan
| | - Naobumi Tochigi
- Department of Surgical Pathology, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Ota-ku, Tokyo 143-8541, Japan.,Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| |
Collapse
|
8
|
Urinary microRNA biomarkers for detecting the presence of esophageal cancer. Sci Rep 2021; 11:8508. [PMID: 33879806 PMCID: PMC8058072 DOI: 10.1038/s41598-021-87925-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
Esophageal cancer (EC) including esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) generally exhibits poor prognosis; hence, a noninvasive biomarker enabling early detection is necessary. Age- and sex-matched 150 healthy controls (HCs) and 43 patients with ESCC were randomly divided into two groups: 9 individuals in the discovery cohort for microarray analysis and 184 individuals in the training/test cohort with cross-validation for qRT-PCR analysis. Using 152 urine samples (144 HCs and 8 EACs), we validated the urinary miRNA biomarkers for EAC diagnosis. Among eight miRNAs selected in the discovery cohort, urinary levels of five miRNAs (miR-1273f, miR-619-5p, miR-150-3p, miR-4327, and miR-3135b) were significantly higher in the ESCC group than in the HC group, in the training/test cohort. Consistently, these five urinary miRNAs were significantly different between HC and ESCC in both training and test sets. Especially, urinary miR-1273f and miR-619-5p showed excellent values of area under the curve (AUC) ≥ 0.80 for diagnosing stage I ESCC. Similarly, the EAC group had significantly higher urinary levels of these five miRNAs than the HC group, with AUC values of approximately 0.80. The present study established novel urinary miRNA biomarkers that can early detect ESCC and EAC.
Collapse
|
9
|
Kobayashi S, Hiwasa T, Ishige T, Kano M, Hoshino T, Rahmutulla B, Seimiya M, Shimada H, Nomura F, Matsubara H, Matsushita K. Anti-FIRΔexon2 autoantibody as a novel indicator for better overall survival in gastric cancer. Cancer Sci 2021; 112:847-858. [PMID: 33306856 PMCID: PMC7894018 DOI: 10.1111/cas.14767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
There is no clinically available biomarker for efficiently indicating the overall survival or therapy response of gastric cancer (GC). The autoantibodies (Abs) in the sera of anti‐far‐upstream element‐binding protein‐interacting repressor‐lacking exon2 (FIRΔexon2), anti‐sorting nexin 15, and anti‐spermatogenesis and oogenesis–specific basic helix–loop–helix 1 were markedly higher in GC patients than in healthy donors (HDs). These Abs were identified by large‐scale serological identification of antigens by recombinant cDNA expression cloning screenings and their expression levels were evaluated by amplified luminescence proximity homogeneous assay. In particular, compared with age‐matched HDs, the level of anti‐FIRΔexon2 Abs in GC patients was significantly higher (P < .001). The Spearman's rank correlation analysis between anti‐FIRΔexon2 Abs and clinically available tumor markers such as carcinoembryonic antigen (CEA) was statistically insignificant, indicating that FIRΔexon2 Abs is an independent biomarker. We performed receiver‐operating curve analysis to evaluate the anti‐FIRΔexon2 Ab as a candidate biomarker with CEA and carbohydrate antigen 19‐9 (CA19‐9). The overall survival of GC patients with high anti‐FIRΔexon2 Abs titer was significantly favorable (P = .04) than that of GC patients who were below detection level of anti‐FIRΔexon2 Abs. However, clinical stages were not apparently correlated with the levels of anti‐FIRΔexon2 Ab, CEA, and CA19‐9. In conclusion, anti‐FIRΔexon2 Abs detected in GC patients is a potential biomarker for monitoring a better prognosis. Hence, anti‐FIRΔexon2 Abs is a promising biomarker for indicating better overall survival of gastric cancer patients.
Collapse
Affiliation(s)
- Sohei Kobayashi
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan.,Department of Medical Technology & Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, Japan
| | - Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Ishige
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masanori Seimiya
- Department of Medical Technology & Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Toho University, Tokyo, Japan
| | - Fumio Nomura
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
10
|
Long Q, An X, Chen M, Wang N, Sui S, Li Y, Zhang C, Lee K, Wang X, Tian T, Pan Y, Qiu H, Xie F, Deng W, Zheng F, He L. PUF60/AURKA Axis Contributes to Tumor Progression and Malignant Phenotypes in Bladder Cancer. Front Oncol 2020; 10:568015. [PMID: 33117697 PMCID: PMC7576680 DOI: 10.3389/fonc.2020.568015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Abnormal expression or mutation of RNA splicing proteins are widely observed in human cancers. Here, we identified poly(U) binding splicing factor 60 (PUF60) as one of the most differentially expressed genes out of 97 RNA splicing proteins between normal and bladder cancer tissues by bioinformatics analysis of TCGA bladder cancer expression data. The expression of PUF60 was significantly higher in tumor tissues, while high PUF60 expression was associated with malignant phenotypes of bladder cancer and shorter survival time. Moreover, we identified aurora kinase A (AURKA) as a new downstream target of PUF60 in bladder cancer cells. PUF60 knockdown significantly inhibited cell viability and colony formation capacity in bladder cancer cells, whereas AURKA overexpression reversed this inhibition effect. Overexpression of PUF60 significantly promoted cell viability and colony formation in bladder cancer cells, while treatment with AURKA specific inhibitor reversed this promotive effect. Mechanistically, PUF60 specifically bound to the AURKA promoter, thereby activating its transcription and expression. Furthermore, we showed that there was a significant positive correlation between PUF60 and AURKA expression in bladder cancer tissues, and PUF60 and AURKA expression contributed to tumor progression and malignant phenotypes in the patients with bladder cancer. Collectively, these results indicate that the PUF60/AURKA axis plays a key role in regulating tumorigenesis and progression of bladder cancer, and may be a potential prognostic biomarker and therapeutic target for bladder cancer patients.
Collapse
Affiliation(s)
- Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin An
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Nan Wang
- College of Life Science, Jiaying University, Meizhou, China
| | - Silei Sui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yixin Li
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Changlin Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kaping Lee
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaonan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tian Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yangxun Pan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Huijuan Qiu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,College of Life Science, Jiaying University, Meizhou, China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fangyun Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fufu Zheng
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liru He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
11
|
Sumazaki M, Shimada H, Ito M, Shiratori F, Kobayashi E, Yoshida Y, Adachi A, Matsutani T, Iwadate Y, Mine S, Machida T, Kamitsukasa I, Mori M, Sugimoto K, Uzawa A, Kuwabara S, Kobayashi Y, Ohno M, Nishi E, Maezawa Y, Takemoto M, Yokote K, Takizawa H, Kashiwado K, Shin H, Kishimoto T, Matsushita K, Kobayashi S, Nakamura R, Shinmen N, Kuroda H, Zhang XM, Wang H, Goto KI, Hiwasa T. Serum anti-LRPAP1 is a common biomarker for digestive organ cancers and atherosclerotic diseases. Cancer Sci 2020; 111:4453-4464. [PMID: 32939876 PMCID: PMC7734161 DOI: 10.1111/cas.14652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Some cancers are related to atherosclerotic diseases; therefore, these two types of disease may share some antibody biomarkers in common. To investigate this, a first screening of sera was performed from patients with esophageal squamous cell carcinoma (ESCC) or acute ischemic stroke (AIS) for serological identification of antigens using recombinant cDNA expression cloning (SEREX). The amplified luminescent proximity homogeneous assay‐linked immunosorbent assay (AlphaLISA) method, which incorporates glutathione donor beads and anti‐human IgG acceptor beads, was used to evaluate serum antibody levels. SEREX screening identified low‐density lipoprotein receptor–related protein–associated protein 1 (LRPAP1) as a target antigen of serum IgG antibodies in the sera of patients with ESCC or AIS. Antigens, including recombinant glutathione S‐transferase–fused LRPAP1 protein, were prepared to examine serum antibody levels. AlphaLISA revealed significantly higher antibody levels against the LRPAP1 protein in patients with solid cancers such as ESCC and colorectal carcinoma and some atherosclerosis‐related diseases such as AIS and diabetes mellitus compared with healthy donors. Correlation analysis revealed that the elevated serum antibody levels against LRPAP1 were associated with smoking, a well‐known risk factor for both cancer and atherosclerosis. Serum LRPAP1 antibody is therefore a common marker for the early diagnosis of some cancers and atherosclerotic diseases and may reflect diseases caused by habitual smoking.
Collapse
Affiliation(s)
- Makoto Sumazaki
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Ito
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Fumiaki Shiratori
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Eiichi Kobayashi
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoichi Yoshida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akihiko Adachi
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoo Matsutani
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiichiro Mine
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Neurological Surgery, Chiba Prefectural Sawara Hospital, Chiba, Japan.,Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba, Japan
| | - Toshio Machida
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba, Japan.,Department of Neurosurgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Ikuo Kamitsukasa
- Department of Neurology, Chiba Rosai Hospital, Chiba, Japan.,Department of Neurology, Chibaken Saiseikai Narashino Hospital, Chiba, Japan
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuo Sugimoto
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Minoru Takemoto
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba, Japan
| | | | - Hideo Shin
- Department of Neurosurgery, Higashi Funabashi Hospital, Chiba, Japan
| | - Takashi Kishimoto
- Department of Molecular Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Division of Clinical Genetics and Proteomics, Department of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | - Sohei Kobayashi
- Division of Clinical Genetics and Proteomics, Department of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | - Rika Nakamura
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama, Japan
| | - Natsuko Shinmen
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama, Japan
| | - Hideyuki Kuroda
- Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama, Japan
| | - Xiao-Meng Zhang
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hao Wang
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Anesthesia, The First Affiliated Hospital, Jinan University, Guanzhou, China
| | - Ken-Ichiro Goto
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takaki Hiwasa
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
12
|
Ailiken G, Kitamura K, Hoshino T, Satoh M, Tanaka N, Minamoto T, Rahmutulla B, Kobayashi S, Kano M, Tanaka T, Kaneda A, Nomura F, Matsubara H, Matsushita K. Post-transcriptional regulation of BRG1 by FIRΔexon2 in gastric cancer. Oncogenesis 2020; 9:26. [PMID: 32071290 PMCID: PMC7028737 DOI: 10.1038/s41389-020-0205-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Brahma-related gene 1 (BRG1), an ATPase subunit of the SWItch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex controls multipotent neural crest formation by regulating epithelial-mesenchymal transition (EMT)-related genes with adenosine triphosphate-dependent chromodomain-helicase DNA-binding protein 7 (CHD7). The expression of BRG1 engages in pre-mRNA splicing through interacting RNPs in cancers; however, the detailed molecular pathology of how BRG1and CHD7 relate to cancer development remains largely unveiled. This study demonstrated novel post-transcriptional regulation of BRG1 in EMT and relationship with FIRΔexon2, which is a splicing variant of the far-upstream element-binding protein (FUBP) 1-interacting repressor (FIR) lacking exon 2, which fails to repress c-myc transcription in cancers. Previously, we have reported that FIR complete knockout mice (FIR-/-) was embryonic lethal before E9.5, suggesting FIR is crucial for development. FIRΔexon2 acetylated H3K27 on promoter of BRG1 by CHIP-sequence and suppressed BRG1 expression post-transcriptionally; herein BRG1 suppressed Snai1 that is a transcriptional suppressor of E-cadherin that prevents cancer invasion and metastasis. Ribosomal proteins, hnRNPs, splicing-related factors, poly (A) binding proteins, mRNA-binding proteins, tRNA, DEAD box, and WD-repeat proteins were identified as co-immunoprecipitated proteins with FIR and FIRΔexon2 by redoing exhaustive mass spectrometry analysis. Furthermore, the effect of FIRΔexon2 on FGF8 mRNA splicing was examined as an indicator of neural development due to impaired CHD7 revealed in CHARGE syndrome. Expectedly, siRNA of FIRΔexon2 altered FGF8 pre-mRNA splicing, indicated close molecular interaction among FIRΔexon2, BRG1 and CHD7. FIRΔexon2 mRNA was elevated in human gastric cancers but not in non-invasive gastric tumors in FIR+/ mice (K19-Wnt1/C2mE x FIR+/-). The levels of FIR family (FIR, FIRΔexon2 and PUF60), BRG1, Snai1, FBW7, E-cadherin, c-Myc, cyclin-E, and SAP155 increased in the gastric tumors in FIR+/- mice compared to those expressed in wild-type mice. FIR family, Snai1, cyclin-E, BRG1, and c-Myc showed trends toward higher expression in larger tumors than in smaller tumors in Gan-mice (K19-Wnt1/C2mE). The expressions of BRG1 and Snai1 were positively correlated in the gastric tumors of the Gan-mice. Finally, BRG1 is a candidate substrate of F-box and WD-repeat domain-containing 7 (FBW7) revealed by three-dimensional crystal structure analysis that the U2AF-homology motif (UHM) of FIRΔexon2 interacted with tryptophan-425 and asparate-399 (WD)-like motif in the degron pocket of FBW7 as a UHM-ligand motif. Together, FIRΔexon2 engages in multi-step post-transcriptional regulation of BRG1, affecting EMT through the BRG1/Snai1/E-cadherin pathway and promoting tumor proliferation and invasion of gastric cancers.
Collapse
Affiliation(s)
- Guzhanuer Ailiken
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kouichi Kitamura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mamoru Satoh
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Nobuko Tanaka
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sohei Kobayashi
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumio Nomura
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
13
|
Kobayashi S, Hiwasa T, Ishige T, Rahmutulla B, Kano M, Hoshino T, Minamoto T, Shimada H, Nomura F, Matsubara H, Matsushita K. Anti-FIRΔexon2, a splicing variant form of PUF60, autoantibody is detected in the sera of esophageal squamous cell carcinoma. Cancer Sci 2019; 110:2004-2013. [PMID: 30980774 PMCID: PMC6549911 DOI: 10.1111/cas.14024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Anti‐PUF60 autoantibodies are reportedly detected in the sera of patients with dermatomyositis and Sjögren's syndrome; however, little is known regarding its existence in the sera of cancer patients. FIR, a splicing variant of the PUF60 gene, is a transcriptional repressor of c‐myc. In colorectal cancer, there is an overexpression of the dominant negative form of FIR, in which exon 2 is lacking (FIRΔexon2). Previously, large‐scale SEREX (serological identification of antigens by recombinant cDNA expression cloning) screenings have identified anti‐FIR autoantibodies in the sera of cancer patients. In the present study, we revealed the presence and significance of anti‐FIR (FIR/FIRΔexon2) Abs in the sera of patients with esophageal squamous cell carcinoma (ESCC). Our results were validated by an amplified luminescence proximity homogeneous assay using sera of patients with various cancer types. We revealed that anti‐FIRΔexon2 Ab had higher sensitivity than anti‐FIR Ab. Receiver operating characteristic (ROC) analysis was applied for evaluating the use of anti‐FIRΔexon2 Ab as candidate markers such as anti‐p53 Ab and carcinoembryonic antigen, and the highest area under the ROC curve was observed in the combination of anti‐FIRΔexon2 Ab and anti‐p53 Ab. In summary, our results suggest the use of anti‐FIRΔexon2 Ab in combination with the anti‐p53 Ab as a predictive marker for ESCC. The area under the ROC curve was further increased in the advanced stage of ESCC. The value of anti‐FIRΔexon2 autoantibody as novel clinical indicator against ESCC and as a companion diagnostic tool is discussed.
Collapse
Affiliation(s)
- Sohei Kobayashi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Ishige
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Toshinari Minamoto
- Kanazawa University, Cancer Research Institute, Division of Translational and Clinical Oncology, Ishikawa, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Toho University, Tokyo, Japan
| | - Fumio Nomura
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| |
Collapse
|