1
|
Li X, Niu C, Yi G, Zhang Y, Jin W, Zhang Z, Zhang W, Li B. Quercetin inhibits the epithelial-mesenchymal transition and reverses CDK4/6 inhibitor resistance in breast cancer by regulating circHIAT1/miR-19a-3p/CADM2 axis. PLoS One 2024; 19:e0305612. [PMID: 38990915 PMCID: PMC11239024 DOI: 10.1371/journal.pone.0305612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Breast cancer (BC) cells have a high risk of metastasis due to epithelial-mesenchymal transition (EMT). Palbociclib (CDK4/6 inhibitor) is an approved drug for BC treatment. However, the drug resistance and metastasis can impair the treatment outcome of Palbociclib. Understanding the mechanisms of EMT and Palbociclib drug resistance in BC is conducive to the formulation of novel therapeutic strategy. Here, we investigated the role of circHIAT1/miR-19a-3p/CADM2 axis in modulating EMT and Palbociclib resistance in BC. circHIAT1 and CADM2 were down-regulated in BC tissues and cell lines, and miR-19a-3p showed an up-regulation. circHIAT1 could interact with miR-19a-3p and suppress its activity, while miR-19a-3p functioned to negatively regulate CADM2. Forced over-expression of circHIAT1 could impaired the EMT status and migratory ability of BC cells, and this effect was inhibited by miR-19a-3p mimic. In addition, we also generated Palbociclib resistant BC cells, and showed that circHIAT1 and CADM2 were down-regulated in the resistant BC cells while miR-19a-3p showed an up-regulation. Forced circHIAT1 over-expression re-sensitized BC cells to Palbociclib treatment. Quercetin, a bioactive flavonoid, could suppressed the migration and invasion of BC cells, and re-sensitized BC cells to Palbociclib. The anti-cancer effect of quercetin could be attributed to its regulatory effect on circHIAT1/miR-19a-3p/CADM2 axis. In vivo tumorigenesis experiment further revealed that quercetin administration enhanced the anti-cancer effect of Palbociclib, an effect was dependent on the up-regulation of circHIAT1 by quercetin. In summary, this study identified quercetin as a potential anti-cancer compound to reverse Palbociclib resistance and impair EMT in BC cells by targeting circHIAT1/miR-19a-3p/CADM2 axis.
Collapse
Affiliation(s)
- Xiaogang Li
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Chao Niu
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Guoqiang Yi
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Yuan Zhang
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Wendi Jin
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Zhiping Zhang
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Wanfu Zhang
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Bo Li
- Department of General Surgery, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Kaya Y, Korulu S, Tunoglu ENY, Yildiz A. A potential posttranscriptional regulator for p60-katanin: miR-124-3p. Cytoskeleton (Hoboken) 2023; 80:437-447. [PMID: 37439368 DOI: 10.1002/cm.21769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Katanin is a microtubule severing protein belonging to the ATPase family and consists of two subunits; p60-katanin synthesized by the KATNA1 gene and p80-katanin synthesized by the KATNB1 gene. Microtubule severing is one of the mechanisms that allow the reorganization of microtubules depending on cellular needs. While this reorganization of microtubules is associated with mitosis in dividing cells, it primarily takes part in the formation of structures such as axons and dendrites in nondividing mature neurons. Therefore, it is extremely important in neuronal branching. p60 and p80 katanin subunits coexist in the cell. While p60-katanin is responsible for cutting microtubules with its ATPase function, p80-katanin is responsible for the regulation of p60-katanin and its localization in the centrosome. Although katanin has vital functions in the cell, there are no known posttranscriptional regulators of it. MicroRNAs (miRNAs) are a group of small noncoding ribonucleotides that have been found to have important roles in regulating gene expression posttranscriptionally. Despite being important in gene regulation, so far no microRNA has been experimentally associated with katanin regulation. In this study, the effects of miR-124-3p, which we detected as a result of bioinformatics analysis to have the potential to bind to the p60 katanin mRNA, were investigated. For this aim, in this study, SH-SY5Y neuroblastoma cells were transfected with pre-miR-124-3p mimics and pre-mir miRNA precursor as a negative control, and the effect of this transfection on p60-katanin expression was measured at both RNA and protein levels by quantitative real-time PCR (qRT-PCR) and western blotting, respectively. The results of this study showed for the first time that miR-124-3p, which was predicted to bind p60-katanin mRNA by bioinformatic analysis, may regulate the expression of the KATNA1 gene. The data obtained within the scope of this study will make important contributions in order to better understand the regulation of the expression of p60-katanin which as well will have an incontrovertible impact on the understanding of the importance of cytoskeletal reorganization in both mitotic and postmitotic cells.
Collapse
Affiliation(s)
- Yesim Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Sirin Korulu
- Institute of Natural and Health Sciences, Tallinn University, Tallinn, Estonia
| | | | - Aysegul Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
3
|
Jiang K, Kang L, Jiang A, Zhao Q. Development and Validation of a Diagnostic Model Based on Hypoxia-Related Genes in Myocardial Infarction. Int J Gen Med 2023; 16:2111-2123. [PMID: 37275329 PMCID: PMC10238209 DOI: 10.2147/ijgm.s407759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Purpose Myocardial infarction (MI) is a common cardiovascular disease, and its underlying pathological mechanism remains unclear. We aimed to develop a diagnostic model to distinguish different subtypes of MI. Patients and Methods The gene expression profiles of MI from the GEO database and hypoxia-related genes (HRGs) from MSigDB were downloaded. Then, the different MI subtypes based on HRGs were identified with unsupervised clustering. The difference of expression patterns and hypoxic-immune status among different subtypes of MI were investigated. The diagnostic model to distinguish the different subtypes of MI was developed and validated. Results Based on HRGs, MI samples were divided into two subtypes, cluster A and cluster B. A total of 211 genes showed significant changes in expression between the two subtypes. Cluster A was characterized by high hypoxia status and low immunity status. Based on weighted gene co-expression network analysis, ROC analysis and LASSO regression algorithm, 5 genes were identified as potential diagnostic markers. Finally, a diagnostic model based on these 5 genes was established, which can distinguish the two subtypes well. Conclusion The five hub genes, including ANKRD36, HLTF, KIF3A, OXCT1 and VPS13A, may be associated with the different subtypes of MI.
Collapse
Affiliation(s)
- Ke Jiang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, People’s Republic of China
| | - Ling Kang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, People’s Republic of China
| | - Andong Jiang
- Medical Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, People’s Republic of China
| | - Qiang Zhao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, People’s Republic of China
| |
Collapse
|
4
|
Chen Z, Song Y, Li P, Gao W. GRIN2D knockdown suppresses the progression of lung adenocarcinoma by regulating the E2F signalling pathway. Cell Signal 2023; 107:110685. [PMID: 37084840 DOI: 10.1016/j.cellsig.2023.110685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE Glutamate ionotropic receptor N-methyl-d-aspartate (NMDA) type subunit 2D (GRIN2D) is a member of the GRIN gene family and contributes to the development and function of the brain. GRIN2D was found to be upregulated in several types of cancers; however, its mechanism in lung adenocarcinoma (LUAD) remains unclear. METHODS We determined the role of GRIN2D in LUAD. In addition, we investigated the potential mechanism of GRIN2D in LUAD using bioinformatics analysis and confirmed this mechanism using biological approaches. RESULTS GRIN2D was found to be upregulated in LUAD tissues and cells. GRIN2D knockdown reduced the proliferation and accelerated the apoptosis of LUAD cells. GRIN2D also activated glycolysis, gluconeogenesis, and the E2F signalling pathway in LUAD. GRIN2D knockdown significantly inhibited glucose uptake, lactate production, the ATP/ADP ratio, ECAR, and OCR in LUAD cells. E2F1 overexpression eliminated the inhibitory effect of GRIN2D knockdown in LUAD cells. CONCLUSIONS GRIN2D knockdown suppresses cell growth, migration, glycolysis, and gluconeogenesis of LUAD by inhibiting the E2F signalling pathway.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Yanhui Song
- Department of Internal Medicine, Rongfu Military Hospital of Jining City, Jinan 272101, Shandong, China
| | - Peipei Li
- Department of General Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Wei Gao
- Department of Pathology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
5
|
Quesnelle DC, Huang C, Boudreau JR, Lam A, Paw J, Bendena WG, Chin-Sang ID. C. elegans vab-6 encodes a KIF3A kinesin and functions cell non-autonomously to regulate epidermal morphogenesis. Dev Biol 2023; 497:33-41. [PMID: 36893881 DOI: 10.1016/j.ydbio.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023]
Abstract
Cells undergo strict regulation to develop their shape in a process called morphogenesis. Caenorhabditis elegans with mutations in the variable abnormal (vab) class of genes have been shown to display epidermal and neuronal morphological defects. While several vab genes have been well-characterized, the function of the vab-6 gene remains unknown. Here, we show that vab-6 is synonymous with a subunit of the kinesin-II heterotrimeric motor complex called klp-20/Kif3a, a motor well-understood to be involved in developing sensory cilia in the nervous system. We show that certain klp-20 alleles cause animals to develop a bumpy body phenotype that is variable but most severe in mutants containing single amino-acid substitutions in the catalytic head-domain sites of the protein. Surprisingly, animals carrying a klp-20 null allele do not show the bumpy epidermal phenotype suggesting genetic redundancy and only when mutant versions of the KLP-20 protein are present, the epidermal phenotype is observed. The bumpy epidermal phenotype was not observed in other kinesin-2 mutants, suggesting that KLP-20 is functioning independently from its role in intraflagellar transport (IFT) during ciliogenesis. Interestingly, despite having such a prominent epidermal phenotype, KLP-20 is not expressed in the epidermis, strongly suggesting a cell non-autonomous role in which it regulates epidermal morphogenesis.
Collapse
Affiliation(s)
| | - Cindy Huang
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | - Annie Lam
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Jadine Paw
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
6
|
Wang C, Danli Ma, Yu H, Zhuo Z, Ye Z. N6-methyladenosine (m6A) as a regulator of carcinogenesis and drug resistance by targeting epithelial-mesenchymal transition and cancer stem cells. Heliyon 2023; 9:e14001. [PMID: 36915498 PMCID: PMC10006539 DOI: 10.1016/j.heliyon.2023.e14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
Emergence of drug resistance to chemotherapeutic agents is the principal obstacle towards curative cancer treatment in human cancer patients. It is in an urgent to explore the underlying molecular mechanisms to overcome the drug resistance. N6-Methyladenosine (m6A) RNA modification is the most abundant reversible RNA modification and has emerged in recent years to regulate gene expression in eukaryotes. Recent evidence has identified m6A is associated with cancer pathogenesis and drug resistance, contributing to the self-renewal and differentiation of cancer stem cell, tumor epithelial-mesenchymal transition (EMT) and tumor metastasis. Here we reviewed up-to-date knowledge of the relationship between m6A modulation and drug resistance. Furthermore, we illustrated the underlying mechanisms of m6A modulation in drug resistance. Lastly, we discussed the regulation of m6A modulation in EMT and cancer stem cells. Hence, it will help to provide significant therapeutic strategies to overcome drug resistance for cancer patients by changing m6A-related proteins via targeting cancer stem cells and EMT-phenotypic cells.
Collapse
Affiliation(s)
- Chuhan Wang
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China.,Medical School of NingBo University, Ningbo, Zhejiang, 31500, China
| | - Danli Ma
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China
| | - Huimin Yu
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China
| | - Zhihong Zhuo
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China
| | - Zhiying Ye
- Department of Gynecology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 31500, China
| |
Collapse
|
7
|
Zhang X, Dong M, Zheng G, Zhu J, An B, Zhou Z, Bi Y, Sun M, Zhang C, Lian J, Tang S, Wang X, Liu W. Inhibition of proliferation and migration of hepatocellular carcinoma by knockdown of KIF3A via NF-κB signal pathway.. [DOI: 10.21203/rs.3.rs-2421333/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AbstractBackground The up-regulation of KIF3A possibly predicts the dismal prognostic outcome of hepatocellular carcinoma (HCC). The present work is focused on investigating KIF3A’s function in the growth and migration of HCC cells. Methods KIF3A expression and its role in predicting HCC prognosis were assessed using the TCGA and Genotype-Tissue Expression (GTEx) databases. KIF3A detection conditions in HCC patients were studied using an immunohistochemical panel. siKIF3A was created and then transfected into HepG2 HCC cells. Cell proliferation was examined with the use of the EDU and CCK8. Using the scratch wound healing assays, cell migration was assessed. RT-PCR and Western-blot (WB) assays were adopted for evaluating the expression of genes and proteins. Results KIF3A expression increased in HCC tissues as compared to matched non-carcinoma samples, and it was tightly associated with poor survival and risk factors (Ps < 0.05). KIF3A knockdown hindered the proliferation and migration of HCC cells (Ps < 0.05). KIF3A silencing reduced RelA (NF-κBp65) expression, thus, affecting the activity of HCC cells (Ps < 0.05). Conclusion In this study, the oncogene of hepatocellular carcinoma is KIF3A. Silencing KIF3A inhibited HCC cell growth and migration by suppressing the NF-κB signal pathway. KIF3A was identified as a potential new anti-HCC therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Bang An
- Shantou University Medical College
| | | | | | - Meng Sun
- Shantou University Medical College
| | | | | | | | | | | |
Collapse
|
8
|
Liu S, He Y, Li S, Gao X, Yang F. Kinesin family member 3A induces related diseases via wingless-related integration site/β-catenin signaling pathway. Sci Prog 2023; 106:368504221148340. [PMID: 36594221 PMCID: PMC10358705 DOI: 10.1177/00368504221148340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Kinesin family member 3A is an important motor protein that participates in various physiological and pathological processes, including normal tissue development, homeostasis maintenance, tumor infiltration, and migration. The wingless-related integration site/β-catenin signaling pathway is essential for critical molecular mechanisms such as embryonic development, organogenesis, tissue regeneration, and carcinogenesis. Recent studies have examined the molecular mechanisms of kinesin family member 3A, among which the wingless-related integration site/β-catenin signaling pathway has gained attention. The interaction between kinesin family member 3A and the wingless-related integration site/β-catenin signaling pathway is compact and complex but is fascinating and worthy of further study. The upregulation and downregulation of kinesin family member 3A influence many diseases and patient survival through the wingless-related integration site/β-catenin signaling pathway. Therefore, this review mainly focuses on describing the kinesin family member 3A and wingless-related integration site/β-catenin signaling pathways and their associated diseases.
Collapse
Affiliation(s)
- Shupeng Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Yang He
- Clinical Medicine College, North China University of Science and Technology, Tangshan, Hebei province, China
| | - Shifeng Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Xuemin Gao
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi Province, China
| | - Fang Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| |
Collapse
|
9
|
Vorobjev I. Editorial: Cytoskeleton in the focus of anti-cancer therapy: In a search of novel biomarkers and combinatorial therapy approaches. Front Pharmacol 2022; 13:1069821. [PMID: 36506584 PMCID: PMC9730867 DOI: 10.3389/fphar.2022.1069821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- I. Vorobjev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan,*Correspondence: I. Vorobjev,
| |
Collapse
|
10
|
Hu Z, Meng J, Cai H, Ma N, Gao X, Li X, Xu Y. KIF3A inhibits nasopharyngeal carcinoma proliferation, migration and invasion by interacting with β-catenin to suppress its nuclear accumulation. Am J Cancer Res 2022; 12:5226-5240. [PMID: 36504907 PMCID: PMC9729906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor prevalent in southern China and Southeast Asia. Previous studies have shown that Kinesin Family Member 3A (KIF3A) plays a critical role in the oncogenesis of various cancer types. However, the role of KIF3A in NPC tumorigenesis and the mechanism underlying its function have not been reported. In this study, we found that KIF3A was significantly downregulated in NPC cells and tissues, and KIF3A expression in NPC patients was associated with tumor stage and was positively corrected with overall survival. In vitro and in vivo experiments indicated that overexpression of KIF3A inhibited NPC cell proliferation, migration, and invasion. Mechanistic studies found that KIF3A bound β-catenin and attenuated β-catenin aggregation in the nucleus. Moreover, rescue experiments demonstrated that the inhibitory effect of KIF3A on NPC proliferation, migration and invasion was partially dependent on β-catenin. Taken together, our data suggest that KIF3A interacts with β-catenin and attenuates NPC proliferation, migration, and invasion by suppressing the intranuclear aggregation of β-catenin. KIF3A may be a promising therapeutic target of patients with NPC.
Collapse
Affiliation(s)
- Zhe Hu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical UniversityGuangzhou 510315, Guangdong, China
| | - Jinlan Meng
- Department of Physiology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou 510006, Guangdong, China
| | - Hongbing Cai
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical UniversityGuangzhou 510315, Guangdong, China
| | - Na Ma
- Department of Physiology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou 510006, Guangdong, China
| | - Xiujie Gao
- Department of Physiology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou 510006, Guangdong, China
| | - Xiaojuan Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical UniversityGuangzhou 510315, Guangdong, China
| | - Yan Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical UniversityGuangzhou 510315, Guangdong, China
| |
Collapse
|
11
|
Wattanathamsan O, Pongrakhananon V. Emerging role of microtubule-associated proteins on cancer metastasis. Front Pharmacol 2022; 13:935493. [PMID: 36188577 PMCID: PMC9515585 DOI: 10.3389/fphar.2022.935493] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 12/29/2022] Open
Abstract
The major cause of death in cancer patients is strongly associated with metastasis. While much remains to be understood, microtubule-associated proteins (MAPs) have shed light on metastatic progression’s molecular mechanisms. In this review article, we focus on the role of MAPs in cancer aggressiveness, particularly cancer metastasis activity. Increasing evidence has shown that a growing number of MAP member proteins might be fundamental regulators involved in altering microtubule dynamics, contributing to cancer migration, invasion, and epithelial-to-mesenchymal transition. MAP types have been established according to their microtubule-binding site and function in microtubule-dependent activities. We highlight that altered MAP expression was commonly found in many cancer types and related to cancer progression based on available evidence. Furthermore, we discuss and integrate the relevance of MAPs and related molecular signaling pathways in cancer metastasis. Our review provides a comprehensive understanding of MAP function on microtubules. It elucidates how MAPs regulate cancer progression, preferentially in metastasis, providing substantial scientific information on MAPs as potential therapeutic targets and prognostic markers for cancer management.
Collapse
Affiliation(s)
- Onsurang Wattanathamsan
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Varisa Pongrakhananon
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Varisa Pongrakhananon,
| |
Collapse
|
12
|
Tumor suppressive role of microRNA-139-5p in bone marrow mesenchymal stem cells-derived extracellular vesicles in bladder cancer through regulation of the KIF3A/p21 axis. Cell Death Dis 2022; 13:599. [PMID: 35821021 PMCID: PMC9276749 DOI: 10.1038/s41419-022-04936-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/26/2022] [Accepted: 05/11/2022] [Indexed: 01/21/2023]
Abstract
The emerging roles of extracellular vesicles (EVs) in bladder cancer have recently been identified. This study aims to elucidate the role of microRNA-139-5p (miR-139-5p) shuttled by bone marrow mesenchymal stem cells (BMSCs)-derived EVs (BMSCs-EVs) in bladder cancer, with the possible mechanism explored. Expression of miR-139-5p and KIF3A was tested, followed by an analysis of their correlation. EVs were isolated from BMSCs and co-cultured with T24 or BOY-12E cells with miR-139-5p mimic/inhibitor, oe-KIF3A, and/or si-p21 transfected to study the roles of miR-139-5p/KIF3A/p21 in bladder cancer cell functions. A nude mouse model of subcutaneous xenograft tumor was constructed to detect the effect of miR-139-5p in BMSCs-EVs on the tumorigenesis and lung metastasis of bladder cancer cells in vivo. It was identified that miR-139-5p was highly expressed in BMSCs-EVs, but poorly expressed in bladder cancer. BMSCs-EVs transferred miR-139-5p into bladder cancer cells where miR-139-5p inhibited the malignant features of bladder cancer cells in vitro. miR-139-5p in BMSCs-EVs targeted KIF3A and inhibited the expression of KIF3A, thereby activating p21. miR-139-5p in BMSCs-EVs arrested the tumorigenesis and lung metastasis of bladder cancer cells in vivo by modulation of the KIF3A/p21 axis. Altogether, BMSCs-EVs carried miR-139-5p targeted KIF3A to activate p21, thus delaying the occurrence of bladder cancer.
Collapse
|
13
|
RNA-binding protein MEX3A controls G1/S transition via regulating the RB/E2F pathway in clear cell renal cell carcinoma. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:241-255. [PMID: 34976441 PMCID: PMC8703191 DOI: 10.1016/j.omtn.2021.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022]
Abstract
MEX3A is an RNA-binding protein that mediates mRNA decay through binding to 3′ untranslated regions. However, its role and mechanism in clear cell renal cell carcinoma remain unknown. In this study, we found that MEX3A expression was transcriptionally activated by ETS1 and upregulated in clear cell renal cell carcinoma. Silencing MEX3A markedly reduced clear cell renal cell carcinoma cell proliferation in vitro and in vivo. Inhibiting MEX3A induced G1/S cell-cycle arrest. Gene set enrichment analysis revealed that E2F targets are the central downstream pathways of MEX3A. To identify MEX3A targets, systematic screening using enhanced cross-linking and immunoprecipitation sequencing, and RNA-immunoprecipitation sequencing assays were performed. A network of 4,000 genes was identified as potential targets of MEX3A. Gene ontology analysis of upregulated genes bound by MEX3A indicated that negative regulation of the cell proliferation pathway was highly enriched. Further assays indicated that MEX3A bound to the CDKN2B 3′ untranslated region, promoting its mRNA degradation. This leads to decreased levels of CDKN2B and an uncontrolled cell cycle in clear cell renal cell carcinoma, which was confirmed by rescue experiments. Our findings revealed that MEX3A acts as a post-transcriptional regulator of abnormal cell-cycle progression in clear cell renal cell carcinoma.
Collapse
|
14
|
Issac J, Raveendran PS, Das AV. RFX1: a promising therapeutic arsenal against cancer. Cancer Cell Int 2021; 21:253. [PMID: 33964962 PMCID: PMC8106159 DOI: 10.1186/s12935-021-01952-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Regulatory factor X1 (RFX1) is an evolutionary conserved transcriptional factor that influences a wide range of cellular processes such as cell cycle, cell proliferation, differentiation, and apoptosis, by regulating a number of target genes that are involved in such processes. On a closer look, these target genes also play a key role in tumorigenesis and associated events. Such observations paved the way for further studies evaluating the role of RFX1 in cancer. These studies were indispensable due to the failure of conventional chemotherapeutic drugs to target key cellular hallmarks such as cancer stemness, cellular plasticity, enhanced drug efflux, de-regulated DNA repair machinery, and altered pathways evading apoptosis. In this review, we compile significant evidence for the tumor-suppressive activities of RFX1 while also analyzing its oncogenic potential in some cancers. RFX1 induction decreased cellular proliferation, modulated the immune system, induced apoptosis, reduced chemoresistance, and sensitized cancer stem cells for chemotherapy. Thus, our review discusses the pleiotropic function of RFX1 in multitudinous gene regulations, decisive protein–protein interactions, and also its role in regulating key cell signaling events in cancer. Elucidation of these regulatory mechanisms can be further utilized for RFX1 targeted therapy.
Collapse
Affiliation(s)
- Joby Issac
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Pooja S Raveendran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Ani V Das
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
15
|
Mo D, He F, Zheng J, Chen H, Tang L, Yan F. tRNA-Derived Fragment tRF-17-79MP9PP Attenuates Cell Invasion and Migration via THBS1/TGF-β1/Smad3 Axis in Breast Cancer. Front Oncol 2021; 11:656078. [PMID: 33912465 PMCID: PMC8072113 DOI: 10.3389/fonc.2021.656078] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
tRNA derivatives have been identified as a new kind of potential biomarker for cancer. Previous studies have identified that there were 30 differentially expressed tRNAs derivatives in breast cancer tissue with the high-throughput sequencing technique. This study aimed to investigate the possible biological function and mechanism of tRNA derivatives in breast cancer cells. One such tRF, a 5'-tRF fragment of tRF-17-79MP9PP (tRF-17) was screened in this study, which is processed from the mature tRNA-Val-AAC and tRNA-Val-CAC. tRF-17 with significantly low expression in breast cancer tissues and serum. The level of tRF-17 differentiated breast cancer from healthy controls with sensitivity of 70.4% and specificity of 68.4%. Overexpression of tRF-17 suppressed cells malignant activity. THBS1 (Thrombospondin-1) as a downstream target of tRF-17, and reduction of THBS1 expression also partially recovered the effects of tRF-17 inhibition on breast cancer cell viability, invasion and migration. Besides, THBS1, TGF-β1, Smad3, p-Smad3 and epithelial-to-mesenchymal transition related genes N-cadherin, MMP3, MMP9 were markedly down-regulated in tRF-17 overexpressing cells. Moreover, tRF-17 attenuated the THBS1-mediated TGF-β1/Smad3 signaling pathway in breast cancer cells. In general, the tRF-17/THBS1/TGF-β1/smad3 axis elucidates the molecular mechanism of breast cancer cells invasion and migration and could lead to a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Dongping Mo
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Fang He
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Junyu Zheng
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Huanhuan Chen
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Li Tang
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Feng Yan
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
16
|
Xia Y, Chen J, Liu G, Huang W, Wei X, Wei Z, He Y. STIP1 knockdown suppresses colorectal cancer cell proliferation, migration and invasion by inhibiting STAT3 pathway. Chem Biol Interact 2021; 341:109446. [PMID: 33766539 DOI: 10.1016/j.cbi.2021.109446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 01/04/2023]
Abstract
Stress-induced phosphoprotein 1 (STIP1) plays an important role in cancer tumorigenesis and progression. However, the role of STIP1 in colorectal cancer (CRC) remains unclear. This study aimed to explore clinical significance, biological function and potential molecular mechanism of STIP1 in CRC. Immunohistochemistry (IHC) and Western bolt were performed to detect STIP1 protein level in CRC and adjacent normal tissues. DLD1 and HCT116 cell lines were treated with shSTIP1, cell proliferation was detected by CCK8 and colony formation assays, and cell migration and invasion were detected by wound healing and transwell assays. Moreover, western blot and immunofluorescence assays were performed to explore the potential molecular mechanism of STIP1 in the progression of CRC. We found that STIP1 expression in CRC tissues was significantly higher than in adjacent normal tissues. High STIP1 expression was associated with poor overall survival (OS) in CRC patients. Furthermore, secreted STIP1 promoted CRC cell proliferation and invasion through STAT3 signaling pathway, while STIP1 knockdown inhibited the proliferation, migration and invasion of CRC cells. Mechanistically, STIP1 knockdown suppressed the activation of STAT3 signaling pathway in CRC. In conclusion, STIP1 knockdown suppresses CRC cell proliferation, migration and invasion by inhibiting the activation of STAT3 signaling, and STIP1 is a potential target for CRC therapy.
Collapse
Affiliation(s)
- YuJian Xia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Jian Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Guangyao Liu
- Department of Gastrointestinal Surgery, Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Shenyuan Road, Shenzhen, Guangdong, 518106, China
| | - WeiBin Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - XiaoJing Wei
- Department of Medical Record Management, Affiliated Hospital of Yangzhou University, No. 45 Taizhou Road, Yangzhou, Jiangsu, 225000, China
| | - ZheWei Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| | - YuLong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
17
|
Wang W, Zhang R, Wang X, Wang N, Zhao J, Wei Z, Xiang F, Wang C. Suppression of KIF3A inhibits triple negative breast cancer growth and metastasis by repressing Rb-E2F signaling and epithelial-mesenchymal transition. Cancer Sci 2020; 111:1422-1434. [PMID: 32011034 PMCID: PMC7156822 DOI: 10.1111/cas.14324] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) displays higher heterogeneity, stronger invasiveness, higher risk of metastasis and poorer prognosis compared with major breast cancer subtypes. KIF3A, a member of the kinesin family of motor proteins, serves as a microtubule-directed motor subunit and has been found to regulate early development, ciliogenesis and tumorigenesis. To explore the expression, regulation and mechanism of KIF3A in TNBC, 3 TNBC cell lines, 98 cases of primary TNBC and paired adjacent tissues were examined. Immunohistochemistry, real-time PCR, western blot, flow cytometry, short hairpin RNA (shRNA) interference, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation techniques, transwell assays, scratch tests, and xenograft mice models were used. We found that KIF3A was overexpressed in TNBC and such high KIF3A expression was also associated with tumor recurrence and lymph node metastasis. Silencing of KIF3A suppressed TNBC cell proliferation by repressing the Rb-E2F signaling pathway and inhibited migration and invasion by repressing epithelial-mesenchymal transition. The tumor size was smaller and the number of lung metastatic nodules was lower in KIF3A depletion MDA-MB-231 cell xenograft mice than in the negative control group. In addition, KIF3A overexpression correlated with chemoresistance. These results suggested that high expression of KIF3A in TNBC was associated with the tumor progression and metastasis.
Collapse
Affiliation(s)
- Weilin Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
| | - Runze Zhang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiao Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ning Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
| | - Jing Zhao
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Zhimin Wei
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Fenggang Xiang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chengqin Wang
- Department of PathologySchool of Basic MedicineQingdao UniversityQingdaoChina
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|