1
|
Hashemi M, Mohandesi Khosroshahi E, Asadi S, Tanha M, Ghatei Mohseni F, Abdolmohammad Sagha R, Taheri E, Vazayefi P, Shekarriz H, Habibi F, Mortazi S, Khorrami R, Nabavi N, Rashidi M, Taheriazam A, Rahimzadeh P, Entezari M. Emerging roles of non-coding RNAs in modulating the PI3K/Akt pathway in cancer. Noncoding RNA Res 2025; 10:1-15. [PMID: 39296640 PMCID: PMC11406677 DOI: 10.1016/j.ncrna.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Forough Ghatei Mohseni
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramina Abdolmohammad Sagha
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paria Vazayefi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helya Shekarriz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Habibi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Mortazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Independent Researchers, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Al-Noshokaty TM, El-Sayyad GS, Abdelhamid R, Mansour A, Abdellatif N, Alaaeldien A, Reda T, Gendi D, Abdelmaksoud NM, Elshaer SS, Doghish AS, Mohammed OA, Abulsoud AI. Long non-coding RNAs and their role in breast cancer pathogenesis and drug resistance: Navigating the non-coding landscape review. Exp Cell Res 2024; 444:114365. [PMID: 39626864 DOI: 10.1016/j.yexcr.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/27/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Despite the progress made in the development of targeted therapies, breast cancer (BC) continues to pose a significant threat to the health of women. Transcriptomics has emerged due to the advancements in high-throughput sequencing technology. This provides crucial information about the role of non-coding RNAs (ncRNAs) in human cells, particularly long ncRNAs (lncRNAs), in disease development and function. When the control of these ncRNAs is disrupted, various illnesses emerge, including cancer. Numerous studies have produced empirical data on the function of lncRNAs in tumorigenesis and disease development. However, the roles and mechanisms of numerous lncRNAs remain unidentified at the molecular level because their regulatory role and the functional implications of abnormalities in cancer biology have yet to be thoroughly defined. The review gives an itemized summary of the most current developments in the role of lncRNA in BC, focusing on three main pathways, PI3K, MAPK, NF-kB, and hypoxia, and their resistance mechanisms.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Gharieb S El-Sayyad
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th October City, Giza, Egypt.
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - David Gendi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
3
|
Sun Y, Zhen F, Wang H, Liang X, Wang Y, Wang F, Hu J. Exosomal long non-coding RNA-LINC00839 promotes lung adenocarcinoma progression by activating NF-κB signaling pathway. Ann Med 2024; 56:2430029. [PMID: 39582330 PMCID: PMC11590188 DOI: 10.1080/07853890.2024.2430029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/13/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma is the most common type of lung cancer, accounting for approximately 40% of all lung cancer cases, and has the highest incidence among lung cancer subtypes. Recent studies have suggested that long non-coding RNAs (lncRNAs) play a crucial role in the initiation and progression of lung adenocarcinoma. METHODS Based on integrative analysis through databases, we screened Long intergenic non-protein coding RNA 00839 (LINC00839) as one of the most highly upregulated lncRNAs in lung adenocarcinoma. In vitro and in vivo experiments demonstrated that LINC00839 promotes lung adenocarcinoma proliferation, migration, and invasion and that it is present in exosomes secreted by lung adenocarcinoma cells. RESULTS In the cytoplasm, LINC00839 regulates the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway by acting as a molecular sponge of miR-17-5p, thereby influencing the biological behavior of lung adenocarcinoma cells. LINC00839 binds to Polypyrimidine tract binding protein 1 (PTBP1) in the nucleus to regulate the nuclear translocation of NF-κB p65 molecules and, consequently, the transcription of downstream molecules. CONCLUSIONS Our study confirmed that LINC00839 promotes the biological progression of lung adenocarcinoma by performing dual roles in the cytoplasm and nucleus to co-regulate the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yue Sun
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fang Zhen
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongyi Wang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiao Liang
- Key laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yaru Wang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Feiran Wang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jing Hu
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
4
|
Sharma S. Unraveling the role of long non-coding RNAs in therapeutic resistance in acute myeloid leukemia: New prospects & challenges. Noncoding RNA Res 2024; 9:1203-1221. [PMID: 39036603 PMCID: PMC11259994 DOI: 10.1016/j.ncrna.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/23/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a fatal hematological disease characterized by the unchecked proliferation of immature myeloid blasts in different tissues developed by various mutations in hematopoiesis. Despite intense chemotherapeutic regimens, patients often experience poor outcomes, leading to substandard remission rates. In recent years, long non-coding RNAs (lncRNAs) have increasingly become important prognostic and therapeutic hotspots, due to their contributions to dysregulating many functional epigenetic, transcriptional, and post-translational mechanisms leading to alterations in cell expressions, resulting in increased chemoresistance and reduced apoptosis in leukemic cells. Through this review, I highlight and discuss the latest advances in understanding the major mechanisms through which lncRNAs confer therapy resistance in AML. In addition, I also provide perspective on the current strategies to target lncRNA expressions. A better knowledge of the critical role that lncRNAs play in controlling treatment outcomes in AML will help improve existing medications and devise new ones.
Collapse
Affiliation(s)
- Siddhant Sharma
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
5
|
Iweala EEJ, Amuji DN, Oluwajembola AM, Ugbogu EA. Targeting c-Met in breast cancer: From mechanisms of chemoresistance to novel therapeutic strategies. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100204. [PMID: 39524211 PMCID: PMC11543557 DOI: 10.1016/j.crphar.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer presents a significant challenge due to its heterogeneity and propensity for developing chemoresistance, particularly in the triple-negative subtype. c-Mesenchymal epithelial transition factor (c-Met), a receptor tyrosine kinase, presents a promising target for breast cancer therapy due to its involvement in disease progression and poor prognosis. However, the heterogeneous expression of c-Met within breast cancer subtypes and individual tumors complicates targeted therapy. Also, cancer cells can develop resistance to c-Met inhibitors through various mechanisms, including bypass signaling pathways and genetic mutations. The off-target effects of c-Met inhibitors further limit their clinical utility, necessitating the development of more selective agents. To overcome these challenges, personalized treatment approaches and combination therapies are being explored to improve treatment efficacy while minimizing adverse effects. Novel c-Met inhibitors with improved selectivity and reduced off-target toxicity show promise in preclinical studies. Additionally, targeted delivery systems aim to enhance drug localization and reduce systemic toxicity. Future directions involve refining inhibitor design and integrating c-Met inhibition into personalized treatment regimens guided by molecular profiling. This review explores the mechanisms by which c-Met contributes to chemoresistance in breast cancer and current challenges in targeting c-Met for breast cancer therapy. It discusses strategies to optimize treatment outcomes, ultimately improving patient prognosis and reducing mortality rates associated with this devastating disease.
Collapse
Affiliation(s)
- Emeka Eze Joshua Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Doris Nnenna Amuji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Abimbola Mary Oluwajembola
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | | |
Collapse
|
6
|
Shahamiri K, Alghasi A, Saki N, Teimori H, Kaydani GA, sheikhi S. Upregulation of the long noncoding RNA GJA9-MYCBP and PVT1 is a potential diagnostic biomarker for acute lymphoblastic leukemia. Cancer Rep (Hoboken) 2024; 7:e2115. [PMID: 38994720 PMCID: PMC11240143 DOI: 10.1002/cnr2.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common type of blood cancer in children. Aberrant expression of long noncoding RNAs (lncRNAs) may set stages for ALL development. LncRNAs are emerging as a novel diagnostic and prognostic biomarker for ALL. Herein, we aimed to evaluate the expression of lncRNA GJA9-MYCBP and PVT1 in blood samples of ALL and healthy individuals. METHODS As a case-control study, 40 pairs of ALL and healthy individual samples were used. The expression of MYC and each candidate lncRNA was measured using quantitative real-time PCR. Any possible association between the expression of putative noncoding RNAs and clinicopathological characteristics was also evaluated. RESULTS LncRNA GJA9-MYCBP and PVT1 were significantly upregulated in ALL samples compared with healthy ones. Similarly, mRNA levels of MYC were increased in ALL samples than control ones. Receiver operating characteristic curve analysis indicated a satisfactory diagnostic efficacy (p-value <.0001), suggesting that lncRNA GJA9-MYCBP and PVT1 may serve as a diagnostic biomarker for ALL. Linear regression analysis unveiled positive correlations between the expression level of MYC and lncRNA GJA9-MYCBP and PVT1 in ALL patients (p-values <.01). CONCLUSIONS In this study, we provided approval for the clinical diagnostic significance of lncRNA GJA9-MYCBP and PVT1that their upregulations may be a diagnostic biomarker for ALL.
Collapse
Affiliation(s)
- Kamal Shahamiri
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Arash Alghasi
- Thalassemia & Hemoglobinopathy Research center, Health research instituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research center, Health research instituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Gholam Abbas Kaydani
- Department of Laboratory Sciences, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Setare sheikhi
- Department of Hematology and Blood Transfusion, School of Allied Medical SciencesTehran University of Medical scienceTehranIran
| |
Collapse
|
7
|
Hu Y, Hu Y, Lu X, Luo H, Chen Z. LINC00839 in Human Disorders: Insights into its Regulatory Roles and Clinical Impact, with a Special Focus on Cancer. J Cancer 2024; 15:2179-2192. [PMID: 38495499 PMCID: PMC10937278 DOI: 10.7150/jca.93820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
LINC00839 has captured significant attention within a spectrum of human disorders, including acute lung injury, osteoarthritis, and childhood obesity. Notably, aberrant expression patterns of LINC00839 have been observed across diverse cancer tissues and cell lines. LINC00839 emerges as an oncogenic factor in tumorigenesis and exerts a positive influence on tumor-associated behaviors. Its therapeutic potential for various cancers is underscored by its modulatory impact on pivotal signaling pathways, such as PI3K/AKT, OXPHOS, and Wnt/β-catenin. Additionally, LINC00839's role in reducing sensitivity to drug and radiotherapy interventions presents opportunities for targeted intervention. Furthermore, elevated LINC00839 expression indicates advanced clinicopathological features and foretells unfavorable prognoses, as validated by publications and comprehensive analyses of tumor types using TCGA datasets. This review elucidates the multiple regulatory mechanisms and functional implications of LINC00839 in various diseases, especially malignancies, emphasizing its potential as a predictive biomarker and therapeutic target across multiple disease domains in humans.
Collapse
Affiliation(s)
- Yingqiu Hu
- Emergency Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Yushan Hu
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Xuan Lu
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Ziwen Chen
- Department of Gastrointestinal Surgery, Ganzhou Hospital Affiliated to Nanchang University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
8
|
Malgundkar SH, Tamimi Y. The pivotal role of long non-coding RNAs as potential biomarkers and modulators of chemoresistance in ovarian cancer (OC). Hum Genet 2024; 143:107-124. [PMID: 38276976 DOI: 10.1007/s00439-023-02635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological disease that is often diagnosed at later stages due to its asymptomatic nature and the absence of efficient early-stage biomarkers. Previous studies have identified genes with abnormal expression in OC that couldn't be explained by methylation or mutation, indicating alternative mechanisms of gene regulation. Recent advances in human transcriptome studies have led to research on non-coding RNAs (ncRNAs) as regulators of cancer gene expression. Long non-coding RNAs (lncRNAs), a class of ncRNAs with a length greater than 200 nucleotides, have been identified as crucial regulators of physiological processes and human diseases, including cancer. Dysregulated lncRNA expression has also been found to play a crucial role in ovarian carcinogenesis, indicating their potential as novel and non-invasive biomarkers for improving OC management. However, despite the discovery of several thousand lncRNAs, only one has been approved for clinical use as a biomarker in cancer, highlighting the importance of further research in this field. In addition to their potential as biomarkers, lncRNAs have been implicated in modulating chemoresistance, a major problem in OC. Several studies have identified altered lncRNA expression upon drug treatment, further emphasizing their potential to modulate chemoresistance. In this review, we highlight the characteristics of lncRNAs, their function, and their potential to serve as tumor markers in OC. We also discuss a few databases providing detailed information on lncRNAs in various cancer types. Despite the promising potential of lncRNAs, further research is necessary to fully understand their role in cancer and develop effective strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman.
| |
Collapse
|
9
|
Wang Z, Wei B, Ma S. EGR1/ LINC00839/SOX5 axis modulates migration, invasion and Gemcitabine resistance of bladder cancer cells. Cancer Biol Ther 2023; 24:2270106. [PMID: 37862152 PMCID: PMC10591773 DOI: 10.1080/15384047.2023.2270106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Bladder cancer is one of the most common malignant tumors of the urinary system, and its incidence is increasing worldwide. However, the underlying mechanisms that trigger migration, invasion and chemotherapy resistance are unclear. RESULTS Bioinformatics analysis of bladder cancer cohort indicated that LINC00839 is deregulated in bladder cancer. LINC00839 was validated and highly expressed in bladder cancer patients and cell lines. In addition, LINC00839 induced the migration, invasion and Gemcitabine resistance of bladder cancer cells. We identified that the transcription factor EGR1 directly repressed LINC00839 and thereby suppressed the migration and invasion of bladder cancer cells. Furthermore, LINC00839 interacted with miR-142, which subsequently regulated the expression of SOX5, a well-studied oncogene and targeted by miR-142. In addition, EGR1 served as a suppressive transcription factor of SOX5. Therefore, EGR1 directly or indirectly regulates SOX5 via LINC00839/miR-142 axis. LINC00839 induced Gemcitabine resistance by promoting autophagy. CONCLUSIONS EGR1, LINC00839/miR-142 and SOX5 form a coherent feed-forward loop that modulates the migration, invasion and Gemcitabine resistance of bladder cancer.
Collapse
Affiliation(s)
- Zunxian Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
- Department of Oncology Comprehensive Treatment, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Bo Wei
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shuxia Ma
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
10
|
Maharati A, Moghbeli M. Long non-coding RNAs as the critical regulators of PI3K/AKT, TGF-β, and MAPK signaling pathways during breast tumor progression. J Transl Med 2023; 21:556. [PMID: 37596669 PMCID: PMC10439650 DOI: 10.1186/s12967-023-04434-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
Breast cancer (BC) as one of the most common causes of human deaths among women, is always considered one of the global health challenges. Despite various advances in diagnostic and therapeutic methods, a significant percentage of BC patients have a poor prognosis due to the lack of therapeutic response. Therefore, investigating the molecular mechanisms involved in BC progression can improve the therapeutic and diagnostic strategies in these patients. Cytokine and growth factor-dependent signaling pathways play a key role during BC progression. In addition to cytokines and growth factors, long non-coding RNAs (lncRNAs) have also important roles in regulation of such signaling pathways. Therefore, in the present review we discussed the role of lncRNAs in regulation of PI3K/AKT, MAPK, and TGF-β signaling pathways in breast tumor cells. It has been shown that lncRNAs mainly have an oncogenic role through the promotion of these signaling pathways in BC. This review can be an effective step in introducing the lncRNAs inhibition as a probable therapeutic strategy to reduce tumor growth by suppression of PI3K/AKT, MAPK, and TGF-β signaling pathways in BC patients. In addition, considering the oncogenic role and increased levels of lncRNAs expressions in majority of the breast tumors, lncRNAs can be also considered as the reliable diagnostic markers in BC patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Zheng WH, Long ZQ, Zheng ZQ, Zhang LL, Liang YL, Li ZX, Lv JW, Kou J, Hong XH, He SW, Xu R, Zhou GQ, Liu N, Ma J, Sun Y, Lin L, Wei D. m6A-enriched lncRNA LINC00839 promotes tumor progression by enhancing TAF15-mediated transcription of amine oxidase AOC1 in nasopharyngeal carcinoma. J Biol Chem 2023:104873. [PMID: 37257820 PMCID: PMC10302167 DOI: 10.1016/j.jbc.2023.104873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Dysregulation of long non-coding RNAs (lncRNAs) contributes to tumorigenesis by modulating specific cancer-related pathways, but the roles of m6A-enriched lncRNAs and underlying mechanisms remain elusive in nasopharyngeal carcinoma (NPC). Here, we reanalyzed the previous genome-wide analysis of lncRNA profiles in 18 pairs of NPC and normal tissues, as well as in 10 paired samples from NPC with or without posttreatment metastases. We discerned that an oncogenic m6A-enriched lncRNA, LINC00839, which was substantially upregulated in NPC and correlated with poor clinical prognosis, promoted NPC growth and metastasis both in vitro and in vivo. Mechanistically, by using RNA pulldown assay combined with mass spectrometry, we found that LINC00839 interacted directly with the transcription factor, TATA-box binding protein associated factor (TAF15). Besides, ChIP and dual-luciferase report assays demonstrated that LINC00839 coordinated the recruitment of TAF15 to the promoter region of amine oxidase copper-containing 1 (AOC1), which encodes a secreted glycoprotein playing vital roles in various cancers, thereby activating AOC1 transcription in trans. In this study, potential effects of AOC1 in NPC progression were first proposed. Moreover, ectopic expression of AOC1 partially rescued the inhibitory effect of downregulation of LINC00839 in NPC. Furthermore, we showed that silencing vir-like m6A methyltransferase-associated (VIRMA) and insulin-like growth factor 2 mRNA-binding proteins 1 (IGF2BP1) attenuated the expression level and RNA stability of LINC00839 in an m6A-dependent manner. Taken together, our study unveils a novel oncogenic VIRMA/IGF2BP1-LINC00839-TAF15-AOC1 axis, and highlights the significance and prognostic value of LINC00839 expression in NPC carcinogenesis.
Collapse
Affiliation(s)
- Wei-Hong Zheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Zhi-Qing Long
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Zi-Qi Zheng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Lu-Lu Zhang
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Zhi-Xuan Li
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Jia-Wei Lv
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Jia Kou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Xiao-Hong Hong
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Shi-Wei He
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Rui Xu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Guan-Qun Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China
| | - Na Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China; State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Li Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, People's Republic of China.
| | - Denghui Wei
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.
| |
Collapse
|
12
|
Jesenko T, Brezar SK, Cemazar M, Biasin A, Tierno D, Scaggiante B, Grassi M, Grassi C, Dapas B, Truong NH, Abrami M, Zanconati F, Bonazza D, Rizzolio F, Parisi S, Pastorin G, Grassi G. Targeting Non-Coding RNAs for the Development of Novel Hepatocellular Carcinoma Therapeutic Approaches. Pharmaceutics 2023; 15:pharmaceutics15041249. [PMID: 37111734 PMCID: PMC10145575 DOI: 10.3390/pharmaceutics15041249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge, representing the third leading cause of cancer deaths worldwide. Although therapeutic advances have been made in the few last years, the prognosis remains poor. Thus, there is a dire need to develop novel therapeutic strategies. In this regard, two approaches can be considered: (1) the identification of tumor-targeted delivery systems and (2) the targeting of molecule(s) whose aberrant expression is confined to tumor cells. In this work, we focused on the second approach. Among the different kinds of possible target molecules, we discuss the potential therapeutic value of targeting non-coding RNAs (ncRNAs), which include micro interfering RNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These molecules represent the most significant RNA transcripts in cells and can regulate many HCC features, including proliferation, apoptosis, invasion and metastasis. In the first part of the review, the main characteristics of HCC and ncRNAs are described. The involvement of ncRNAs in HCC is then presented over five sections: (a) miRNAs, (b) lncRNAs, (c) circRNAs, (d) ncRNAs and drug resistance and (e) ncRNAs and liver fibrosis. Overall, this work provides the reader with the most recent state-of-the-art approaches in this field, highlighting key trends and opportunities for more advanced and efficacious HCC treatments.
Collapse
Affiliation(s)
- Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | - Alice Biasin
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Domenico Tierno
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Chiara Grassi
- Degree Course in Medicine, University of Trieste, I-34149 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Nhung Hai Truong
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 70000, Vietnam
| | - Michela Abrami
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I-34149 Trieste, Italy
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I-34149 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, I-33081 Aviano, Italy
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30172 Venezia, Italy
| | - Salvatore Parisi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30172 Venezia, Italy
- Doctoral School in Molecular Biomedicine, University of Trieste, I-34149 Trieste, Italy
| | - Giorgia Pastorin
- Pharmacy Department, National University of Singapore, Block S9, Level 15, 4 Science Drive 2, Singapore 117544, Singapore
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| |
Collapse
|
13
|
GEWALT TABEA, NOH KAWON, MEDER LYDIA. The role of LIN28B in tumor progression and metastasis in solid tumor entities. Oncol Res 2023; 31:101-115. [PMID: 37304235 PMCID: PMC10208000 DOI: 10.32604/or.2023.028105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 06/13/2023] Open
Abstract
LIN28B is an RNA-binding protein that targets a broad range of microRNAs and modulates their maturation and activity. Under normal conditions, LIN28B is exclusively expressed in embryogenic stem cells, blocking differentiation and promoting proliferation. In addition, it can play a role in epithelial-to-mesenchymal transition by repressing the biogenesis of let-7 microRNAs. In malignancies, LIN28B is frequently overexpressed, which is associated with increased tumor aggressiveness and metastatic properties. In this review, we discuss the molecular mechanisms of LIN28B in promoting tumor progression and metastasis in solid tumor entities and its potential use as a clinical therapeutic target and biomarker.
Collapse
Affiliation(s)
- TABEA GEWALT
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - KA-WON NOH
- Institute for Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - LYDIA MEDER
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
LOC101929709 promotes gastric cancer progression by aiding LIN28B to stabilize c-MYC mRNA. Gastric Cancer 2023; 26:169-186. [PMID: 36284068 DOI: 10.1007/s10120-022-01348-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/15/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND LIN28B plays a critical role in the Warburg effect. However, its underlying mechanism remains elusive. Recently, it has been reported that LIN28B could collaborate with IGF2BP3, which can bind to m6A-modified c-MYC transcripts. Therefore, this study investigated if LIN28B recognises methylated c-MYC mRNA to promote the Warburg effect in gastric cancer. METHODS Effects of LIN28B on gastric cancer were confirmed in vitro and in vivo. On the basis of bioinformatics analysis, the association between LIN28B and c-MYC mRNA was shown using RNA immunoprecipitation (RIP) and luciferase reporter assays. The role of m6A was identified by RNA pull-down assays. We further performed RIP-seq to search for long non-coding RNAs (lncRNAs) participating in the LIN28B binding process. Chromatin immunoprecipitation was used to show the impact of c-MYC on transcription of LIN28B and lncRNAs. RESULTS LIN28B was identified to stabilize c-MYC mRNA by recognizing m6A. Furthermore, the interaction between c-MYC mRNA and LIN28B is speculated to be supported by LOC101929709, which binds to both LIN28B and IGF2BP3. Functional experiments revealed that LOC101929709 promotes the proliferation, migration and glycolysis of gastric cancer. Mechanistically, LOC101929709 enriched in the cytoplasm helps LIN28B stabilize c-MYC mRNA. Moreover, c-MYC promoted the transcription of both LOC101929709 and LIN28B. Additionally, LOC101929709 also activated the PI3K/AKT pathway. CONCLUSIONS The c-MYC/LOC101929709/LIN28B axis promotes aerobic glycolysis and tumour progression. Thus, LOC101929709 can be a novel potential target for gastric cancer treatment.
Collapse
|
15
|
Dong S, Wang W, Liao Z, Fan Y, Wang Q, Zhang L. MYC-activated LINC00607 promotes hepatocellular carcinoma progression by regulating the miR-584-3p/ROCK1 axis. J Gene Med 2023; 25:e3477. [PMID: 36740760 DOI: 10.1002/jgm.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/27/2022] [Accepted: 12/20/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There have been many reports of long non-coding RNAs (lncRNAs) in tumors, and abnormally expressed lncRNA is closely related to hepatocellular carcinoma (HCC). The mechanism of LINC00607 in HCC has not been reported. METHODS We utilized qPCR to evaluate the RNA expression level. The mechanism of MYC binding to the LINC00607 promoter was revealed through chromatin immunoprecipitation assay and dual luciferase reporter assay. The proliferation and invasive ability were evaluated by CCK-8 and transwell assays. The relation between LINC00607 and miR-584-3p was assessed by RNA immunoprecipitation assay and dual luciferase reporter assay. The level of ROCK1 was evaluated by qPCR and western blot. RESULTS In this research, we found that the expression of LINC00607 was higher in HCC tissues when compared with that in the adjacent non-tumor tissues. Meanwhile, MYC was observed to interact with the LINC00607 promoter, leading to the upregulation of LINC00607 in HCC. We further revealed that LINC00607 functioned as a sponge for miR-584-3p. Cell proliferation and migration assays showed that miR-584-3p may inhibit the HCC progression. Moreover, we found that the miR-584-3p inhibitor could reverse the effects of LINC00607 downregulation in HCC through rescue experiments. Through verification, miR-584-3p bound to the 3' UTR of ROCK1 to downregulate its expression. CONCLUSION LINC00607 regulated by MYC can promote the proliferation, migration and invasion of HCC cells through the miR-584-3p/ROCK1 axis.
Collapse
Affiliation(s)
- Shuilin Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Wei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yawei Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Qi Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.,Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University; Shanxi Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, China
| |
Collapse
|
16
|
Xu JL, Xu Q, Wang YL, Xu D, Xu WX, Zhang HD, Wang DD, Tang JH. Glucose metabolism and lncRNAs in breast cancer: Sworn friend. Cancer Med 2023; 12:5137-5149. [PMID: 36426411 PMCID: PMC9972110 DOI: 10.1002/cam4.5265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Glucose metabolism disorder is a common feature in cancer. Cancer cells generate much energy through anaerobic glycolysis, which promote the development of tumors. However, long non-coding RNA may play an important role in this process. Our aim is to explore a prognostic risk model based on the glucose metabolism-related lncRNAs which provides clues that lncRNAs predict a clinical outcome through glucose metabolism in breast cancer. METHODS 1222 RNA-seq were extracted from the TCGA database, and 74 glucose metabolism-related genes were loaded from the GSEA website. Then, 7 glucose metabolism-related lncRNAs risk score model was developed by univariate, Lasso, and multivariate regression analysis. The lncRNA risk model showed that high-risk patients predict a poor clinical outcome with high reliability (P=2.838×10-6). Univariate and multivariate independent prognostic analysis and ROC curve analysis proved that the risk score was an independent prognostic factor in breast cancer with an AUC value of 0.652. Finally, Gene set enrichment analysis showed that cell cycle-related pathways were significantly enriched in a high-risk group. RESULTS Our results showed that glucose metabolism-related lncRNAs can affect breast cancer progression. 7 glucose metabolism-related lncRNAs prognostic signature was established to evaluate the OS of patients with breast cancer. PICSAR, LINC00839, AP001505.1, LINC00393 were risk factors and expressed highly in the high-risk group. A Nomogram was made based on this signature to judge patients' living conditions and prognosis. CONCLUSION 7 glucose metabolism-related lncRNAs risk score model had a high prognostic value in breast cancer. PICSAR, LINC00839, AP001505.1, LINC00393 were risk factors. AP001505.1 expression was increased in most triple-negative breast cancer cells treated with high glucose, which may also take part in breast cancer progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Jia-Lin Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.,The First Clinical School of Nanjing Medical University, Nanjing, P.R. China
| | - Qi Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.,The First Clinical School of Nanjing Medical University, Nanjing, P.R. China
| | - Ya-Lin Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, P.R. China
| | - Di Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.,The First Clinical School of Nanjing Medical University, Nanjing, P.R. China
| | - Wen-Xiu Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - He-Da Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
17
|
Xie H, Guo Y, Xu Z, Wang Q, Wang T, Gu Y, Li D, Liu Y, Ma W, Liu P, Zhao Q, Lü J, Liu J, Yu Z. Dual Function of CCAT2 in Regulating Luminal Subtype of Breast Cancer Depending on the Subcellular Distribution. Cancers (Basel) 2023; 15:cancers15020538. [PMID: 36672487 PMCID: PMC9856762 DOI: 10.3390/cancers15020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Breast cancer is the most common cancer in women around the world. Emerging evidence has indicated the important roles that non-coding RNAs play in regulating tumor development and progression in breast cancer. Herein, we found a dual function of long non-coding RNA (LncRNA) CCAT2 in the luminal subtype of breast cancer, depending on its subcellular distribution. CCAT2 showed an overall downregulation in the tumor tissues from luminal breast cancer patients. Transient overexpression of CCAT2 in the luminal subtype of breast cancer cell MCF-7 or T47D significantly suppressed cell proliferation in vitro and inhibited tumor growth in vivo. Gene expression analysis of cancer stem cell markers including OCT4, NANOG, h-TERT, SOX2 and KLF4; flow cytometry analysis of breast cancer stem cell population, and mammosphere formation assay demonstrated inhibition of cancer cell stemness with transient transfection of CCAT2 in which exogenous CCAT2 mainly distributed in the cytoplasm and regulated miR-221-p27 signaling via RNA sequence interaction. However, overexpression of CCAT2 in MCF-7 cells through pMX retroviral nuclear expression vector accumulated CCAT2 in the nucleus, leading to upregulation of OCT4-PG1, a pseudogene of stem gene OCT4, thereby promoting the cancer cell stemness. In conclusion, the current study, for the first time, revealed a dual function of lncRNA CCAT2 as a tumor suppressor or oncogene depending upon its subcellular distribution. It also demonstrated the regulatory mechanism of cytoplasmic CCAT2 in suppressing tumorigenesis in the luminal subtype of breast cancer.
Collapse
Affiliation(s)
- Heying Xie
- Shanghai East Hospital, Jinzhou Medical University, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuefan Guo
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhen Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiong Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yi Gu
- Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Danni Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yu Liu
- Shanghai East Hospital, Jinzhou Medical University, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wenjing Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Pengfei Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qian Zhao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Junjun Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zuoren Yu
- Shanghai East Hospital, Jinzhou Medical University, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
18
|
Su J, Deng L, Wang YD. Roles and Mechanisms of Long Non-Coding RNAs in Breast Cancer. Int J Mol Sci 2022; 24:89. [PMID: 36613528 PMCID: PMC9820050 DOI: 10.3390/ijms24010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a major health threat and the second leading cause of cancer-related deaths in women worldwide. The detailed mechanisms involved in the initiation and progression of breast cancer remain unclear. In recent years, amounting evidence indicated that long non-coding RNAs (lncRNAs) played crucial roles in regulating various biological processes and malignancy tumors, including breast cancer. In this review, we briefly introduce the functions and underlying mechanisms by which lncRNAs are involved in breast cancer. We summarize the roles of the lncRNAs in regulating malignant behaviors of breast cancer, such as cell proliferation, migration and invasion, epithelial-mesenchymal transition (EMT), apoptosis, and drug resistance. Additionally, we also briefly summarize the roles of circular RNAs (circRNAs) in breast cancer carcinogenesis.
Collapse
Affiliation(s)
| | | | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
19
|
Wu J, Liu Y, Huang H, Zhu M, Zhang X. Identification of a Risk Predictive Signature Based on Genes Associated with Tumor Size and Lymph Node Involvement in Breast Cancer. Genet Test Mol Biomarkers 2022; 26:532-542. [DOI: 10.1089/gtmb.2022.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Junqiang Wu
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuqing Liu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hu Huang
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mingjie Zhu
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiufen Zhang
- Oncology Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
LINC00839 promotes malignancy of liver cancer via binding FMNL2 under hypoxia. Sci Rep 2022; 12:18757. [PMID: 36335129 PMCID: PMC9637198 DOI: 10.1038/s41598-022-16972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors in the world and metastasis is the leading cause of death associated with liver cancer. Hypoxia is a common feature of solid tumors and enhances malignant character of cancer cells. However, the exact mechanisms involved in hypoxia-driven liver cancer progression and metastasis have not been well clarified so far. The aim of this study was to investigate the contribution of long non-coding RNA (lncRNA) in hypoxia promoting liver cancer progression. We screened and revealed LINC00839 as a novel hypoxia-responsive lncRNA in liver cancer. LINC00839 expression was up-regulated in liver cancer tissues and cell lines, and the patients with high LINC00839 expression had shortened overall survival. LINC00839 further overexpressed under hypoxia and promoted liver cancer cell proliferation, migration, and invasion. Mechanistically, LINC00839 bound multiple proteins that were primarily associated with the metabolism and RNA transport, and positively regulated the expression of Formin-like protein 2 (FMNL2). LINC00839 could promote hypoxia-mediated liver cancer progression, suggesting it may be a clinically valuable biomarker and serve as a molecular target for the diagnosis, prognosis, and therapy of liver cancer.
Collapse
|
21
|
Valyaeva AA, Tikhomirova MA, Potashnikova DM, Bogomazova AN, Snigiryova GP, Penin AA, Logacheva MD, Arifulin EA, Shmakova AA, Germini D, Kachalova AI, Saidova AA, Zharikova AA, Musinova YR, Mironov AA, Vassetzky YS, Sheval EV. Ectopic expression of HIV-1 Tat modifies gene expression in cultured B cells: implications for the development of B-cell lymphomas in HIV-1-infected patients. PeerJ 2022; 10:e13986. [PMID: 36275462 PMCID: PMC9586123 DOI: 10.7717/peerj.13986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
An increased frequency of B-cell lymphomas is observed in human immunodeficiency virus-1 (HIV-1)-infected patients, although HIV-1 does not infect B cells. Development of B-cell lymphomas may be potentially due to the action of the HIV-1 Tat protein, which is actively released from HIV-1-infected cells, on uninfected B cells. The exact mechanism of Tat-induced B-cell lymphomagenesis has not yet been precisely identified. Here, we ectopically expressed either Tat or its TatC22G mutant devoid of transactivation activity in the RPMI 8866 lymphoblastoid B cell line and performed a genome-wide analysis of host gene expression. Stable expression of both Tat and TatC22G led to substantial modifications of the host transcriptome, including pronounced changes in antiviral response and cell cycle pathways. We did not find any strong action of Tat on cell proliferation, but during prolonged culturing, Tat-expressing cells were displaced by non-expressing cells, indicating that Tat expression slightly inhibited cell growth. We also found an increased frequency of chromosome aberrations in cells expressing Tat. Thus, Tat can modify gene expression in cultured B cells, leading to subtle modifications in cellular growth and chromosome instability, which could promote lymphomagenesis over time.
Collapse
Affiliation(s)
- Anna A. Valyaeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria A. Tikhomirova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Daria M. Potashnikova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra N. Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | | | - Maria D. Logacheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Eugene A. Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna A. Shmakova
- Koltzov Institute of Developmental Biology, Moscow, Russia,UMR9018 (CNRS – Institut Gustave Roussy – Université Paris Saclay), Centre National de Recherche Scientifique, Villejuif, France, France
| | - Diego Germini
- UMR9018 (CNRS – Institut Gustave Roussy – Université Paris Saclay), Centre National de Recherche Scientifique, Villejuif, France, France
| | - Anastasia I. Kachalova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aleena A. Saidova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Anastasia A. Zharikova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yana R. Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Andrey A. Mironov
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Institute for Information Transmission Problems, Moscow, Russia
| | - Yegor S. Vassetzky
- Koltzov Institute of Developmental Biology, Moscow, Russia,UMR9018 (CNRS – Institut Gustave Roussy – Université Paris Saclay), Centre National de Recherche Scientifique, Villejuif, France, France
| | - Eugene V. Sheval
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
22
|
Bhardwaj V, He J, Jain A. Glutamine stabilizes myc via alpha-ketoglutarate and regulates paclitaxel sensitivity. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:227. [PMID: 36175776 DOI: 10.1007/s12032-022-01834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
Metabolic reprogramming wherein the cancer cells exhibit altered energetics is a hallmark of cancer. Although recent discoveries have enhanced our understanding of tumor metabolism, the therapeutic utility of targeting tumor metabolism is not yet realized. Glutamine, a non-essential amino acid, plays a critical role in regulating tumor metabolism and provides an alternative tumor energy source. In this study, we investigate the molecular mechanism regulated by glutamine and elucidate if targeting glutamine metabolism would enhance the efficacy of cancer chemotherapy. Using clonogenic and cell cycle analysis, we found that deprivation of glutamine suppress the growth of cancer cells. Mechanistically we demonstrate that glutamine stabilizes myc by preventing its ubiquitination through alpha-ketoglutarate. Inhibition of glutamine metabolism enhanced the sensitivity of tumor cells to chemotherapeutic agent paclitaxel. Our results delineate the mechanism behind glutamine-induced myc stabilization, and they provide a viable strategy to target cancer with a glutamine metabolism inhibitor in the clinic.
Collapse
Affiliation(s)
- Vikas Bhardwaj
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Jun He
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
23
|
Liu X, Chen J, Zhang S, Liu X, Long X, Lan J, Zhou M, Zheng L, Zhou J. LINC00839 promotes colorectal cancer progression by recruiting RUVBL1/Tip60 complexes to activate NRF1. EMBO Rep 2022; 23:e54128. [PMID: 35876654 PMCID: PMC9442307 DOI: 10.15252/embr.202154128] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
The long noncoding RNA LINC00839 has been shown to be involved in the progression of some cancer types, such as bladder cancer, prostate cancer, breast cancer, and neuroblastoma. However, if LINC00839 has roles in colorectal cancer (CRC), it has not been elucidated so far. Here, we focus on the biological role and involved mechanisms of LINC00839 in CRC. We show that LINC00839 is selectively upregulated in CRC and locates to the nucleus. High expression of LINC00839 is associated with poor outcomes in CRC patients. Functional experiments show that LINC00839 promotes CRC proliferation, invasion, and metastasis in vitro and in vivo. Mechanistically, LINC00839 recruits Ruvb1 to the Tip60 complex and increases its acetylase activity. LINC00839 guides the complex to the NRF1 promoter and promotes acetylation of lysines 5 and 8 of histones H4, thereby upregulating the expression of NRF1. Subsequently, NRF1 activates mitochondrial metabolism and biogenesis, thereby promoting CRC progression. In summary, our study reports on a mechanism by which LINC00839 positively regulates NRF1, thus promoting mitochondrial metabolism and biogenesis, as well as CRC progression.
Collapse
Affiliation(s)
- Xiaoting Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxiong Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sijing Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xunhua Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoli Long
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiawen Lan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Miao Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Zheng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Sánchez-Marín D, Trujano-Camacho S, Pérez-Plasencia C, De León DC, Campos-Parra AD. LncRNAs driving feedback loops to boost drug resistance: sinuous pathways in cancer. Cancer Lett 2022; 543:215763. [PMID: 35680071 DOI: 10.1016/j.canlet.2022.215763] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Feedback loops mediate signaling pathways to maintain cellular homeostasis. There are two types, positive and negative feedback loops. Both are subject to alterations, and consequently can become pathogenic in the development of diseases such as cancer. Long noncoding RNAs (lncRNAs) are regulators of signaling pathways through feedback loops hidden as the dark regulatory elements yet to be described with great impact on cancer tumorigenesis, development, and drug resistance. Several feedback loops have been studied in cancer, however, how they are regulated by lncRNAs is hardly evident, setting a trending topic in oncological research. In this review, we recapitulate and discuss the feedback loops that are regulated by lncRNAs to promote drug resistance. Furthermore, we propose additional strategies that allow us to identify, analyze and comprehend feedback loops regulated by lncRNAs to induce drug resistance or even to gain insight into novel feedback loops that are stimulated under the pressure of treatment and consequently increase its efficacy. This knowledge will be useful to optimize the therapeutic use of oncological drugs.
Collapse
Affiliation(s)
- David Sánchez-Marín
- Laboratorio de Genómica. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México.
| | - Samuel Trujano-Camacho
- Laboratorio de Genómica. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México.
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México; Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, 54090, Estado de México, México.
| | - David Cantú De León
- Unidad de Investigación Biomédica del Cáncer. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México.
| | - Alma D Campos-Parra
- Laboratorio de Genómica. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México.
| |
Collapse
|
25
|
LINC00839 Promotes Neuroblastoma Progression by Sponging miR-454-3p to Up-Regulate NEUROD1. Neurochem Res 2022; 47:2278-2293. [PMID: 35606572 DOI: 10.1007/s11064-022-03613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid malignancy in children. Increasing long non-coding RNAs (lncRNAs) are reported to be associated with NB tumorigenesis and aggressiveness. Here, we attempted to investigate the biological functions of LINC00839 in NB progression as well as its possible pathogenic mechanisms. Public microarray datasets were applied to unearth the abnormally expressed lncRNAs in NB. RT-qPCR analysis was used to measure the expression of LINC00839, miR-454-3p, and neuronal differentiation 1 (NEUROD1) mRNA. The protein level was determined by a western blot assay. CCK-8, plate clone formation, EdU, wound-healing scratch, and transwell assays were employed to evaluate cell proliferation, migration, and invasion. Xenografts were developed in nude mice to determine the effects of LINC00839 on NB tumor growth. Dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments were performed to identify the interaction between miR-454-3p and LINC00839 or NEUROD1. According to GSE datasets (GSE16237 and GSE16476), LINC00839 was found as a potential driver of NB progression. LINC00839 expression was higher in NB tumor tissues and cells. Also, LINC00839 expression was positively correlated with MYCN amplification, advanced INSS stages, and worse prognosis. Silencing of LINC00839 suppressed cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, LINC00839 could act as a sponge of miR-454-3p to facilitate the expression of its target NEUROD1. Moreover, miR-454-3p was demonstrated to exert an anti-cancer activity in NB. More importantly, the tumor-suppressive properties mediated by LINC00839 knockdown were significantly counteracted by the inhibition of miR-454-3p or overexpression of NEUROD1. Our study demonstrates that LINC00839 exerts an oncogenic role in NB through sponging miR-454-3p to up-regulate NEUROD1 expression, deepening our comprehension of lncRNA involved in NB and providing access to the possibility of LINC00839 as a therapeutic target for NB.
Collapse
|
26
|
Fu Z, Wu X, Zheng F, Zhang Y. Sevoflurane anesthesia ameliorates LPS-induced acute lung injury (ALI) by modulating a novel LncRNA LINC00839/miR-223/NLRP3 axis. BMC Pulm Med 2022; 22:159. [PMID: 35473680 PMCID: PMC9044806 DOI: 10.1186/s12890-022-01957-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background Sevoflurane is considered as a lung-protective factor in acute lung injury (ALI), but the underlying molecular mechanism remains largely unknown. The present study identified for the first time that sevoflurane ameliorated lipopolysaccharide (LPS)-induced ALI through regulating a novel long non-coding RNA LINC00839, and uncovered its regulatory mechanism. Methods LPS-induced ALI models were established in mice or mouse pulmonary microvascular endothelial cells (MPVECs), and they were administered with sevoflurane. Real-Time quantitative PCR, western blot and bioinformatics analysis were performed to screen the aberrantly expressed long non-coding RNA and the downstream molecules in sevoflurane-treated ALI models, and their roles in the protection effect of sevoflurane were verified by functional recovery experiments. Results Sevoflurane relieved LPS-induced lung injury, cell pyroptosis and inflammation in vitro and in vivo. LINC00839 was significantly suppressed by sevoflurane, and overexpression of LINC00839 abrogated the protective effects of sevoflurane on LPS-treated MPVECs. Mechanismly, LINC00839 positively regulated NOD-like receptor protein 3 (NLRP3) via sequestering miR-223. MiR-223 inhibitor reversed the inhibitory effects of LINC00839 knockdown on NLRP3-mediated pyroptosis in LPS-treated MPVECs. Furthermore, both miR-223 ablation and NLRP3 overexpression abrogated the protective effects of sevoflurane on LPS-treated MPVECs. Conclusion In general, our work illustrates that sevoflurane regulates the LINC00839/miR-223/NLRP3 axis to ameliorate LPS-induced ALI, which might provide a novel promising candidate for the prevention of ALI.
Collapse
Affiliation(s)
- Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Fushuang Zheng
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Yan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
27
|
He L, Tang L, Wang R, Liu L, Zhu P, Jiang K, Tu G. Long noncoding RNA KB-1980E6.3 promotes breast cancer progression through the PI3K/AKT signalling pathway. Pathol Res Pract 2022; 234:153891. [DOI: 10.1016/j.prp.2022.153891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
28
|
Yang W, Qiu Z, Zhang J, Zhi X, Yang L, Qiu M, Zhao L, Wang T. Correlation Between Immune Cell Infiltration and PD-L1 Expression and Immune-Related lncRNA Determination in Triple-Negative Breast Cancer. Front Genet 2022; 13:878658. [PMID: 35432487 PMCID: PMC9008733 DOI: 10.3389/fgene.2022.878658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 12/02/2022] Open
Abstract
As a key element of the tumor microenvironment (TME), immune cell infiltration (ICI) is a frequently observed histologic finding in people with triple-negative breast cancer (TNBC), and it is linked to immunotherapy sensitivity. Nonetheless, the ICI in TNBC, to the best of our knowledge, has not been comprehensively characterized. In our current work, computational algorithms based on biological data from next-generation sequencing were employed to characterize ICI in a large cohort of TNBC patients. We defined various ICI patterns by unsupervised clustering and constructed the ICI scores using the principal component analysis (PCA). We observed patients with different clustering patterns had distinct ICI profiles and different signatures of differentially expressed genes. Patients with a high ICI score tended to have an increased PD-L1 expression and improved outcomes, and these patients were associated with decreased tumor mutational burden (TMB). Interestingly, it was showed that patients with high TMB exhibited an ameliorated overall survival (OS) than patients with low TMB. Furthermore, TMB scores only affected the prognosis of TNBC patients in the low-ICI score group but not in the high group. Finally, we identified a new immune-related lncRNA (irlncRNA) signature and established a risk model for the TNBC prognosis prediction. In addition, the high-risk group was related to poor prognosis, a high infiltration level of plasma B cells, monocytes, M2 macrophages, and neutrophils and a low PD-L1 expression. Therefore, the characterization and systematic evaluation of ICI patterns might potentially predict the prognosis and immunotherapy response in TNBC patients.
Collapse
Affiliation(s)
- Wenlin Yang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zhen Qiu
- Department of Laboratory, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Junjun Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Xiao Zhi
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Lili Yang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Min Qiu
- Department of Thyroid Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- *Correspondence: Min Qiu, ; Lihua Zhao, ; Ting Wang,
| | - Lihua Zhao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- *Correspondence: Min Qiu, ; Lihua Zhao, ; Ting Wang,
| | - Ting Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- *Correspondence: Min Qiu, ; Lihua Zhao, ; Ting Wang,
| |
Collapse
|
29
|
Abedi Kichi Z, Soltani M, Rezaei M, Shirvani-Farsani Z, Rojhannezhad M. The Emerging role of EMT-related lncRNAs in therapy resistance and their application as biomarkers. Curr Med Chem 2022; 29:4574-4601. [PMID: 35352644 DOI: 10.2174/0929867329666220329203032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/09/2022]
Abstract
Cancer is the world's second largest cause of death. The most common cancer treatments are surgery, radiation therapy, and chemotherapy. Drug resistance, epithelial-to-mesenchymal transition (EMT), and metastasis are all pressing issues in cancer therapy today. Increasing evidence showed that drug-resistant and EMT are co-related with each other. Indeed, drug-resistant cancer cells possess enhanced EMT and invasive ability. Recent researches have demonstrated lncRNAs (long noncoding RNAs) are noncoding transcripts, which play an important role in the regulation of EMT, metastasis, and drug resistance in different cancers. However, the relationships among lncRNAs, EMT, and drug resistance are still unclear. These effects could be exerted via several signaling pathways such as TGF-β, PI3K-AKT, and Wnt/β-catenin. Identifying the crucial regulatory roles of lncRNAs in these pathways and processes leads to the development of novel targeted therapies. We review the key aspects of lncRNAs associated with EMT and therapy resistance. We focus on the crosstalk between lncRNAs and molecular signaling pathways affecting EMT and drug resistance. Moreover, each of the mentioned lncRNAs could be used as a potential diagnostic, prognostic, and therapeutic biomarker for cancer. Although, there are still many challenges to investigate lncRNAs for clinical applications.
Collapse
Affiliation(s)
- Zahra Abedi Kichi
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Germany
| | - Mona Soltani
- Department of Plant Production & Genetics, Faculty of Agriculture, Zanjan University, Zanjan, Iran
| | - Mina Rezaei
- Department of Cell and Molecular Biology, Faculty of life Sciences and Technology, Shahid Beheshti University, Tehran, IR Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of life Sciences and Technology, Shahid Beheshti University, Tehran, IR Iran
| | - Mahbubeh Rojhannezhad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| |
Collapse
|
30
|
Alvarado-Hernandez B, Ma Y, Sharma NR, Majerciak V, Lobanov A, Cam M, Zhu J, Zheng ZM. Protein-RNA Interactome Analysis Reveals Wide Association of Kaposi's Sarcoma-Associated Herpesvirus ORF57 with Host Noncoding RNAs and Polysomes. J Virol 2022; 96:e0178221. [PMID: 34787459 PMCID: PMC8826805 DOI: 10.1128/jvi.01782-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 is an RNA-binding posttranscriptional regulator. We recently applied an affinity-purified anti-ORF57 antibody to conduct ORF57 cross-linking immunoprecipitation (CLIP) in combination with RNA-sequencing (CLIP-seq) and analyzed the genome-wide host RNA transcripts in association with ORF57 in BCBL-1 cells with lytic KSHV infection. Mapping of the CLIP RNA reads to the human genome (GRCh37) revealed that most of the ORF57-associated RNA reads were from rRNAs. The remaining RNA reads mapped to several classes of host noncoding and protein-coding mRNAs. We found that ORF57 binds and regulates expression of a subset of host long noncoding RNAs (lncRNAs), including LINC00324, LINC00355, and LINC00839, which are involved in cell growth. ORF57 binds small nucleolar RNAs (snoRNAs) responsible for 18S and 28S rRNA modifications but does not interact with fibrillarin or NOP58. We validated ORF57 interactions with 67 snoRNAs by ORF57 RNA immunoprecipitation (RIP)-snoRNA array assays. Most of the identified ORF57 rRNA binding sites (BS) overlap the sites binding snoRNAs. We confirmed ORF57-snoRA71B RNA interaction in BCBL-1 cells by ORF57 RIP and Northern blot analyses using a 32P-labeled oligonucleotide probe from the 18S rRNA region complementary to snoRA71B. Using RNA oligonucleotides from the rRNA regions that ORF57 binds for oligonucleotide pulldown-Western blot assays, we selectively verified ORF57 interactions with 5.8S and 18S rRNAs. Polysome profiling revealed that ORF57 associates with both monosomes and polysomes and that its association with polysomes increases PABPC1 binding to polysomes but prevents Ago2 association with polysomes. Our data indicate a functional correlation with ORF57 binding and suppression of Ago2 activities for ORF57 promotion of gene expression. IMPORTANCE As an RNA-binding protein, KSHV ORF57 regulates RNA splicing, stability, and translation and inhibits host innate immunity by blocking the formation of RNA granules in virus-infected cells. In this study, ORF57 was found to interact with many host noncoding RNAs, including lncRNAs, snoRNAs, and rRNAs, to carry out additional unknown functions. ORF57 binds a group of lncRNAs via the RNA motifs identified by ORF57 CLIP-seq to regulate their expression. ORF57 associates with snoRNAs independently of fibrillarin and NOP58 proteins and with rRNA in the regions that commonly bind snoRNAs. Knockdown of fibrillarin expression decreases the expression of snoRNAs and CDK4 but does not affect viral gene expression. More importantly, we found that ORF57 binds translationally active polysomes and enhances PABPC1 but prevents Ago2 association with polysomes. Data provide compelling evidence on how ORF57 in KSHV-infected cells might regulate protein synthesis by blocking Ago2's hostile activities on translation.
Collapse
Affiliation(s)
- Beatriz Alvarado-Hernandez
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Yanping Ma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Nishi R. Sharma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Jun Zhu
- Genome Technology Laboratory, System Biology Center, NHLBI/NIH, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| |
Collapse
|
31
|
Wang F, Zhu L, Xue Q, Tang C, Tang W, Zhang N, Dai C, Chen Z. Novel lncRNA AL033381.2 Promotes Hepatocellular Carcinoma Progression by Upregulating PRKRA Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1125932. [PMID: 35035655 PMCID: PMC8759831 DOI: 10.1155/2022/1125932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor that is characterized by aggressiveness and poor prognosis. Accumulating evidence indicates that oxidative stress plays a crucial role in carcinogenesis, whereas the potential mechanism between oxidative stress and carcinogenic effects remains elusive. In recent years, long noncoding RNAs (lncRNAs) in cancers have attracted extensive attention and have been shown to be involved in oxidative stress response and carcinogenesis. Nevertheless, the roles of lncRNA AL033381.2 in regulating the development and progression of HCC still remain unclear. The purpose of our study was to evaluate the potential effects and molecular mechanisms of AL033381.2 that may be involved in oxidative stress response in HCC. Using bioinformatics analyses based on the TCGA database, we screened and identified a novel lncRNA AL033381.2 in HCC, which may be involved in oxidative stress responses. qRT-PCR analysis revealed that AL033381.2 is upregulated in HCC tissues. Through in vitro and in vivo experiments, we found that AL033381.2 dramatically facilitates the growth and metastasis of HCC. Mechanistically, RNA pull-down experiments, mass spectrometry, PathArray™, and RIP were used to determine that AL033381.2 binds to PRKRA and may be involved in AL033381.2-mediated oncogenic functions in HCC cells. Moreover, rescue experiments demonstrated that PRKRA overexpression rescues the abilities of HCC cell proliferation, migration, and invasion that were affected by AL033381.2 knockdown. Furthermore, we produced a nanoparticle-based siRNA delivery system and tested its therapeutic effects in vivo. The results showed that the in vivo growth rate of the tumors treated with the nanoparticle/AL033381.2 siRNA complexes was dramatically lower than those treated with the nanoparticle/scramble siRNA complexes. Taken together, our results suggest that the novel lncRNA AL033381.2 may be involved in oxidative stress response by targeting oxidative stress-related genes in HCC. AL033381.2 plays vital oncogenic roles in HCC progression and may be a novel therapeutic marker for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Feiran Wang
- Medical College of Nantong University, Nantong, Jiangsu 226000, China
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Lirong Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Qiang Xue
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Chong Tang
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, China
| | - Weidong Tang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Nannan Zhang
- Medical College of Nantong University, Nantong, Jiangsu 226000, China
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Zhong Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| |
Collapse
|
32
|
Zhang FY, Li X, Huang TT, Xiang ML, Sun LL, Sun ZL. LINC00839 knockdown restrains the metastatic behavior of nasopharyngeal carcinoma by sponging miR-454-3p. Aging (Albany NY) 2021; 13:26022-26033. [PMID: 34965215 PMCID: PMC8751606 DOI: 10.18632/aging.203792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
Long intergenic non-coding RNA 00839 (LINC00839) has been verified as a pro-metastasis factor in malignancies. However, the significance of LINC00839 in nasopharyngeal carcinoma (NPC) has yet to be illuminated, as well as its underlying mechanism. Here, we disclosed that LINC00839 is highly expressed in NPC. Deletion of LINC00839 suppresses NPC cells rapid growth, invasive capacity and EMT in vitro. Besides, LINC00839 is identified as a "sponge" for miR-454-3p, and upregulation of LINC00839 reverses miR-454-3p-mediated inhibition of aggressiveness in NPC cells. Furthermore, the expression of cellular-mesenchymal epithelial transition factor (c-Met), the downstream target of miR-454-3p, is downregulated by LINC00839 knockdown in NPC cells. In vivo, LINC00839 knockdown retards the tumor growth of NPC cells in the xenografted mice model. Collectively, attenuation of LINC00839 expression attenuates the aggressive properties of NPC cells via directly sponging the miR-454-3p and regulating c-Met expression.
Collapse
Affiliation(s)
- Feng Ying Zhang
- Department of Otorhinolaryngology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Xia Li
- Department of Anesthesiology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Ting Ting Huang
- Department of Otorhinolaryngology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Mei Ling Xiang
- Department of Otorhinolaryngology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Lin Lin Sun
- Department of Otorhinolaryngology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Zhao Lan Sun
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
33
|
Taheri M, Najafi S, Basiri A, Hussen BM, Baniahmad A, Jamali E, Ghafouri-Fard S. The Role and Clinical Potentials of Circular RNAs in Prostate Cancer. Front Oncol 2021; 11:781414. [PMID: 34804984 PMCID: PMC8604184 DOI: 10.3389/fonc.2021.781414] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Globally, prostate cancer (PCa) is the second most commonly diagnosed cancer in men globally. Early diagnosis may help in promoting survival in the affected patients. Circular RNAs (circRNAs) are a novel class of non-coding RNAs (ncRNAs) which have been found to show extensive dysregulation in a handful of human diseases including cancers. Progressions in RNA identification techniques have provided a vast number of circRNAs exhibiting either up-regulation or down-regulation in PCa tissues compared to normal adjacent tissues. The mechanism of action is not clear for most of dysregulated circRNAs. Among them, function of a number of newly identified dysregulated circRNAs have been assessed in PCa cells. Increase in cell proliferation, migration, invasion, and metastasis have been reported for up-regulated circRNAs which suggest their role as oncogenes. On the other hand, down-regulated circRNAs have shown tumor suppressing actions in experimental studies. Furthermore, in a majority of studies, circRNAs have been found to sponge microRNAs (miRNAs), negatively regulating expression or activity of the downstream miRNAs. Additionally, they have been identified in interaction with regulatory proteins. This axis consequently regulates a signaling pathway, a tumor suppressor, or an oncogene. Easy, quick, and reliable detection of circRNAs in human body fluids also suggests their potentials as biomarker candidates for diagnosis and prediction of prognosis in PCa patients. In this review, we have discussed the role and potentials of a number of dysregulated circRNAs in PCa.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Zhou X, Chang Y, Zhu L, Shen C, Qian J, Chang R. LINC00839/miR-144-3p/WTAP (WT1 Associated protein) axis is involved in regulating hepatocellular carcinoma progression. Bioengineered 2021; 12:10849-10861. [PMID: 34634995 PMCID: PMC8809969 DOI: 10.1080/21655979.2021.1990578] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The present work aimed to explore LINC00839 expression level and its function in hepatocellular carcinoma (HCC), and identify the downstream molecular mechanisms. qRT-PCR (Real-Time Quantitative Reverse Transcription PCR) and western blot were employed to detect mRNA and protein levels. Functional investigations were performed by flow cytometric-based apoptosis assay, CCK8 (Cell Counting Kit-8) assay, clone formation assay, Transwell migration and invasion assay. Functional interactions between LINC00839 and miR-144-3p or miR-144-3p and WTAP were validated by dual luciferase reporter assay. siRNA (small interfering RNA) was used for LINC00839 silencing, and microRNA mimic or inhibitor were employed to modulate miR-144-3p activity. LINC00839 was upregulated in HCC cells and tissues. Silencing LINC00839 suppressed the proliferation, invasion, migration of HCC cells and induced apoptosis. Additionally, LINC00839 served as a sponge to negatively impact on miR-144-3p activity, which contributed to the high expression of WTAP (WT1 Associated Protein) and the malignant phenotype of HCC cells. Our study revealed an oncogenic role of LINC00839 in HCC, and identified miR-144-3p/WTAP axis as downstream effectors mediating the oncogenic function of LINC00839. LINC00839 might serve as a potential therapeutic target and prognostic marker for HCC.
Collapse
Affiliation(s)
- Xingqin Zhou
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, China
| | - Yazhou Chang
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, China.,Medical College of Southeast University, Nanjing, China
| | - Lirong Zhu
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, China
| | - Chaoyan Shen
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Qian
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, China
| | - Renan Chang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
35
|
Tian JH, Liu SH, Yu CY, Wu LG, Wang LB. The Role of Non-Coding RNAs in Breast Cancer Drug Resistance. Front Oncol 2021; 11:702082. [PMID: 34589423 PMCID: PMC8473733 DOI: 10.3389/fonc.2021.702082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is one of the commonly occurring malignancies in females worldwide. Despite significant advances in therapeutics, the mortality and morbidity of BC still lead to low survival and poor prognosis due to the drug resistance. There are certain chemotherapeutic, endocrine, and target medicines often used for BC patients, including anthracyclines, taxanes, docetaxel, cisplatin, and fluorouracil. The drug resistance mechanisms of these medicines are complicated and have not been fully elucidated. It was reported that non-coding RNAs (ncRNAs), such as micro RNAs (miRNA), long-chain non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) performed key roles in regulating tumor development and mediating therapy resistance. However, the mechanism of these ncRNAs in BC chemotherapeutic, endocrine, and targeted drug resistance was different. This review aims to reveal the mechanism and potential functions of ncRNAs in BC drug resistance and to highlight the ncRNAs as a novel target for achieving improved treatment outcomes for BC patients.
Collapse
Affiliation(s)
- Jin-Hai Tian
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| | - Shi-Hai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuan-Yang Yu
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| | - Li-Gang Wu
- Department of Oncology, General Hospital of Ningxia Medical University, Yingchuan, China
| | - Li-Bin Wang
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
36
|
Dastmalchi N, Safaralizadeh R, Latifi-Navid S, Banan Khojasteh SM, Mahmud Hussen B, Teimourian S. An updated review of the role of lncRNAs and their contribution in various molecular subtypes of breast cancer. Expert Rev Mol Diagn 2021; 21:1025-1036. [PMID: 34334086 DOI: 10.1080/14737159.2021.1962707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Breast cancer (BC) is the most significant threat to women's life. To demonstrate its molecular mechanisms, which results in BC progression, it is crucial to develop approaches to enhance prognosis and survival in BC cases.Areas covered: In the current study, we aimed to highlight the updated data on the oncogenic and tumor suppressive roles of lncRNAs in the progression of various subtypes of BC by specifically putting importance on the functional characteristics, modulatory agents, therapeutic potential, future perspectives and challenges of lncRNAs in BC. We reviewed recent studies published between 2019 and 2020.Expert opinion: The latest investigations have demonstrated that the long non-coding RNAs (lncRNAs) participate in different BC molecular subtypes via different molecular mechanisms; however, the exact functional information of the lncRNAs has yet to be elucidated. The studied lncRNAs could be more applicable as therapeutic targets in BC treatment after pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Jahangiri L, Pucci P, Ishola T, Trigg RM, Williams JA, Pereira J, Cavanagh ML, Turner SD, Gkoutos GV, Tsaprouni L. The Contribution of Autophagy and LncRNAs to MYC-Driven Gene Regulatory Networks in Cancers. Int J Mol Sci 2021; 22:ijms22168527. [PMID: 34445233 PMCID: PMC8395220 DOI: 10.3390/ijms22168527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
MYC is a target of the Wnt signalling pathway and governs numerous cellular and developmental programmes hijacked in cancers. The amplification of MYC is a frequently occurring genetic alteration in cancer genomes, and this transcription factor is implicated in metabolic reprogramming, cell death, and angiogenesis in cancers. In this review, we analyse MYC gene networks in solid cancers. We investigate the interaction of MYC with long non-coding RNAs (lncRNAs). Furthermore, we investigate the role of MYC regulatory networks in inducing changes to cellular processes, including autophagy and mitophagy. Finally, we review the interaction and mutual regulation between MYC and lncRNAs, and autophagic processes and analyse these networks as unexplored areas of targeting and manipulation for therapeutic gain in MYC-driven malignancies.
Collapse
Affiliation(s)
- Leila Jahangiri
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (L.J.); (T.I.); (M.L.C.)
| | - Perla Pucci
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (P.P.); (S.D.T.)
| | - Tala Ishola
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (L.J.); (T.I.); (M.L.C.)
| | - Ricky M. Trigg
- Department of Functional Genomics, GlaxoSmithKline, Stevenage SG1 2NY, UK;
| | - John A. Williams
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK; (J.A.W.); (G.V.G.)
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Joao Pereira
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Megan L. Cavanagh
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (L.J.); (T.I.); (M.L.C.)
| | - Suzanne D. Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (P.P.); (S.D.T.)
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic
| | - Georgios V. Gkoutos
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK; (J.A.W.); (G.V.G.)
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX11 0RD, UK
- MRC Health Data Research, Birmingham B15 2TT, UK
- NIHR Experimental Cancer Medicine Centre, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham B15 2TT, UK
- NIHR Biomedical Research Centre, Birmingham B15 2TT, UK
| | - Loukia Tsaprouni
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (L.J.); (T.I.); (M.L.C.)
- Correspondence:
| |
Collapse
|
38
|
Baldini F, Calderoni M, Vergani L, Modesto P, Florio T, Pagano A. An Overview of Long Non-Coding (lnc)RNAs in Neuroblastoma. Int J Mol Sci 2021; 22:ijms22084234. [PMID: 33921816 PMCID: PMC8072620 DOI: 10.3390/ijms22084234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is a heterogeneous developmental tumor occurring in childhood, which arises from the embryonic sympathoadrenal cells of the neural crest. Although the recent progress that has been done on this tumor, the mechanisms involved in NB are still partially unknown. Despite some genetic aberrations having been identified, the sporadic cases represent the majority. Due to its wide heterogeneity in clinical behavior and etiology, NB represents a challenge in terms of prevention and treatment. Since a definitive therapy is lacking so far, there is an urgent necessity to unveil the molecular mechanisms behind NB onset and progression to develop new therapeutic approaches. Long non-coding RNAs (lncRNAs) are a group of RNAs longer than 200 nucleotides. Whether lncRNAs are destined to become a protein or not, they exert multiple biological functions such as regulating gene expression and functions. In recent decades, different research has highlighted the possible role of lncRNAs in the pathogenesis of many diseases, including cancer. Moreover, lncRNAs may represent potential markers or targets for diagnosis and treatment of diseases. This mini-review aimed to briefly summarize the most recent findings on the involvement of some lncRNAs in NB disease by focusing on their mechanisms of action and possible role in unveiling NB onset and progression.
Collapse
Affiliation(s)
- Francesca Baldini
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
| | - Matilde Calderoni
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences DISTAV, University of Genova, 16132 Genova, Italy;
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology-Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy;
| | - Tullio Florio
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: ; Tel.: +39-010-5558213
| |
Collapse
|
39
|
Ghafouri-Fard S, Tamizkar KH, Hussen BM, Taheri M. An update on the role of long non-coding RNAs in the pathogenesis of breast cancer. Pathol Res Pract 2021; 219:153373. [DOI: 10.1016/j.prp.2021.153373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
|
40
|
Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules 2021; 11:biom11020304. [PMID: 33670518 PMCID: PMC7922700 DOI: 10.3390/biom11020304] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small size of 19–24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors in which the abnormal expression of miRNAs plays a significant role in their development. Phosphatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their resistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells. Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer progression. These topics are discussed in the current review with a focus on molecular pathways.
Collapse
|
41
|
Shin TJ, Lee KH, Cho JY. Epigenetic Mechanisms of LncRNAs Binding to Protein in Carcinogenesis. Cancers (Basel) 2020; 12:E2925. [PMID: 33050646 PMCID: PMC7599656 DOI: 10.3390/cancers12102925] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Epigenetic dysregulation is an important feature for cancer initiation and progression. Long non-coding RNAs (lncRNAs) are transcripts that stably present as RNA forms with no translated protein and have lengths larger than 200 nucleotides. LncRNA can epigenetically regulate either oncogenes or tumor suppressor genes. Nowadays, the combined research of lncRNA plus protein analysis is gaining more attention. LncRNA controls gene expression directly by binding to transcription factors of target genes and indirectly by complexing with other proteins to bind to target proteins and cause protein degradation, reduced protein stability, or interference with the binding of other proteins. Various studies have indicated that lncRNA contributes to cancer development by modulating genes epigenetically and studies have been done to determine which proteins are combined with lncRNA and contribute to cancer development. In this review, we look in depth at the epigenetic regulatory function of lncRNAs that are capable of complexing with other proteins in cancer development.
Collapse
Affiliation(s)
| | | | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (T.-J.S.); (K.-H.L.)
| |
Collapse
|
42
|
Chen Q, Shen H, Zhu X, Liu Y, Yang H, Chen H, Xiong S, Chi H, Xu W. A nuclear lncRNA Linc00839 as a Myc target to promote breast cancer chemoresistance via PI3K/AKT signaling pathway. Cancer Sci 2020; 111:3279-3291. [PMID: 32619088 PMCID: PMC7469761 DOI: 10.1111/cas.14555] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Chemoresistance has become a leading cause of mortality in breast cancer patients and is one of the major obstacles for improving the clinical outcome. Long noncoding RNAs play important roles in breast cancer tumorigenesis and chemoresistance. However, the involvement and regulation of lncRNAs in breast cancer chemoresistance are not completely understood. Here, we reported that Linc00839 was localized in the nucleus and upregulated in chemoresistant breast cancer cells and tissues, and high level of Linc00839 was associated with a poor prognosis. Knockdown of Linc00839 significantly suppressed proliferation, invasion, and migration, sensitized cells to paclitaxel in vitro and inhibited transplant tumor development in vivo. Mechanistically, we found that Myc could directly bind to the promoter region of Linc00839 and activate its transcription. Furthermore, Linc00839 overexpression increased the expression of Myc and the RNA‐binding protein Lin28B and activated the PI3K/AKT signaling pathway. We also discovered that Lin28B positively interacted with Linc00839 and was upregulated in breast cancer tissues. Taken together, for the first time, we showed that Linc00839 was activated by Myc and promoted proliferation and chemoresistance in breast cancer through binding with Lin28B. These findings provide new insight into the regulatory mechanism of Linc00839 and propose a Myc/Linc00839/Lin28B feedback loop that could be used as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Qi Chen
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,School of medicine, Jiangsu University, Zhenjiang, China
| | - Huiling Shen
- Department of Oncology, Affiliated People Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yueqin Liu
- Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hui Yang
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hui Chen
- School of medicine, Jiangsu University, Zhenjiang, China
| | - Shangwan Xiong
- School of medicine, Jiangsu University, Zhenjiang, China
| | - Huamao Chi
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenlin Xu
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,School of medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|