1
|
Li X, Mao J. Research progress on the role of lipoxygenase and its inhibitors in prostate cancer. Future Oncol 2024:1-20. [PMID: 39535136 DOI: 10.1080/14796694.2024.2419356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Prostate cancer (PCa) has become a common disease among middle-aged and elderly men. The lipoxygenase (LOX) pathway plays a crucial role in the occurrence, development, invasion and metastasis of PCa and is therefore considered a new target for the prevention and treatment of PCa. 5-LOX and 12-LOX have a promoting effect on the occurrence, development, invasion and metastasis of PCa. 15-LOX-2 has an inhibitory effect on PCa. LOX inhibitors can effectively inhibit the metabolic activity of LOX. The research aims to review the mechanism of action and inhibitors of LOX in PCa, in order to provide relevant references for the prevention and treatment of PCa.
Collapse
Affiliation(s)
- Xiaobing Li
- Chongqing Medical & Pharmaceutical College, Chongqing, 400030, China
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jingxin Mao
- Chongqing Medical & Pharmaceutical College, Chongqing, 400030, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Fu X, Shi Y, Gu Z, Zang H, Li L, Wang Q, Wang Y, Zhao X, Wu H, Qiu S, Zhang Y, Zhou J, Chen X, Shen H, Lin G. Immunotherapeutic hydrogel for co-delivery of STAT3 siRNA liposomes and lidocaine hydrochloride for postoperative comprehensive management of NSCLC in a single application. Asian J Pharm Sci 2024; 19:100925. [PMID: 38966285 PMCID: PMC11222805 DOI: 10.1016/j.ajps.2024.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/05/2024] [Accepted: 03/24/2024] [Indexed: 07/06/2024] Open
Abstract
Despite standard treatment for non-small cell lung cancer (NSCLC) being surgical resection, cancer recurrence and complications, such as induction of malignant pleural effusion (MPE) and significant postoperative pain, usually result in treatment failure. In this study, an alginate-based hybrid hydrogel (SOG) is developed that can be injected into the resection surface of the lungs during surgery. Briefly, endoplasmic reticulum-modified liposomes (MSLs) pre-loaded with the signal transducer and activator of transcription 3 (STAT3) small interfering RNA and lidocaine hydrochloride are encapsulated in SOG. Once applied, MSLs strongly downregulated STAT3 expression in the tumor microenvironment, resulting in the apoptosis of lung cancer cells and polarization of tumor-associated macrophages towards the M1-like phenotype. Meanwhile, the release of lidocaine hydrochloride (LID) was beneficial for pain relief and natural killer cell activation. Our data demonstrated MSL@LID@SOG not only efficiently inhibited tumor growth but also potently improved the quality of life, including reduced MPE volume and pain relief in orthotopic NSCLC mouse models, even with a single administration. MSL@LID@SOG shows potential for comprehensive clinical management upon tumor resection in NSCLC, and may alter the treatment paradigms for other cancers.
Collapse
Affiliation(s)
- Xianglei Fu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanbin Shi
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zili Gu
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qingjie Wang
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan 250063, China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Hang Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shengnan Qiu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yankun Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiamin Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiangqin Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hua Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Guimei Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
3
|
Zhang X, Wang X, Wen Y, Chen S, Zhou C, Wu F. Single-cell transcriptomics reveal metastatic CLDN4+ cancer cells underlying the recurrence of malignant pleural effusion in patients with advanced non-small-cell lung cancer. Clin Transl Med 2024; 14:e1649. [PMID: 38629624 PMCID: PMC11022306 DOI: 10.1002/ctm2.1649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Recurrent malignant pleural effusion (MPE) resulting from non-small-cell lung cancer (NSCLC) is easily refractory to conventional therapeutics and lacks predictive markers. The cellular or genetic signatures of recurrent MPE still remain largely uncertain. METHODS 16 NSCLC patients with pleural effusions were recruited, followed by corresponding treatments based on primary tumours. Non-recurrent or recurrent MPE was determined after 3-6 weeks of treatments. The status of MPE was verified by computer tomography (CT) and cytopathology, and the baseline pleural fluids were collected for single-cell RNA sequencing (scRNA-seq). Samples were then integrated and profiled. Cellular communications and trajectories were inferred by bioinformatic algorithms. Comparative analysis was conducted and the results were further validated by quantitative polymerase chain reaction (qPCR) in a larger MPE cohort from the authors' centre (n = 64). RESULTS The scRNA-seq revealed that 33 590 cells were annotated as 7 major cell types and further characterized into 14 cell clusters precisely. The cell cluster C1, classified as Epithelial Cell Adhesion Molecule (EpCAM)+ metastatic cancer cell and correlated with activation of tight junction and adherence junction, was significantly enriched in the recurrent MPE group, in which Claudin-4 (CLDN4) was identified. The subset cell cluster C3 of C1, which was enriched in recurrent MPE and demonstrated a phenotype of ameboidal-type cell migration, also showed a markedly higher expression of CLDN4. Meanwhile, the expression of CLDN4 was positively correlated with E74 Like ETS Transcription Factor 3 (ELF3), EpCAM and Tumour Associated Calcium Signal Transducer 2 (TACSTD2), independent of driver-gene status. CLDN4 was also found to be associated with the expression of Hypoxia Inducible Factor 1 Subunit Alpha (HIF1A) and Vascular Endothelial Growth Factor A (VEGFA), and the cell cluster C1 was the major mediator in cellular communication of VEGFA signalling. In the extensive MPE cohort, a notably increased expression of CLDN4 in cells from pleural effusion among patients diagnosed with recurrent MPE was observed, compared with the non-recurrent group, which was also associated with a trend towards worse overall survival (OS). CONCLUSIONS CLDN4 could be considered as a predictive marker of recurrent MPE among patients with advanced NSCLC. Further validation for its clinical value in cohorts with larger sample size and in-depth mechanism studies on its biological function are warranted. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Xiaoshen Zhang
- School of MedicineTongji UniversityShanghaiChina
- Department of Medical OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Xuanhe Wang
- School of MedicineTongji UniversityShanghaiChina
- Department of Medical OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Yaokai Wen
- School of MedicineTongji UniversityShanghaiChina
- Department of Medical OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Shen Chen
- Department of Medical OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Caicun Zhou
- Department of Medical OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| | - Fengying Wu
- Department of Medical OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Zhang X, Bao L, Yu G, Wang H. Exosomal miRNA-profiling of pleural effusion in lung adenocarcinoma and tuberculosis. Front Surg 2023; 9:1050242. [PMID: 36684253 PMCID: PMC9852630 DOI: 10.3389/fsurg.2022.1050242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Pleural effusion (PE) caused by lung cancer is prevalent, and it is difficult to differentiate it from PE caused by tuberculosis. Exosome-based liquid biopsy offers a non-invasive technique to diagnose benign and malignant PE. Exosomal miRNAs are potential diagnostic markers and play an essential role in signal transduction and biological processes in tumor development. We hypothesized that exosomal miRNA expression profiles in PE would contribute to identifying its diagnostic markers and elucidating the molecular basis of PE formation in lung cancer. Methods The exosomes from PE caused by lung adenocarcinoma (LUAD) and pulmonary tuberculosis were isolated and verified by transmission electron microscopy. The exosomal miRNA profiles were identified using deep sequencing and validated with quantitative real-time PCR (qRT-PCR). We performed bioinformatic analysis for differentially expressed miRNAs to explore how exosomal miRNAs regulate pleural effusion. Results We identified 99 upregulated and 91 downregulated miRNAs in malignant pleural effusion (MPE) compared to tuberculous pleural effusion (TPE). Seven differentially expressed miRNAs (DEmiRNAs) were validated by qRT-PCR, out of which 5 (71.4%) were confirmed through sequencing. Gene Ontology (GO) analysis revealed that most exosomal miRNAs target genes were involved in regulating cellular processes and nitrogen compound metabolism. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, the exosomal miRNAs target genes were mainly involved in Fc gamma R-mediated phagocytosis, Rap1 signaling pathway, and breast cancer. The hub genes, including ITGAM, FOXO1, MAPK14, YWHAB, GRIN1, and PRF1, were screened through plug-in cytoHubba. The PFR1 was identified as a critical gene in MPE formation using single-cell sequencing analysis. Additionally, we hypothesized that tumor cells affected natural killer cells and promoted the generation of PE in LUAD via the exosomal hsa-miR-3120-5p-PRF1 axis. Conclusions We identified exosomal miRNA profiles in LUAD-MPE and TPE, which may help in the differential diagnosis of MPE and TPE. Bioinformatic analysis revealed that these miRNAs might affect PE generation through tumor immune response in LUAD. Our results provided a new theoretical basis for understanding the function of exosomal miRNAs in LUAD-MPE.
Collapse
Affiliation(s)
- Xuede Zhang
- Department of Oncology, Weifang People's Hospital, Weifang, China
| | - Lingling Bao
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, China
| | - Guohua Yu
- Department of Oncology, Weifang People's Hospital, Weifang, China
| | - Haifeng Wang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, China,Correspondence: Haifeng Wang
| |
Collapse
|
5
|
Survival Benefit of Statin with Anti-Angiogenesis Efficacy in Lung Cancer-Associated Pleural Fluid through FXR Modulation. Cancers (Basel) 2022; 14:cancers14112765. [PMID: 35681743 PMCID: PMC9179389 DOI: 10.3390/cancers14112765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Our previous works showed that pleural fluid from lung cancer significantly induced endothelial proliferation, migration, and angiogenesis. Since endothelial metabolism was a key step in angiogenesis, we investigated the role of bile acid signaling and FXR expression in pleural angiogenesis. Elevated bile acid levels in lung-cancer-associated pleural fluid (LCPF) were characterized with positive FXR staining in pleural microvessels. We then confirmed the inhibitory effect of an FXR antagonist on LCPF-induced endothelial migration and angiogenesis. Due to the elevated protein expression in the cholesterol metabolism caused by LCPF, lipid-lowering agents with the efficacy needed to counteract LCPF-regulated angiogenesis were evaluated. Statin showed the potent efficacy needed to suppress LCPF-induced endothelial proliferation, migration, and angiogenesis through FXR inhibition. Following that, Kaplan–Meier analysis showed the survival benefit of statin exposure in patients with lung adenocarcinoma with LCPF. Our results suggest that targeting endothelial FXR signaling with statin treatment could ameliorate the angiogenesis activity of LCPF. Abstract Lung cancer-related pleural fluid (LCPF) presents as a common complication with limited treatment. Beyond its function in lipid digestion, bile acid was identified as a potent carcinogen to stimulate tumor proliferation. Previous research indicated a correlation between serum bile acid levels and the risk of developing several gastrointestinal cancers. Our study identified elevated bile acid levels in LCPF and increased farnesoid X receptor (FXR) expression as bile acid nuclear receptors in pleural microvessels of lung adenocarcinoma. Additionally, LCPF stimulated the expression of proteins involved in bile acid synthesis and cholesterol metabolism in HUVECs including CYP7A1, StAR, HMGCR, and SREBP2. LCPF-induced endothelial motility and angiogenesis were counteracted by using β-muricholic acid as an FXR antagonist. Moreover, we investigated the efficacy of cholesterol-lowering medications, such as cholestyramine, fenofibrate, and atorvastatin, in regulating LCPF-regulated angiogenesis. Along with suppressing endothelial proliferation and angiogenesis, atorvastatin treatment reversed cholesterol accumulation and endothelial junction disruption caused by LCPF. Statin treatment inhibited LCPF-induced endothelial FXR expression as well as the downstream proteins RXR and SHP. Based on the positive findings of suppressing endothelial angiogenesis, our group further incorporated the effect of statin on clinical patients complicated with LCPF. A Kaplan–Meier analysis revealed the clinical benefit of statin exposure in patients with lung adenocarcinoma with LCPF. Conclusively, our study demonstrated the ability of statin to alleviate LCPF-induced angiogenesis in patients with LCPF via FXR modulation.
Collapse
|
6
|
Accelerated Wound Healing and Keratinocyte Proliferation through PI3K/Akt/pS6 and VEGFR2 Signaling by Topical Use of Pleural Fluid. Cells 2022; 11:cells11050817. [PMID: 35269438 PMCID: PMC8909204 DOI: 10.3390/cells11050817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Impaired wound healing is an ongoing issue that cancer patients undergoing chemotherapy or radiotherapy face. Our previous study regarding lung-cancer-associated pleural fluid (LCPF) demonstrated its propensity to promote endothelial proliferation, migration, and angiogenesis, which are crucial features during cutaneous wound healing. Therefore, the current study aimed to investigate the effect of pleural fluid on cutaneous wound closure in vitro and in vivo using HaCaT keratinocytes and a full-thickness skin wound model, respectively. Both heart-failure-associated pleural fluid (HFPF) and LCPF were sequentially centrifuged and filtered to obtain a cell-free status. Treatment with HFPF and LCPF homogeneously induced HaCaT proliferation with cell cycle progression, migration, and MMP2 upregulation. Western blotting revealed increased PI3K/Akt phosphorylation and VEGFR2/VEGFA expression in HaCaT cells. When treated with the PI3K inhibitor, LCPF-induced keratinocyte proliferation was attenuated with decreased pS6 levels. By applying the VEGFR2 inhibitor, LCPF-induced keratinocyte proliferation was ameliorated by pS6 and MMP2 downregulation. The effect of LCPF-induced cell junction rearrangement was disrupted by co-treatment with a VEGFR2 inhibitor. Compared with a 0.9% saline dressing, LCPF significantly accelerated wound closure and re-epithelization when used as a dressing material in a full-thickness wound model. Histological analysis revealed increased neo-epidermis thickness and dermis collagen synthesis in the LCPF-treated group. Furthermore, LCPF treatment activated basal keratinocytes at the wound edge with the upregulation of Ki-67, VEGFA, and MMP2. Our preliminaries provided the benefit of wet dressing with pleural fluid to improve cutaneous wound closure through enhanced re-epithelization and disclosed future autologous application in cancer wound treatment.
Collapse
|
7
|
Malignant pleural effusions for cancer genotyping: A matter of trans-pleural traffic of cell-free tumor DNA. Mol Cell Probes 2022; 61:101793. [DOI: 10.1016/j.mcp.2022.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022]
|
8
|
Chen WT, Lin YH, Changchien CY, Chen Y, Chang HH, Tsai WC, Tsai HC, Wang CY, Shen MS, Cheng LT, Tsai CL. Concurrent Blockade of Endothelial EGFR and VEGF Signaling on Malignant Associated Pleural Fluid Induced Angiogenesis: From Clinic to Bench. Biomedicines 2021; 9:biomedicines9101327. [PMID: 34680445 PMCID: PMC8533568 DOI: 10.3390/biomedicines9101327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/04/2022] Open
Abstract
Malignant-associated pleural fluid (MAPF) represented an unsolved problem in advanced lung cancer. Our previous work characterized increased pleural angiogenesis in lung adenocarcinoma and the propensity of MAPF on endothelial angiogenesis. This study investigated the combined efficacy of the tyrosine kinase inhibitor (gefitinib) and bevacizumab in opposing MAPF-induced angiogenesis. In lung adenocarcinoma patients with malignant pleural effusion (MPE), Kaplan–Meier analysis revealed the benefit of cotreatment with target therapy and bevacizumab. Increased EGFR expression was observed in the pleural microvessels of patients with lung adenocarcinoma both with and without mutations in EGFR. MAPF was obtained from lung adenocarcinoma patients both wild-type and mutant EGFRs. Total and phosphorylated EGFR were upregulated in HUVEC cultured with MAPF. Treatment with gefitinib as an EGFR inhibitor suppressed MAPF-induced endothelial migration and partially attenuated endothelial proliferation in both wild-type and mutant EGFR lung adenocarcinoma. Cotreatment with gefitinib and bevacizumab produced better inhibition of MAPF-induced endothelial angiogenesis than gefitinib alone in the mutant EGFR subgroup. Protein analysis of MAPF-derived exosomes revealed abundant EGFR and p-EGFR components that implied possible transfer to endothelial cells. Concluding Kaplan–Meier analysis and in vitro studies, the results indicated that the addition of bevacizumab on gefitinib treatment could suppress MAPF-induced angiogenesis in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Wei-Teing Chen
- Division of Chest Medicine, Department of Medicine, Cheng-Hsin General Hospital, Taipei 112, Taiwan;
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Yu-Huei Lin
- Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei 110, Taiwan;
| | - Chih-Ying Changchien
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (Y.C.); (H.-H.C.)
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (Y.C.); (H.-H.C.)
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (Y.C.); (H.-H.C.)
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Hao-Chung Tsai
- Division of Chest Medicine, Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, Taipei 105, Taiwan;
| | - Chieh-Yung Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-Y.W.); (L.-T.C.)
| | - Ming-Sheng Shen
- Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung 411, Taiwan;
| | - Li-Ting Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-Y.W.); (L.-T.C.)
| | - Chen-Liang Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-Y.W.); (L.-T.C.)
- Correspondence:
| |
Collapse
|
9
|
Changchien CY, Chang HH, Dai MS, Tsai WC, Tsai HC, Wang CY, Shen MS, Cheng LT, Lee HS, Chen Y, Tsai CL. Distinct JNK/VEGFR signaling on angiogenesis of breast cancer-associated pleural fluid based on hormone receptor status. Cancer Sci 2021; 112:781-791. [PMID: 33315285 PMCID: PMC7894017 DOI: 10.1111/cas.14772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023] Open
Abstract
Malignant pleural effusion is a common complication in metastatic breast cancer (MBC); however, changes in the pleural microenvironment are poorly characterized, especially with respect to estrogen receptor status. Histologically, MBC presents with increased microvessels beneath the parietal and visceral pleura, indicating generalized angiogenic activity. Breast cancer‐associated pleural fluid (BAPF) was collected and cultured with HUVECs to recapitulate the molecular changes in subpleural endothelial cells. The clinical progression of triple‐negative breast cancer (TNBC) is much more aggressive than that of hormone receptor‐positive breast cancer (HPBC). However, BAPF from HPBC (BAPF‐HP) and TNBC (BAPF‐TN) homogeneously induced endothelial proliferation, migration, and angiogenesis. In addition, BAPF elicited negligible changes in the protein marker of endothelial‐mesenchymal transition. Both BAPF‐HP and BAPF‐TN exclusively upregulated JNK signaling among all MAPKs in HUVECs. By contrast, the response to the JNK inhibitor was insignificant in Transwell and tube formation assays of the HUVECs cultured with BAPF‐TN. The distinct contribution of p‐JNK to endothelial angiogenesis was consequently thought to be induced by BAPF‐HP and BAPF‐TN. Due to increased angiogenic factors in HUVECs cultured with BAPF, vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor was applied accordingly. Responses to VEGFR2 blockade were observed in both BAPF‐HP and BAPF‐TN concerning endothelial migration and angiogenesis. In conclusion, the above results revealed microvessel formation in the pleura of MBC and the underlying activation of p‐JNK/VEGFR2 signaling. Distinct responses to blocking p‐JNK and VEGFR2 in HUVECs cultured with BAPF‐HP or BAPF‐TN could lay the groundwork for future investigations in treating MBC based on hormone receptor status.
Collapse
Affiliation(s)
- Chih-Ying Changchien
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Shen Dai
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hao-Chung Tsai
- Division of Chest Medicine, Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Chieh-Yung Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Sheng Shen
- Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Li-Ting Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Liang Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
10
|
Changchien C, Chen Y, Chang H, Chang S, Tsai W, Tsai H, Wang C, Lee H, Tsai C. Effect of malignant-associated pleural effusion on endothelial viability, motility and angiogenesis in lung cancer. Cancer Sci 2020; 111:3747-3758. [PMID: 32706142 PMCID: PMC7541005 DOI: 10.1111/cas.14584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022] Open
Abstract
Malignant pleural effusion (MPE) and paramalignant pleural effusion (PPE) remain debilitating complications in lung cancer patients with poor prognosis and limited treatment options. The role of vascular endothelial cells has not been explored in the pleural environment of lung cancer. By integrating MPE and PPE as malignant-associated pleural fluid (MAPF), the current study aimed to evaluate the effect of MAPF on cell proliferation, migration and angiogenesis of HUVEC. First, increased capillaries were identified in the subpleural layer of lung adenocarcinoma. Compatible with pathological observations, the ubiquitous elevation of HUVEC survival was identified in MAPF culture regardless of the underlying cancer type, the driver gene mutation, prior treatments and evidence of malignant cells in pleural fluid. Moreover, MAPF enhanced HUVEC motility with the formation of lamellipodia and filopodia and focal adhesion complex. Tube formation assay revealed angiogenic behavior with the observation of sheet-like structures. HUVEC cultured with MAPF resulted in a significant increase in MAPK phosphorylation. Accompanied with VEGFR2 upregulation in MAPF culture, there was increased expressions of p-STAT3, HIF-1α and Nf-kB. VEGF/VEGFR2 blockade regressed endothelial migration and angiogenesis but not cell proliferation. Our data indicate the angiogenic activities of MAPF on vascular endothelial cells that revealed increased pleural capillaries in lung cancer. Targeting the VEGF/VEGFR2 pathway might modulate the angiogenic propensity of MAPF in future clinical investigations.
Collapse
MESH Headings
- Aged
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Cell Survival/genetics
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Human Umbilical Vein Endothelial Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Lung Neoplasms/complications
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- NF-kappa B/genetics
- Neovascularization, Pathologic/complications
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Pleural Effusion/genetics
- Pleural Effusion, Malignant/complications
- Pleural Effusion, Malignant/genetics
- Pleural Effusion, Malignant/pathology
- STAT3 Transcription Factor/genetics
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor Receptor-2/genetics
Collapse
Affiliation(s)
- Chih‐Ying Changchien
- Department of Internal MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
- Department of Biology and AnatomyNational Defense Medical CenterTaipeiTaiwan
| | - Ying Chen
- Department of Biology and AnatomyNational Defense Medical CenterTaipeiTaiwan
| | - Hsin‐Han Chang
- Department of Biology and AnatomyNational Defense Medical CenterTaipeiTaiwan
| | - Shan‐Yueh Chang
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Wen‐Chiuan Tsai
- Department of PathologyTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Hao‐Chung Tsai
- Division of Chest MedicineDepartment of Internal MedicineTri‐Service General Hospital Songshan Branch, National Defense Medical CenterTaipeiTaiwan
| | - Chieh‐Yung Wang
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Herng‐Sheng Lee
- Department of Pathology and Laboratory MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Chen‐Liang Tsai
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| |
Collapse
|