1
|
Szewczyk K, Jiang L, Khawaja H, Miranti CK, Zohar Y. Microfluidic Applications in Prostate Cancer Research. MICROMACHINES 2024; 15:1195. [PMID: 39459070 PMCID: PMC11509716 DOI: 10.3390/mi15101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer.
Collapse
Affiliation(s)
- Kailie Szewczyk
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
2
|
Cho H, Byun SS, Son NH, Chung JI, Seo WI, Lee CH, Morgan TM, Han KH, Chung JS. Impact of Circulating Tumor Cell-Expressed Prostate-Specific Membrane Antigen and Prostate-Specific Antigen Transcripts in Different Stages of Prostate Cancer. Clin Cancer Res 2024; 30:1788-1800. [PMID: 38587547 DOI: 10.1158/1078-0432.ccr-23-3083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA)-based images, which visually quantify PSMA expression, are used to determine prostate cancer micrometastases. This study evaluated whether a circulating tumor cell (CTC)-based transcript platform, including PSMA mRNA, could help identify potential prognostic markers in prostate cancer. EXPERIMENTAL DESIGN We prospectively enrolled 21 healthy individuals and 247 patients with prostate cancer [localized prostate cancer (LPCa), n = 94; metastatic hormone-sensitive prostate cancer (mHSPC), n = 44; and metastatic castration-resistant prostate cancer (mCRPC), n = 109]. The mRNA expression of six transcripts [PSMA, prostate-specific antigen (PSA), AR, AR-V7, EpCAM, and KRT 19] from CTCs was measured, and their relationship with biochemical recurrence (BCR) in LPCa and mCRPC progression-free survival (PFS) rate in mHSPC was assessed. PSA-PFS and radiological-PFS were also calculated to identify potential biomarkers for predicting androgen receptor signaling inhibitor (ARSI) and taxane-based chemotherapy resistance in mCRPC. RESULTS CTC detection rates were 75.5%, 95.3%, and 98.0% for LPCa, mHSPC, and mCRPC, respectively. In LPCa, PSMA [hazard ratio (HR), 3.35; P = 0.028) and PSA mRNA (HR, 1.42; P = 0.047] expressions were associated with BCR. Patients with mHSPC with high PSMA (HR, 4.26; P = 0.020) and PSA mRNA (HR, 3.52; P = 0.042) expressions showed significantly worse mCRPC-PFS rates than those with low expression. Increased PSA and PSMA mRNA expressions were significantly associated with shorter PSA-PFS and radiological PFS in mCPRC, indicating an association with drug resistance. CONCLUSIONS PSMA and PSA mRNA expressions are associated with BCR in LPCa. In advanced prostate cancer, PSMA and PSA mRNA can also predict rapid progression from mHSPC to mCRPC and ARSI or taxane-based chemotherapy resistance.
Collapse
MESH Headings
- Humans
- Male
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Prostate-Specific Antigen/blood
- Aged
- Glutamate Carboxypeptidase II/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/blood
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Middle Aged
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/blood
- Prostatic Neoplasms/mortality
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/blood
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Aged, 80 and over
- Prospective Studies
- Kallikreins/blood
- Kallikreins/genetics
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Hyungseok Cho
- Department of Nanoscience and Engineering Center for Nano Manufacturing, Inje University, Gimhae, South Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nak-Hoon Son
- Department of Statistics, Keimyung University, Daegu, South Korea
| | - Jae Il Chung
- Department of Urology, Busan Paik Hospital, Inje University, Busan, South Korea
| | - Won Ik Seo
- Department of Urology, Busan Paik Hospital, Inje University, Busan, South Korea
| | - Chan Ho Lee
- Department of Urology, Busan Paik Hospital, Inje University, Busan, South Korea
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Ki-Ho Han
- Department of Nanoscience and Engineering Center for Nano Manufacturing, Inje University, Gimhae, South Korea
| | - Jae-Seung Chung
- Department of Urology, Haeundae Paik Hospital, Inje University, Busan, South Korea
| |
Collapse
|
3
|
Sassi A, You L. Microfluidics-Based Technologies for the Assessment of Castration-Resistant Prostate Cancer. Cells 2024; 13:575. [PMID: 38607014 PMCID: PMC11011521 DOI: 10.3390/cells13070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
Castration-resistant prostate cancer remains a significant clinical challenge, wherein patients display no response to existing hormone therapies. The standard of care often includes aggressive treatment options using chemotherapy, radiation therapy and various drugs to curb the growth of additional metastases. As such, there is a dire need for the development of innovative technologies for both its diagnosis and its management. Traditionally, scientific exploration of prostate cancer and its treatment options has been heavily reliant on animal models and two-dimensional (2D) in vitro technologies. However, both laboratory tools often fail to recapitulate the dynamic tumor microenvironment, which can lead to discrepancies in drug efficacy and side effects in a clinical setting. In light of the limitations of traditional animal models and 2D in vitro technologies, the emergence of microfluidics as a tool for prostate cancer research shows tremendous promise. Namely, microfluidics-based technologies have emerged as powerful tools for assessing prostate cancer cells, isolating circulating tumor cells, and examining their behaviour using tumor-on-a-chip models. As such, this review aims to highlight recent advancements in microfluidics-based technologies for the assessment of castration-resistant prostate cancer and its potential to advance current understanding and to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Amel Sassi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada;
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L 2V9, Canada
| |
Collapse
|
4
|
Alqualo NO, Campos-Fernandez E, Picolo BU, Ferreira EL, Henriques LM, Lorenti S, Moreira DC, Simião MPS, Oliveira LBT, Alonso-Goulart V. Molecular biomarkers in prostate cancer tumorigenesis and clinical relevance. Crit Rev Oncol Hematol 2024; 194:104232. [PMID: 38101717 DOI: 10.1016/j.critrevonc.2023.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequent type of cancer in men and assessing circulating tumor cells (CTCs) by liquid biopsy is a promising tool to help in cancer early detection, staging, risk of recurrence evaluation, treatment prediction and monitoring. Blood-based liquid biopsy approaches enable the enrichment, detection and characterization of CTCs by biomarker analysis. Hence, comprehending the molecular markers, their role on each stage of cancer development and progression is essential to provide information that can help in future implementation of these biomarkers in clinical assistance. In this review, we studied the molecular markers most associated with PCa CTCs to better understand their function on tumorigenesis and metastatic cascade, the methodologies utilized to analyze these biomarkers and their clinical significance, in order to summarize the available information to guide researchers in their investigations, new hypothesis formulation and target choice for the development of new diagnostic and treatment tools.
Collapse
Affiliation(s)
- Nathalia Oliveira Alqualo
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Esther Campos-Fernandez
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Bianca Uliana Picolo
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Emanuelle Lorrayne Ferreira
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Laila Machado Henriques
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Sabrina Lorenti
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Danilo Caixeta Moreira
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Maria Paula Silva Simião
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Luciana Beatriz Tiago Oliveira
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Vivian Alonso-Goulart
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil.
| |
Collapse
|
5
|
An Y, Lu W, Li S, Lu X, Zhang Y, Han D, Su D, Jia J, Yuan J, Zhao B, Tu M, Li X, Wang X, Fang N, Ji S. Systematic review and integrated analysis of prognostic gene signatures for prostate cancer patients. Discov Oncol 2023; 14:234. [PMID: 38112859 PMCID: PMC10730790 DOI: 10.1007/s12672-023-00847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Prostate cancer (PC) is one of the most common cancers in men and becoming the second leading cause of cancer fatalities. At present, the lack of effective strategies for prognosis of PC patients is still a problem to be solved. Therefore, it is significant to identify potential gene signatures for PC patients' prognosis. Here, we summarized 71 different prognostic gene signatures for PC and concluded 3 strategies for signature construction after extensive investigation. In addition, 14 genes frequently appeared in 71 different gene signatures, which enriched in mitotic and cell cycle. This review provides extensive understanding and integrated analysis of current prognostic signatures of PC, which may help researchers to construct gene signatures of PC and guide future clinical treatment.
Collapse
Affiliation(s)
- Yang An
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China.
| | - Wenyuan Lu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Shijia Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Xiaoyan Lu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Dongcheng Han
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Dingyuan Su
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Jiaxin Jia
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Jiaxin Yuan
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Binbin Zhao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Mengjie Tu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Xinyu Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Xiaoqing Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Na Fang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China.
| | - Shaoping Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Seyfoori A, Seyyed Ebrahimi SA, Samandari M, Samiei E, Stefanek E, Garnis C, Akbari M. Microfluidic-Assisted CTC Isolation and In Situ Monitoring Using Smart Magnetic Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205320. [PMID: 36720798 DOI: 10.1002/smll.202205320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Capturing rare disease-associated biomarkers from body fluids can offer an early-stage diagnosis of different cancers. Circulating tumor cells (CTCs) are one of the major cancer biomarkers that provide insightful information about the cancer metastasis prognosis and disease progression. The most common clinical solutions for quantifying CTCs rely on the immunomagnetic separation of cells in whole blood. Microfluidic systems that perform magnetic particle separation have reported promising outcomes in this context, however, most of them suffer from limited efficiency due to the low magnetic force generated which is insufficient to trap cells in a defined position within microchannels. In this work, a novel method for making soft micromagnet patterns with optimized geometry and magnetic material is introduced. This technology is integrated into a bilayer microfluidic chip to localize an external magnetic field, consequently enhancing the capture efficiency (CE) of cancer cells labeled with the magnetic nano/hybrid microgels that are developed in the previous work. A combined numerical-experimental strategy is implemented to design the microfluidic device and optimize the capturing efficiency and to maximize the throughput. The proposed design enables high CE and purity of target cells and real-time time on-chip monitoring of their behavior. The strategy introduced in this paper offers a simple and low-cost yet robust opportunity for early-stage diagnosis and monitoring of cancer-associated biomarkers.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Advanced Magnetic Materials Research Center, College of Engineering, University of Tehran, Tehran, Iran
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| | | | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ehsan Samiei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Evan Stefanek
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
- Bitechnology Center, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90024, USA
| |
Collapse
|
7
|
Prospective assessment of AR splice variant and multi-biomarker expression on circulating tumor cells of mCRPC patients undergoing androgen receptor targeted agents: interim analysis of PRIMERA trial (NCT04188275). Med Oncol 2022; 39:119. [PMID: 35687207 DOI: 10.1007/s12032-022-01756-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Circulating tumor cells detection and ARV7 expression are associated with worse clinical outcomes in metastatic Castration-Resistant Prostate Cancer (mCRPC) undergoing Androgen Receptor Targeted Agents. ARFL, PSMA and PSA may help to refine prognostic models. In our institution, a prospective observational trial testing CTC detection in mCPRC undergoing I line ARTA therapy terminated the planned enrollment in 2020. Here, we present a pre-planned interim analysis with 18 months of median follow-up. RT-qPCR was used to determine the CTC expression of PSA, PSMA, AR and ARV7 before starting ARTA. PSA-drop, Progression-Free and Overall Survival (PFS and OS) and their correlation with CTC detection were reported. Forty-four patients were included. CTC were detected in 43.2% of patients, of whom 8.94% expressed PSA, 15.78% showed ARV7, 63.15% and 73.68% displayed ARFL and PSMA, respectively. Biochemical response was significantly improved in CTC + vs CTC- patients, with median PSA-drop of 18.5 vs 2.5 ng/ml (p = 0.03). After a median follow-up of 18 months, 50% of patients progressed. PFS was significantly longer in CTC- patients (NR vs 16 months). Eight (18.2%) patients died, a non-significant trend in terms of OS was detected in favor of CTC- patients (NR vs 29 months, p = 0.05). AR, PSA and PSMA expression in CTC + had no significant impact on PSA-drop, PFS or OS. PRIMERA-trial confirmed the CTC detection predictive importance in mCRPC patients.
Collapse
|
8
|
Ionescu F, Zhang J, Wang L. Clinical Applications of Liquid Biopsy in Prostate Cancer: From Screening to Predictive Biomarker. Cancers (Basel) 2022; 14:1728. [PMID: 35406500 PMCID: PMC8996910 DOI: 10.3390/cancers14071728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer (PC) remains the most common malignancy and the second most common cause of cancer death in men. As a result of highly variable biological behavior and development of resistance to available agents under therapeutic pressure, optimal management is often unclear. Traditional surgical biopsies, even when augmented by genomic studies, may fail to provide adequate guidance for clinical decisions as these can only provide a snapshot of a dynamic process. Additionally, surgical biopsies are cumbersome to perform repeatedly and often involve risk. Liquid biopsies (LB) are defined as the analysis of either corpuscular (circulating tumor cells, extracellular vesicles) or molecular (circulating DNA or RNA) tumor-derived material. LB could more precisely identify clinically relevant alterations that characterize the metastatic potential of tumors, predict response to specific treatments or actively monitor for the emergence of resistance. These tests can potentially be repeated as often as deemed necessary and can detect real-time response to treatment with minimal inconvenience to the patient. In the current review, we consider common clinical scenarios to describe available LB assays in PC as a platform to explore existing evidence for their use in guiding decision making and to discuss current limitations to their adoption in the clinic.
Collapse
Affiliation(s)
- Filip Ionescu
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Gurioli G, Conteduca V, Brighi N, Scarpi E, Basso U, Fornarini G, Mosca A, Nicodemo M, Banna GL, Lolli C, Schepisi G, Ravaglia G, Bondi I, Ulivi P, De Giorgi U. Circulating tumor cell gene expression and plasma AR gene copy number as biomarkers for castration-resistant prostate cancer patients treated with cabazitaxel. BMC Med 2022; 20:48. [PMID: 35101049 PMCID: PMC8805338 DOI: 10.1186/s12916-022-02244-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cabazitaxel improves overall survival (OS) in metastatic castration-resistant prostate cancer (mCRPC) patients progressing after docetaxel. In this prospective study, we evaluated the prognostic role of CTC gene expression on cabazitaxel-treated patients and its association with plasma androgen receptor (AR) copy number (CN). METHODS Patients receiving cabazitaxel 20 or 25 mg/sqm for mCRPC were enrolled. Digital PCR was performed to assess plasma AR CN status. CTC enrichment was assessed using the AdnaTest EMT-2/StemCell kit. CTC expression analyses were performed for 17 genes. Data are expressed as hazard ratio (HR) or odds ratio (OR) and 95% CI. RESULTS Seventy-four patients were fully evaluable. CTC expression of AR-V7 (HR=2.52, 1.24-5.12, p=0.011), AKR1C3 (HR=2.01, 1.06-3.81, p=0.031), AR (HR=2.70, 1.46-5.01, p=0.002), EPCAM (HR=3.75, 2.10-6.71, p< 0.0001), PSMA (HR=2.09, 1.19-3.66, p=0.01), MDK (HR=3.35, 1.83-6.13, p< 0.0001), and HPRT1 (HR=2.46, 1.44-4.18, p=0.0009) was significantly associated with OS. ALDH1 (OR=5.50, 0.97-31.22, p=0.05), AR (OR=8.71, 2.32-32.25, p=0.001), EPCAM (OR=7.26, 1.47-35.73, p=0.015), PSMA (OR=3.86, 1.10-13.50, p=0.035), MDK (OR=6.84, 1.87-24.98, p=0.004), and HPRT1 (OR=7.41, 1.82-30.19, p=0.005) expression was associated with early PD. AR CN status was significantly correlated with AR-V7 (p=0.05), EPCAM (p=0.02), and MDK (p=0.002) expression. In multivariable model, EPCAM and HPRT1 CTC expression, plasma AR CN gain, ECOG PS=2, and liver metastases and PSA were independently associated with poorer OS. In patients treated with cabazitaxel 20 mg/sqm, median OS was shorter in AR-V7 positive than negative patients (6.6 versus 14 months, HR=3.46, 1.47-8.17], p=0.004). CONCLUSIONS Baseline CTC biomarkers may be prognosticators for cabazitaxel-treated mCRPC patients. Cabazitaxel at lower (20 mg/sqm) dose was associated with poorer outcomes in AR-V7 positive patients compared to AR-V7 negative patients in a post hoc subgroup analysis. TRIAL REGISTRATION Clinicaltrials.gov NCT03381326 . Retrospectively registered on 18 December 2017.
Collapse
Affiliation(s)
- Giorgia Gurioli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Vincenza Conteduca
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.,Department of Medical and Surgical Sciences, Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Nicole Brighi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Umberto Basso
- Medical Oncology Unit 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Giuseppe Fornarini
- Medical Oncology Department, IRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Alessandra Mosca
- Multidisciplinary Oncology Outpatient Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Maurizio Nicodemo
- Medical Oncology, Ospedale Sacro Cuore don Calabria, Negrar, Verona, Italy
| | | | - Cristian Lolli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giorgia Ravaglia
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Isabella Bondi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
10
|
Cho H, Oh CK, Cha J, Chung JI, Byun SS, Hong SK, Chung JS, Han KH. Association of serum prostate specific antigen (PSA) level and circulating tumor cell-based PSA mRNA in prostate cancer. Prostate Int 2022; 10:14-20. [PMID: 35229001 PMCID: PMC8844604 DOI: 10.1016/j.prnil.2022.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 11/26/2022] Open
|
11
|
Wang Z, Zhang P, Chong Y, Xue Y, Yang X, Li H, Wang L, Zhang Y, Chen Q, Li Z, Xue L, Li H, Chong T. Perioperative Circulating Tumor Cells (CTCs), MCTCs, and CTC-White Blood Cells Detected by a Size-Based Platform Predict Prognosis in Renal Cell Carcinoma. DISEASE MARKERS 2021; 2021:9956142. [PMID: 34733376 PMCID: PMC8560287 DOI: 10.1155/2021/9956142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
To explore the clinical significance of the perioperative counts of circulating tumor cells (CTCs), mesenchymal CTCs (MCTCs), and CTC- white blood cells (WBCs) in renal cell carcinoma patients. A total of 131 patients with renal cancer who underwent operation excision from our hospital were enrolled. In addition, 20 patients with benign renal diseases were recruited as a control. Blood samples were collected from the 131 patients, before operation and 3 months after surgery. Samples were also obtained simultaneously from the control group. CanPatrol CTC detection technique was used to enrich and identify CTCs, MCTCs, and CTC-WBCs. All enrolled patients were T1-3N0M0. From these, 52 patients with renal cancer underwent radical resection, while other 79 patients underwent nephron-sparing surgery. The positive rate of CTC, MCTC, and CTC-WBC before surgery were 95.4% (125/131), 61.1% (80/131), and 11.5% (15/131), respectively. Preoperative total CTCs, MCTCs, or CTC-WBCs were poorly correlated with patients' parameters. Preoperative CTC, MCTC, or CTC-WBC showed no association with progression-free survival (PFS). In contrast, postoperative total CTCs (≥6), positive MCTCs, and positive CTC-WBCs significantly correlated with recurrence and metastasis. These results remained independent indicators for worse PFS. In addition, the increased CTC and MCTC count after surgery also correlated with unfavorable PFS. The detection of six or more total CTCs, MCTC, or CTC-WBCs in peripheral blood after surgery might help to identify a subset of patients that have higher recurrent risk than the overall population of patients with at different stages of renal cancer.
Collapse
Affiliation(s)
- Zhenlong Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shanxi 710004, China
| | - Peng Zhang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shanxi 710004, China
| | - Yue Chong
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shanxi 710061, China
| | - Yuquan Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shanxi 710004, China
| | - Xiaojie Yang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shanxi 710004, China
| | - Hecheng Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shanxi 710004, China
| | - Li Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shanxi 710004, China
| | - Yaping Zhang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shanxi 710004, China
| | - Qi Chen
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shanxi 710004, China
| | - Zhaolun Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shanxi 710004, China
| | - Li Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shanxi 710004, China
| | - HongLiang Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shanxi 710004, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shanxi 710004, China
| |
Collapse
|
12
|
Cho H, Chung JI, Kim J, Seo WI, Lee CH, Morgan TM, Byun SS, Chung JS, Han KH. Multigene model for predicting metastatic prostate cancer using circulating tumor cells by microfluidic magnetophoresis. Cancer Sci 2020; 112:859-870. [PMID: 33232539 PMCID: PMC7893993 DOI: 10.1111/cas.14745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/01/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
We aimed to isolate circulating tumor cells (CTCs) using a microfluidic technique with a novel lateral magnetophoretic microseparator. Prostate cancer–specific gene expressions were evaluated using mRNA from the isolated CTCs. A CTC‐based multigene model was then developed for identifying advanced prostate cancer. Peripheral blood samples were obtained from five healthy donors and patients with localized prostate cancer (26 cases), metastatic hormone‐sensitive prostate cancer (mHSPC, 10 cases), and metastatic castration‐resistant prostate cancer (mCRPC, 28 cases). CTC recovery rate and purity (enriched CTCs/total cells) were evaluated according to cancer stage. The areas under the curves of the six gene expressions were used to evaluate whether multigene models could identify mHSPC or mCRPC. The number of CTCs and their purity increased at more advanced cancer stages. In mHSPC/mCRPC cases, the specimens had an average of 27.5 CTCs/mL blood, which was 4.2 × higher than the isolation rate for localized disease. The CTC purity increased from 2.1% for localized disease to 3.8% for mHSPC and 6.7% for mCRPC, with increased CTC expression of the genes encoding prostate‐specific antigen (PSA), prostate‐specific membrane antigen (PSMA), and cytokeratin 19 (KRT19). All disease stages exhibited expression of the genes encoding androgen receptor (AR) and epithelial cell adhesion molecule (EpCAM), although expression of the AR‐V7 variant was relatively rare. Relative to each gene alone, the multigene model had better accuracy for predicting advanced prostate cancer. Our lateral magnetophoretic microseparator can be used for identifying prostate cancer biomarkers. In addition, CTC‐based genetic signatures may guide the early diagnosis of advanced prostate cancer.
Collapse
Affiliation(s)
- Hyungseok Cho
- Department of Nanoscience and Engineering Center for Nano Manufacturing, Inje University, Gimhae, South Korea
| | - Jae Il Chung
- Department of Urology, Busan Paik Hospital, Inje University, Gimhae, South Korea
| | - Jinho Kim
- Department of Nanoscience and Engineering Center for Nano Manufacturing, Inje University, Gimhae, South Korea
| | - Won Ik Seo
- Department of Urology, Busan Paik Hospital, Inje University, Gimhae, South Korea
| | - Chan Ho Lee
- Department of Urology, Busan Paik Hospital, Inje University, Gimhae, South Korea
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnamߚsi, South Korea
| | - Jae-Seung Chung
- Department of Urology, Haeundae Paik Hospital, Inje University, Busan, South Korea
| | - Ki-Ho Han
- Department of Nanoscience and Engineering Center for Nano Manufacturing, Inje University, Gimhae, South Korea
| |
Collapse
|