1
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Zhang Q, Wu X, Zhang H, Wu Q, Fu M, Hua L, Zhu X, Guo Y, Zhang L, You Q, Wang L. Protein Phosphatase 5-Recruiting Chimeras for Accelerating Apoptosis-Signal-Regulated Kinase 1 Dephosphorylation with Antiproliferative Activity. J Am Chem Soc 2023; 145:1118-1128. [PMID: 36546850 DOI: 10.1021/jacs.2c10759] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A normal phosphorylation state is essential for the function of proteins. Biased regulation frequently results in morbidity, especially for the hyperphosphorylation of oncoproteins. The hyperphosphorylation of ASK1 at Thr838 leads to a persistently high activity state, which accelerates the course of gastric cancer. Under normal conditions, PP5 specifically dephosphorylates p-ASK1T838 in cells, thereby weakening ASK1 to a low-basal activity state. However, in tumor types, PP5 shows low activity with a self-inhibition mechanism, making p-ASK1T838 remain at a high level. Thus, we aim to design phosphatase recruitment chimeras (PHORCs) through a proximity-mediated effect for specifically accelerating the dephosphorylation of p-ASK1T838. Herein, we describe DDO3711 as the first PP5-recruiting PHORC, which is formed by connecting a small molecular ASK1 inhibitor to a PP5 activator through a chemical linker, to effectively decrease the level of p-ASK1T838 in vitro and in vivo. DDO3711 shows preferable antiproliferative activity (IC50 = 0.5 μM) against MKN45 cells through a direct binding and proximity-mediated mechanism, while the ASK1 inhibitor and the PP5 activator, used alone or in combination, exhibit no effect on MKN45 cells. Using DDO3711, PHORCs are identified as effective tools to accelerate the dephosphorylation of POIs and provide important evidence to achieve precise phosphorylation regulation, which will promote confidence in the further regulation of abnormally phosphorylated oncoproteins.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xuexuan Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyu Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Min Fu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liwen Hua
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyue Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuqi Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lianshan Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Liu H, Huang Q, Tang H, Luo K, Qin Y, Li F, Tang F, Zheng J, Feng W, Li B, Xie T, Liu Y. Circ_0001060 Upregulates and Encourages Progression in Osteosarcoma. DNA Cell Biol 2023; 42:53-64. [PMID: 36580535 DOI: 10.1089/dna.2022.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Circular RNA (circRNA) is involved in the occurrence and development of various cancers. To this day, the expression and mechanism of circRNA in osteosarcoma (OS) remain unclear. We previously found that circ_0001060 was highly expressed in OS tumor tissues. In this work, we identified that high level expression of circ_0001060 was significantly associated with late clinical stage, larger tumor volume, higher frequency of metastasis, and poor prognosis in OS patients. Furthermore, we confirmed that silencing circ_0001060 inhibited the proliferation and migration of OS cell. Using bioinformatics analysis, we built three circRNA-miRNA-mRNA regulatory modules (circ_0001060-miR-203a-5p-TRIM21, circ_0001060-miR-208b-5p-MAP3K5, and circ_0001060-miR-203a-5p-PRKX), suggesting that these signaling axes may be involved in the inhibitory effect of circ_0001060 on OS. To sum up, circ_0001060 is a novel tumor biomarker for OS as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Huijiang Liu
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopedics, The First People's Hospital of Nanning, Nanning, China
| | - Qian Huang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haijun Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai Luo
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiwu Qin
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feicui Li
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fuxing Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiqing Zheng
- Department of Rehabilitation and The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyu Feng
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Boxiang Li
- Department of Orthopedics, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
| | - Tianyu Xie
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Liu
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Functional crosstalk and regulation of natural killer cells in tumor microenvironment: Significance and potential therapeutic strategies. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Li J, Zhu T, Weng Y, Cheng F, Sun Q, Yang K, Su Z, Ma H. Exosomal circDNER enhances paclitaxel resistance and tumorigenicity of lung cancer via targeting miR-139-5p/ITGB8. Thorac Cancer 2022; 13:1381-1390. [PMID: 35396925 PMCID: PMC9058310 DOI: 10.1111/1759-7714.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are regarded as vital regulatory factors in various cancers. However, the biological functions of circDNER in the paclitaxel (PTX) resistance of lung cancer remain largely unexplored. METHODS Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to analyze circDNER, miR-139-5p, and ITGB8. Cell proliferation was assessed via colony formation and MTT assays. Cell apoptosis was evaluated by flow cytometry. Western blot was performed to assess protein expression. The targeted interaction among circDNER, miR-139-5p, and ITGB8 were validated using dual-luciferase reporter or RNA immunoprecipitation assays. RESULTS Inhibition of circDNER reduced IC50 of PTX, inhibited cell proliferation, invasion and migration, as well as promoted cell apoptosis in PTX-resistant lung cancer cells. Mechanistically, circDNER sponged miR-139-5p to upregulate ITGB8 expression. Overexpression of miR-139-5p reversed the biological functions mediated by circDNER in PTX-resistant lung cancer cells. MiR-139-5p overexpression suppressed PTX resistance and malignant behaviors of PTX-resistant lung cancer cells, with ITGB8 elevation rescued the impacts. Moreover, we demonstrated that circDNER was upregulated in plasma exosomes from lung cancer patients. The plasma exosomes derived from these patients are the key factors enhancing the migration and invasion potential of lung cancer cells. CONCLUSION The circDNER mediated miR-139-5p/ITGB8 axis suppresses lung cancer progression. Our findings suggest that circDNER might act as a potential prognostic biomarker and therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Jinyou Li
- Department of Thoracic SurgeryFirst Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of Thoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Tao Zhu
- Department of Thoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Yuan Weng
- Department of Thoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Fengyue Cheng
- Department of Thoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Qi Sun
- Department of Thoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Kejia Yang
- Department of Thoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Zhenyu Su
- Department of Thoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Haitao Ma
- Department of Thoracic SurgeryFirst Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
6
|
Fujimoto M, Kamiyama M, Fuse K, Ryuno H, Odawara T, Furukawa N, Yoshimatsu Y, Watabe T, Prchal-Murphy M, Sexl V, Tahara H, Hayakawa Y, Sato T, Takeda K, Naguro I, Ichijo H. ASK1 suppresses NK cell-mediated intravascular tumor cell clearance in lung metastasis. Cancer Sci 2021; 112:1633-1643. [PMID: 33565179 PMCID: PMC8019214 DOI: 10.1111/cas.14842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor metastasis is the leading cause of death worldwide and involves an extremely complex process composed of multiple steps. Our previous study demonstrated that apoptosis signal‐regulating kinase 1 (ASK1) deficiency in mice attenuates tumor metastasis in an experimental lung metastasis model. However, the steps of tumor metastasis regulated by ASK1 remain unclear. Here, we showed that ASK1 deficiency in mice promotes natural killer (NK) cell‐mediated intravascular tumor cell clearance in the initial hours of metastasis. In response to tumor inoculation, ASK1 deficiency upregulated immune response‐related genes, including interferon‐gamma (IFNγ). We also revealed that NK cells are required for these anti‐metastatic phenotypes. ASK1 deficiency augmented cytokine production chemoattractive to NK cells possibly through induction of the ligand for NKG2D, a key activating receptor of NK cells, leading to further recruitment of NK cells into the lung. These results indicate that ASK1 negatively regulates NK cell‐dependent anti‐tumor immunity and that ASK1‐targeted therapy can provide a new tool for cancer immunotherapy to overcome tumor metastasis.
Collapse
Affiliation(s)
- Makoto Fujimoto
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Miki Kamiyama
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kosuke Fuse
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Ryuno
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeru Odawara
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsuki Furukawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Yoshimatsu
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michaela Prchal-Murphy
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine of Vienna, Wien, Austria
| | - Veronika Sexl
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine of Vienna, Wien, Austria
| | - Hideaki Tahara
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, Osaka, Japan.,Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Takehiro Sato
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohsuke Takeda
- Division of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|