1
|
Zhang Y, Lu P, Jin S, Zhang J, Chen X. Transcriptional activation of SIRT5 by FOXA1 reprograms glycolysis to facilitate the malignant progression of diffuse large B-cell lymphoma. Cell Signal 2024; 123:111356. [PMID: 39173857 DOI: 10.1016/j.cellsig.2024.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common diagnosed subtype of lymphoma with high invasiveness and heterogeneity. Glycolysis is involved in regulating DLBCL progression. We aimed to explore the role of forkhead box protein A1 (FOXA1) in DLBCL and the mechanisms related to sirtuine5 (SIRT5) and glycolysis. FOXA1 expression in DLBCL cells was analyzed. Then, the proliferation and apoptosis of DLBCL cells were detected using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EDU) staining and flow cytometry analysis following FOXA1 or SIRT5 knockdown. The glycolysis was assessed by measuring extracellular acidification rate (ECAR), glucose consumption and lactate secretion. Immunoblotting was employed to examine the expression of apoptosis- and glycolysis-related proteins. Additionally, luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were conducted to test the combination of FOXA1 to SIRT5 promotor region. Subsequently, SIRT5 expression was upregulated to conduct rescue assays. Finally, the effects of FOXA1 downregulation on the growth and glycolysis in OCI-ly7 tumor-bearing mice were examined. As a result, FOXA1 was upregulated in DLBCL cells and FOXA1 or SIRT5 knockdown inhibited the proliferation, accelerated the apoptosis and suppressed glycolysis reprograming in DLBCL cells. Importantly, FOXA1 could transcriptionally activate SIRT5 expression in DLBCL cells. Besides, SIRT5 overexpression counteracted the effects of FOXA1 deficiency on the proliferation, apoptosis and glycolysis reprogramming in DLBCL cells. Furthermore, FOXA1 knockdown inhibited the tumor growth, suppressed the glycolysis reprogramming and downregulated SIRT5 expression in vivo. In summary, FOXA1 could transcriptionally activate SIRT5 to reprogram glycolysis, thereby facilitating the malignant progression of DLBCL.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310016, PR China.
| | - Peng Lu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310016, PR China
| | - Shenhe Jin
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310016, PR China
| | - Jin Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310016, PR China
| | - Xiaochang Chen
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310016, PR China
| |
Collapse
|
2
|
Wu X, Ban C, Deng W, Bao X, Tang N, Wu Y, Deng Z, Xiong J, Zhao Q. Unveiling the PDK4-centered rituximab-resistant mechanism in DLBCL: the potential of the "Smart" exosome nanoparticle therapy. Mol Cancer 2024; 23:144. [PMID: 39004737 PMCID: PMC11247735 DOI: 10.1186/s12943-024-02057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) represents a prevalent malignant tumor, with approximately 40% of patients encountering treatment challenges or relapse attributed to rituximab resistance, primarily due to diminished or absent CD20 expression. Our prior research identified PDK4 as a key driver of rituximab resistance through its negative regulation of CD20 expression. Further investigation into PDK4's resistance mechanism and the development of advanced exosome nanoparticle complexes may unveil novel resistance targets and pave the way for innovative, effective treatment modalities for DLBCL. METHODS We utilized a DLBCL-resistant cell line with high PDK4 expression (SU-DHL-2/R). We infected it with short hairpin RNA (shRNA) lentivirus for RNA sequencing, aiming to identify significantly downregulated mRNA in resistant cells. Techniques including immunofluorescence, immunohistochemistry, and Western blotting were employed to determine PDK4's localization and expression in resistant cells and its regulatory role in phosphorylation of Histone deacetylase 8 (HDAC8). Furthermore, we engineered advanced exosome nanoparticle complexes, aCD20@ExoCTX/siPDK4, through cellular, genetic, and chemical engineering methods. These nanoparticles underwent characterization via Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM), and their cellular uptake was assessed through flow cytometry. We evaluated the nanoparticles' effects on apoptosis in DLBCL-resistant cells and immune cells using CCK-8 assays and flow cytometry. Additionally, their capacity to counteract resistance and exert anti-tumor effects was tested in a resistant DLBCL mouse model. RESULTS We found that PDK4 initiates HDAC8 activation by phosphorylating the Ser-39 site, suppressing CD20 protein expression through deacetylation. The aCD20@ExoCTX/siPDK4 nanoparticles served as effective intracellular delivery mechanisms for gene therapy and monoclonal antibodies, simultaneously inducing apoptosis in resistant DLBCL cells and triggering immunogenic cell death in tumor cells. This dual action effectively reversed the immunosuppressive tumor microenvironment, showcasing a synergistic therapeutic effect in a subcutaneous mouse tumor resistance model. CONCLUSIONS This study demonstrates that PDK4 contributes to rituximab resistance in DLBCL by modulating CD20 expression via HDAC8 phosphorylation. The designed exosome nanoparticles effectively overcome this resistance by targeting the PDK4/HDAC8/CD20 pathway, representing a promising approach for drug delivery and treating patients with Rituximab-resistant DLBCL.
Collapse
MESH Headings
- Humans
- Exosomes/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/therapy
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Animals
- Mice
- Nanoparticles/chemistry
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- Apoptosis/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Ban
- Department of Hematology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Woding Deng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuewei Bao
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Ning Tang
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yupeng Wu
- Department of Spine Surgery, First Affiliated Hospital of University of South China, Hengyang, Hengyang, Hunan, China
| | - Zhixuan Deng
- Institute of Cell Biology, Hengyang Medical School, University of South China, Hengyang, Hengyang, Hunan, China
| | - Jianbin Xiong
- Department of Orthopaedics, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Qiangqiang Zhao
- Department of Hematology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, Qinghai, China.
| |
Collapse
|
3
|
Guan M, Zhao H, Zhang Q, Li L, Wang X, Tang B. A novel anoikis-related signature predicts prognosis risk and treatment responsiveness in diffuse large B-cell lymphoma. Expert Rev Mol Diagn 2024; 24:439-457. [PMID: 38709202 DOI: 10.1080/14737159.2024.2351465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/05/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Although anoikis plays a role in cancer metastasis and aggressiveness, it has rarely been reported in diffuse large B cell lymphoma (DLBCL). METHODS We obtained RNA sequencing data and matched clinical data from the GEO database. An anoikis-related genes (ARGs)-based risk signature was developed in GSE10846 training cohort and validated in three other cohorts. Additionally, we predicted half-maximal inhibitory concentration (IC50) of drugs based on bioinformatics method and obtained the actual IC50 to some chemotherapy drugs via cytotoxicity assay. RESULTS The high-risk group, as determined by our signature, was associated with worse prognosis and an immunosuppressive environment in DLBCL. Meanwhile, the nomogram based on eight variables had more accurate ability in forecasting the prognosis than the international prognostic index in DLBCL. The prediction of IC50 indicated that DLBCL patients in the high-risk group were more sensitive to doxorubicin, IPA-3, lenalidomide, gemcitabine, and CEP.701, while patients in the low-risk group were sensitive to cisplatin and dasatinib. Consistent with the prediction, cytotoxicity assay suggested the higher sensitivity to doxorubicin and gemcitabine and the lower sensitivity to dasatinib in the high-risk group in DLBCL. CONCLUSION The ARG-based signature may provide a promising direction for prognosis prediction and treatment optimization for DLBCL patients.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Prognosis
- Anoikis/drug effects
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/genetics
- Transcriptome
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Nomograms
Collapse
Affiliation(s)
- Mingze Guan
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Hua Zhao
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Qi Zhang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Li Li
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
4
|
Zhang S, Williams KJ, Verlande-Ferrero A, Chan AP, Su GB, Kershaw EE, Cox JE, Maschek JA, Shapira SN, Christofk HR, de Aguiar Vallim TQ, Masri S, Villanueva CJ. Acute activation of adipocyte lipolysis reveals dynamic lipid remodeling of the hepatic lipidome. J Lipid Res 2024; 65:100434. [PMID: 37640283 PMCID: PMC10839691 DOI: 10.1016/j.jlr.2023.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Adipose tissue is the site of long-term energy storage. During the fasting state, exercise, and cold exposure, the white adipose tissue mobilizes energy for peripheral tissues through lipolysis. The mobilization of lipids from white adipose tissue to the liver can lead to excess triglyceride accumulation and fatty liver disease. Although the white adipose tissue is known to release free fatty acids, a comprehensive analysis of lipids mobilized from white adipocytes in vivo has not been completed. In these studies, we provide a comprehensive quantitative analysis of the adipocyte-secreted lipidome and show that there is interorgan crosstalk with liver. Our analysis identifies multiple lipid classes released by adipocytes in response to activation of lipolysis. Time-dependent analysis of the serum lipidome showed that free fatty acids increase within 30 min of β3-adrenergic receptor activation and subsequently decrease, followed by a rise in serum triglycerides, liver triglycerides, and several ceramide species. The triglyceride composition of liver is enriched for linoleic acid despite higher concentrations of palmitate in the blood. To further validate that these findings were a specific consequence of lipolysis, we generated mice with conditional deletion of adipose tissue triglyceride lipase exclusively in adipocytes. This loss of in vivo adipocyte lipolysis prevented the rise in serum free fatty acids and hepatic triglycerides. Furthermore, conditioned media from adipocytes promotes lipid remodeling in hepatocytes with concomitant changes in genes/pathways mediating lipid utilization. Together, these data highlight critical role of adipocyte lipolysis in interorgan crosstalk between adipocytes and liver.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kevin J Williams
- UCLA Lipidomics Lab, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Amandine Verlande-Ferrero
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA, USA
| | - Alvin P Chan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Gino B Su
- UCLA Lipidomics Lab, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Erin E Kershaw
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, PA, USA
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John Alan Maschek
- Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Suzanne N Shapira
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Division of Cardiology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA, USA
| | - Claudio J Villanueva
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
5
|
Sheng L, Li T, Li Y, Zhou M, Wang J, Lai Y, Zhang Y, Yi P, Mu Q, Ouyang G. Prognostic and immunological characterization of diffuse large B-cell lymphoma evaluated by co-stimulatory molecular-related features. Heliyon 2023; 9:e19342. [PMID: 37809743 PMCID: PMC10558338 DOI: 10.1016/j.heliyon.2023.e19342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
Background Co-stimulatory molecules have been shown to enhance antitumor immune responses, but their role in Diffuse Large B-cell Lymphoma (DLBCL) remains unexplored. Methods This study aimed to explore the molecular typing of DLBCL with co-stimulatory molecule genes and to construct a prognostic profile to improve treatment decisions and clinical outcomes. Results We conducted the first comprehensive analysis of co-stimulatory molecules in DLBCL patients and identified five co-stimulatory molecule genes with prognostic and diagnostic values. Consensus cluster analysis based on these five co-stimulatory molecule genes revealed that the two identified clusters had different distribution patterns and prognostic differences. Co-stimulatory molecular correlation signatures were then constructed based on these five co-stimulatory molecular genes and validated in an external dataset, showing good performance in predicting patient prognosis. The signature is an independent risk factor for DLBCL patients and significantly correlates with clinical factors in patients and can be used as a complement to clinical factors. Furthermore, the signature was associated with the tumor immune microenvironment. Patients identified as being at high risk according to our signature exhibit high levels of immune cell infiltration microenvironment. Conclusions In conclusion, our signature can provide clinicians with prognostic predictions and help guide the treatment of patients with DLBCL.
Collapse
Affiliation(s)
- Lixia Sheng
- Department of Hematology, Pital of Ningbo University, No.59 Liuting Street, Ningbo, Zhejiang, People's Republic of China
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Tongyu Li
- Department of Hematology, Pital of Ningbo University, No.59 Liuting Street, Ningbo, Zhejiang, People's Republic of China
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Yun Li
- Kindstar Global Precision Medicine Institute, Wuhan, China
- Department of Scientific Research Project, Wuhan Kindstar Medical Laboratory Co., Ltd., Wuhan, 430000, China
| | - Miao Zhou
- Department of Hematology, Pital of Ningbo University, No.59 Liuting Street, Ningbo, Zhejiang, People's Republic of China
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Jiaping Wang
- Department of Hematology, Pital of Ningbo University, No.59 Liuting Street, Ningbo, Zhejiang, People's Republic of China
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Yanli Lai
- Department of Hematology, Pital of Ningbo University, No.59 Liuting Street, Ningbo, Zhejiang, People's Republic of China
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Yanli Zhang
- Department of Hematology, Pital of Ningbo University, No.59 Liuting Street, Ningbo, Zhejiang, People's Republic of China
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Ping Yi
- Kindstar Global Precision Medicine Institute, Wuhan, China
- Department of Scientific Research Project, Wuhan Kindstar Medical Laboratory Co., Ltd., Wuhan, 430000, China
| | - Qitian Mu
- Department of Hematology, Pital of Ningbo University, No.59 Liuting Street, Ningbo, Zhejiang, People's Republic of China
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Ningbo, 315000, Zhejiang, People's Republic of China
- Stem Cell Transplantation Laboratory, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Guifang Ouyang
- Department of Hematology, Pital of Ningbo University, No.59 Liuting Street, Ningbo, Zhejiang, People's Republic of China
- Ningbo Clinical Research Center for Hematologic Malignancies, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Ningbo, 315000, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov 2023; 22:641-661. [PMID: 37308581 DOI: 10.1038/s41573-023-00709-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 06/14/2023]
Abstract
Antibody-drug conjugates (ADCs) combine the specificity of monoclonal antibodies with the potency of highly cytotoxic agents, potentially reducing the severity of side effects by preferentially targeting their payload to the tumour site. ADCs are being increasingly used in combination with other agents, including as first-line cancer therapies. As the technology to produce these complex therapeutics has matured, many more ADCs have been approved or are in late-phase clinical trials. The diversification of antigenic targets as well as bioactive payloads is rapidly broadening the scope of tumour indications for ADCs. Moreover, novel vector protein formats as well as warheads targeting the tumour microenvironment are expected to improve the intratumour distribution or activation of ADCs, and consequently their anticancer activity for difficult-to-treat tumour types. However, toxicity remains a key issue in the development of these agents, and better understanding and management of ADC-related toxicities will be essential for further optimization. This Review provides a broad overview of the recent advances and challenges in ADC development for cancer treatment.
Collapse
Affiliation(s)
- Charles Dumontet
- CRCL INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, Lyon, France.
| | | | | | | | - Alain Beck
- Institut de Recherche Pierre Fabre, CIPF, Saint-Julien-en-Genevois, France
| |
Collapse
|
7
|
Zheng Z, Li H, Yang R, Guo H. Role of the membrane-spanning 4A gene family in lung adenocarcinoma. Front Genet 2023; 14:1162787. [PMID: 37533433 PMCID: PMC10390740 DOI: 10.3389/fgene.2023.1162787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Lung adenocarcinoma, which is the second most prevalent cancer in the world, has a poor prognosis and a low 5-year survival rate. The MS4A protein family is crucial to disease development and progression, particularly for cancers, allergies, metabolic disorders, autoimmune diseases, infections, and neurodegenerative disorders. However, its involvement in lung adenocarcinoma remains unclear. In this study, we found that 11 MS4A family genes were upregulated or downregulated in lung adenocarcinoma. Furthermore, we described the genetic variation landscape of the MS4A family in lung adenocarcinoma. Notably, through functional enrichment analysis, we discovered that the MS4A family is involved in the immune response regulatory signaling pathway and the immune response regulatory cell surface receptor signaling pathway. According to the Kaplan-Meier curve, patients with lung adenocarcinoma having poor expression of MS4A2, MS4A7, MS4A14, and MS4A15 had a low overall survival rate. These four prognostic genes are substantially associated with immune-infiltrating cells, and a prognosis model incorporating them may more accurately predict the overall survival rate of patients with lung adenocarcinoma than current models. The findings of this study may offer creative suggestions and recommendations for the identification and management of lung adenocarcinoma.
Collapse
|
8
|
Cai Y, Lv L, Lu T, Ding M, Yu Z, Chen X, Zhou X, Wang X. α-KG inhibits tumor growth of diffuse large B-cell lymphoma by inducing ROS and TP53-mediated ferroptosis. Cell Death Discov 2023; 9:182. [PMID: 37308557 DOI: 10.1038/s41420-023-01475-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Metabolic reprogramming is a hallmark of human malignancies. Dysregulation of glutamine metabolism is essential for tumorigenesis, microenvironment remodeling, and therapeutic resistance. Based on the untargeted metabolomics sequencing, we identified that the glutamine metabolic pathway was up-regulated in the serum of patients with primary DLBCL. High levels of glutamine were associated with inferior clinical outcomes, indicative of the prognostic value of glutamine in DLBCL. In contrast, the derivate of glutamine alpha-ketoglutarate (α-KG) was negatively correlated with the invasiveness features of DLBCL patients. Further, we found that treatment with the cell-permeable derivative of α-KG, known as DM-αKG, significantly suppressed tumor growth by inducing apoptosis and non-apoptotic cell death. Accumulation of a-KG promoted oxidative stress in double-hit lymphoma (DHL), which depended on malate dehydrogenase 1 (MDH1)-mediated 2-hydroxyglutarate (2-HG) conversion. High levels of reactive oxygen species (ROS) contributed to ferroptosis induction by promoting lipid peroxidation and TP53 activation. In particular, TP53 overexpression derived from oxidative DNA damage, further leading to the activation of ferroptosis-related pathways. Our study demonstrated the importance of glutamine metabolism in DLBCL progression and highlighted the potential application of α-KG as a novel therapeutic strategy for DHL patients.
Collapse
Affiliation(s)
- Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Liemei Lv
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Mengfei Ding
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
9
|
Li L, Li Q, Zou Z, Huang Z, Chen Y. TRIM10 Is Downregulated in Acute Myeloid Leukemia and Plays a Tumor Suppressive Role via Regulating NF-κB Pathway. Cancers (Basel) 2023; 15:417. [PMID: 36672365 PMCID: PMC9856727 DOI: 10.3390/cancers15020417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that members of the tripartite motif (TRIMs) family play a crucial role in the development and progression of hematological malignancy. Here, we explored the expression and potential role of TRIM10 in acute myeloid leukemia (AML). METHODS The expression levels of TRIM10 were investigated in AML patients and cell lines by RNA-seq, qRT-PCR and Western blotting analysis. Lentiviral infection was used to regulate the level of TRIM10 in AML cells. The effects of TRIM10 on apoptosis, drug sensitivity and proliferation of AML cells were evaluated by flow cytometry and cell-counting kit-8 (CCK-8) assay, as well as being assessed in a murine model. RESULTS TRIM10 mRNA and protein expression was reduced in primary AML samples and AML cell lines in comparison to the normal controls and a human normal hematopoietic cell line, respectively. Moreover, overexpression of TRIM10 in HL60 and K562 cells inhibited AML cell proliferation and induced cell apoptosis. The nude mice study further confirmed that overexpression of TRIM10 blocked tumor growth and inhibited cell proliferation. In contrast, knockdown of TRIM10 in AML cells showed contrary results. Subsequent mechanistic studies demonstrated that knockdown of TRIM10 enhanced the expression of nuclear protein P65, which implied the activation of the NF-κB signal pathway. Consistently, overexpression of TRIM10 in AML cells showed a contrary result. These data indicated that inactivation of the NF-κB pathway is involved in TRIM10-mediated regulation in AML. TRIM10 expression can be de-repressed by a combination that targets both DNA methyltransferase and histone deacetylase. CONCLUSIONS Our results strongly suggested that TRIM10 plays a tumor suppressive role in AML development associated with the NF-κB signal pathway and may be a potential target of epigenetic therapy against leukemia.
Collapse
Affiliation(s)
- Lin Li
- Suzhou Medical College of Soochow University, Suzhou 215123, China
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qi Li
- Basic Medicine Department, Chuxiong Medical and Pharmaceutical College, Chuxiong 675005, China
| | - Zhengrong Zou
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yijian Chen
- Suzhou Medical College of Soochow University, Suzhou 215123, China
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
10
|
Tannoury M, Garnier D, Susin SA, Bauvois B. Current Status of Novel Agents for the Treatment of B Cell Malignancies: What's Coming Next? Cancers (Basel) 2022; 14:6026. [PMID: 36551511 PMCID: PMC9775488 DOI: 10.3390/cancers14246026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Resistance to death is one of the hallmarks of human B cell malignancies and often contributes to the lack of a lasting response to today's commonly used treatments. Drug discovery approaches designed to activate the death machinery have generated a large number of inhibitors of anti-apoptotic proteins from the B-cell lymphoma/leukemia 2 family and the B-cell receptor (BCR) signaling pathway. Orally administered small-molecule inhibitors of Bcl-2 protein and BCR partners (e.g., Bruton's tyrosine kinase and phosphatidylinositol-3 kinase) have already been included (as monotherapies or combination therapies) in the standard of care for selected B cell malignancies. Agonistic monoclonal antibodies and their derivatives (antibody-drug conjugates, antibody-radioisotope conjugates, bispecific T cell engagers, and chimeric antigen receptor-modified T cells) targeting tumor-associated antigens (TAAs, such as CD19, CD20, CD22, and CD38) are indicated for treatment (as monotherapies or combination therapies) of patients with B cell tumors. However, given that some patients are either refractory to current therapies or relapse after treatment, novel therapeutic strategies are needed. Here, we review current strategies for managing B cell malignancies, with a focus on the ongoing clinical development of more effective, selective drugs targeting these molecules, as well as other TAAs and signaling proteins. The observed impact of metabolic reprogramming on B cell pathophysiology highlights the promise of targeting metabolic checkpoints in the treatment of these disorders.
Collapse
Affiliation(s)
| | | | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| |
Collapse
|
11
|
Targeting metabolism to overcome cancer drug resistance: A promising therapeutic strategy for diffuse large B cell lymphoma. Drug Resist Updat 2022; 61:100822. [DOI: 10.1016/j.drup.2022.100822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023]
|
12
|
Jiang D, Mo Q, Sun X, Wang X, Dong M, Zhang G, Chen F, Zhao Q. Pyruvate dehydrogenase kinase 4-mediated metabolic reprogramming is involved in rituximab resistance in diffuse large B-cell lymphoma by affecting the expression of MS4A1/CD20. Cancer Sci 2021; 112:3585-3597. [PMID: 34252986 PMCID: PMC8409406 DOI: 10.1111/cas.15055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/18/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) heterogeneity promotes recurrence and anti‐CD20‐based therapeutic resistance. Previous studies have shown that downregulation of MS4A1/CD20 expression after chemoimmunotherapy with rituximab leads to rituximab resistance. However, the mechanisms of CD20 loss remain unknown. We identified that pyruvate dehydrogenase kinase 4 (PDK4) is markedly elevated in DLBCL cells derived from both patients and cell lines with R‐CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone) resistance. We found that overexpression of PDK4 in DLBCL cells resulted in cell proliferation and resistance to rituximab in vitro and in vivo. Furthermore, loss of PDK4 expression or treatment with the PDK4 inhibitor dichloroacetate was able to significantly increase rituximab‐induced cell apoptosis in DLBCL cells. Further studies suggested PDK4 mediates a metabolic shift, in that the main energy source was changed from oxidative phosphorylation to glycolysis, and the metabolic changes could play an important role in rituximab resistance. Importantly, by knocking down or overexpressing PDK4 in DLBCL cells, we showed that PDK4 has a negative regulation effect on MS4A1/CD20 expression. Collectively, this is the first study showing that targeting PDK4 has the potential to overcome rituximab resistance in DLBCL.
Collapse
Affiliation(s)
- Duanfeng Jiang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qiuyu Mo
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiaoying Sun
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, China
| | - Xiaotao Wang
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Min Dong
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guozhen Zhang
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Fangping Chen
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, China.,Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|