1
|
Harvanik P, Šemeláková M, Solárová Z, Solár P. Novel factors of cisplatin resistance in epithelial ovarian tumours. Adv Med Sci 2025; 70:94-102. [PMID: 39880191 DOI: 10.1016/j.advms.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Ovarian tumours are these days one of the biggest oncogynecological problems. In addition to surgery, the treatment of ovarian cancer includes also chemotherapy in which platinum preparations are one of the most used chemotherapeutic drugs. The principle of antineoplastic effects of cisplatin (cis-diamminedichloroplatinum(II), CDDP) is its binding to the DNA and the formation of adducts. While DNA adducts induce the process of apoptosis, or inhibit the process of DNA replication, which prevents further division of tumour cells, various molecular mechanisms can reverse this process. On the other hand, with increasing scientific knowledge, it is becoming clearer that chemotherapy resistance is a very complex process. In this regard, factors and the amount of their expression may regulate the effect of resistance to chemotherapy. This review focuses on new molecular mechanisms and factors such as mitochondrial dynamics, epithelial-mesenchymal transition (EMT), cluster of differentiation, exosomes and others, that could be involved in the emergence of CDDP resistance.
Collapse
Affiliation(s)
- Pavol Harvanik
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Martina Šemeláková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic.
| |
Collapse
|
2
|
Furutake Y, Yamaguchi K, Yamanoi K, Kitamura S, Takamatsu S, Taki M, Ukita M, Hosoe Y, Murakami R, Abiko K, Horie A, Hamanishi J, Baba T, Matsumura N, Mandai M. YAP1 Suppression by ZDHHC7 Is Associated with Ferroptosis Resistance and Poor Prognosis in Ovarian Clear Cell Carcinoma. Mol Cancer Ther 2024; 23:1652-1665. [PMID: 38958503 DOI: 10.1158/1535-7163.mct-24-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Ovarian clear cell carcinoma (OCCC), which has unique clinical characteristics, arises from benign endometriotic cysts, forming an oxidative stress environment because of excess iron accumulation, and exhibits poor prognosis, particularly in advanced stages owing to resistance to conventional therapeutics. Ferroptosis is an iron-dependent form of programmed cell death induced by lipid peroxidation and controlled by Hippo signaling. We hypothesized that overcoming ferroptosis resistance is an attractive strategy because OCCC acquires oxidative stress resistance during its development and exhibits chemoresistant features indicative of ferroptosis resistance. This study aimed to determine whether OCCC is resistant to ferroptosis and clarify the mechanism underlying resistance. Unlike ovarian high-grade serous carcinoma cells, OCCC cells were exposed to oxidative stress. However, OCCC cells remained unaffected by lipid peroxidation. Cell viability assays revealed that OCCC cells exhibited resistance to the ferroptosis inducer erastin. Moreover, Samroc analysis showed that the Hippo signaling pathway was enriched in OCCC cell lines and clinical samples. Furthermore, patients with low expression of nuclear yes-associated protein 1 (YAP1) exhibited a significantly poor prognosis of OCCC. Moreover, YAP1 activation enhanced ferroptosis in OCCC cell lines. Furthermore, suppression of zinc finger DHHC-type palmitoyltransferase 7 (ZDHHC7) enhanced ferroptosis by activating YAP1 in OCCC cell lines. Mouse xenograft models demonstrated that ZDHHC7 inhibition suppressed tumor growth via YAP1 activation by erastin treatment. In conclusion, YAP1 activation regulated by ZDHHC7 enhanced ferroptosis in OCCC. Thus, overcoming ferroptosis resistance is a potential therapeutic strategy for OCCC.
Collapse
MESH Headings
- Ferroptosis
- Humans
- Female
- Animals
- Mice
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Prognosis
- YAP-Signaling Proteins/metabolism
- Acyltransferases
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/genetics
- Cell Line, Tumor
- Transcription Factors/metabolism
- Xenograft Model Antitumor Assays
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Gene Expression Regulation, Neoplastic
- Mice, Nude
- Cell Proliferation
- Drug Resistance, Neoplasm
- Signal Transduction
Collapse
Affiliation(s)
- Yoko Furutake
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Kitamura
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Shiro Takamatsu
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Masayo Ukita
- Department of Obstetrics and Gynecology, Shizuoka General Hospital, Shizuoka, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Kaoru Abiko
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Wang H, Sun J, Sun H, Wang Y, Lin B, Wu L, Qin W, Zhu Q, Yi W. The OGT-c-Myc-PDK2 axis rewires the TCA cycle and promotes colorectal tumor growth. Cell Death Differ 2024; 31:1157-1169. [PMID: 38778217 PMCID: PMC11369260 DOI: 10.1038/s41418-024-01315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Deregulated glucose metabolism termed the "Warburg effect" is a fundamental feature of cancers, including the colorectal cancer. This is typically characterized with an increased rate of glycolysis, and a concomitant reduced rate of the tricarboxylic acid (TCA) cycle metabolism as compared to the normal cells. How the TCA cycle is manipulated in cancer cells remains unknown. Here, we show that O-linked N-acetylglucosamine (O-GlcNAc) regulates the TCA cycle in colorectal cancer cells. Depletion of OGT, the sole transferase of O-GlcNAc, significantly increases the TCA cycle metabolism in colorectal cancer cells. Mechanistically, OGT-catalyzed O-GlcNAc modification of c-Myc at serine 415 (S415) increases c-Myc stability, which transcriptionally upregulates the expression of pyruvate dehydrogenase kinase 2 (PDK2). PDK2 phosphorylates pyruvate dehydrogenase (PDH) to inhibit the activity of mitochondrial pyruvate dehydrogenase complex, which reduces mitochondrial pyruvate metabolism, suppresses reactive oxygen species production, and promotes xenograft tumor growth. Furthermore, c-Myc S415 glycosylation levels positively correlate with PDK2 expression levels in clinical colorectal tumor tissues. This study highlights the OGT-c-Myc-PDK2 axis as a key mechanism linking oncoprotein activation with deregulated glucose metabolism in colorectal cancer.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Sun
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haofan Sun
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 100026, China
| | - Yifei Wang
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bingyi Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 100026, China
| | - Qiang Zhu
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Wen Yi
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Ji L, Liu Y, Wang Z, Huang Q, Cai J, Gu H, Li J, Chen X, Feng C, He X, Deng X, Cheng X, Kong X, Zhu X, Wu T, Yang B, Lin Z, Yang X, Feng G, Yu J. Causal effect analysis of estrogen receptor associated breast cancer and clear cell ovarian cancer. Am J Transl Res 2024; 16:2699-2710. [PMID: 39006281 PMCID: PMC11236669 DOI: 10.62347/ecoo9552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Evidence indicates that the risk of developing a secondary ovarian cancer (OC) is correlated with estrogen receptor (ER) status. However, the clinical significance of the relationship between ER-associated breast cancer (BC) and clear cell ovarian cancer (CCOC) remains elusive. METHODS Independent single nucleotide polymorphisms (SNPs) strongly correlated with exposure were extracted, and those associated with confounders and outcomes were removed using the PhenoScanner database. SNP effects were extracted from the outcome datasets with minor allele frequency > 0.01 as the filtration criterion. Next, valid instrumental variables (IVs) were obtained by harmonizing exposure and outcome effects and further filtered based on F-statistics (> 10). Mendelian randomization (MR) assessment of valid IVs was carried out using inverse variance weighted (IVW), MR Egger (ME), weighted median (WM), and multiplicative random effects-inverse variance weighted (MRE-IVW) methods. For sensitivity analysis and visualization of MR findings, a heterogeneity test, a pleiotropy test, a leave-one-out test, scatter plots, forest plots, and funnel plots were employed. RESULTS MR analyses with all four methods revealed that CCOC was not causally associated with ER-negative BC (IVW results: odds ratio (OR) = 0.89, 95% confidence interval (CI) = 0.66-1.20, P = 0.431) or ER-positive BC (IVW results: OR = 0.99, 95% CI = 0.88-1.12, P = 0.901). F-statistics were computed for each valid IV, all of which exceeded 10. The stability and reliability of the results were confirmed by sensitivity analysis. CONCLUSIONS Our findings indicated that CCOC dids not have a causal association with ER-associated BC. The absence of a definitive causal link between ER-associated BC and CCOC suggested a minimal true causal influence of ER-associated BC exposure factors on CCOC. These results indicated that individuals afflicted by ER-associated BC could alleviate concerns regarding the developing of CCOC, thereby aiding in preserving their mental well-being stability and optimizing the efficacy of primary disease treatment.
Collapse
Affiliation(s)
- Li Ji
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Yanbo Liu
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215000, Jiangsu, China
| | - Zihan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Jiaying Cai
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Han Gu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong UniversityNantong 226001, Jiangsu, China
| | - Chenrui Feng
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xuxin He
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiaonan Deng
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiuwen Kong
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiaoqi Zhu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Tong Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Binbin Yang
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Ziwen Lin
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Nantong University, Nantong UniversityNantong 226001, Jiangsu, China
| | - Guannan Feng
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215000, Jiangsu, China
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| |
Collapse
|
5
|
Zhang C, Xu Y, Zhu X, Zhang X, Wang F, Hu L, Lu H, Tao C, Xu K, Zhang Z, Li D, Shi T, Zhang R. Phosphorylation of FOXK2 at Thr13 and Ser30 by PDK2 sustains glycolysis through a positive feedback manner in ovarian cancer. Oncogene 2024; 43:1985-1999. [PMID: 38734828 PMCID: PMC11196215 DOI: 10.1038/s41388-024-03052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Ovarian cancer is one of the most common gynecological malignant tumors with insidious onset, strong invasiveness, and poor prognosis. Metabolic alteration, particularly aerobic glycolysis, which is tightly regulated by transcription factors, is associated with the malignant behavior of OC. We screened FOXK2 in this study as a key transcription factor that regulates glycolysis in OC. FOXK2 is overly expressed in OC, and poor prognosis is predicted by overexpression. FOXK2 promotes OC cell proliferation both in vitro and in vivo and cell migration in vitro. Further studies showed that PDK2 directly binds to the forkhead-associated (FHA) domain of FOXK2 to phosphorylate FOXK2 at Thr13 and Ser30, thereby enhancing the transcriptional activity of FOXK2. FOXK2 transcriptionally regulates the expression of PDK2, thus forming positive feedback to sustain glycolysis in OC cells.
Collapse
Affiliation(s)
- Cancan Zhang
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
- Shanghai Geriatric Medical Center, Shanghai, 201104, China
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinyin Xu
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Xinyue Zhu
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengmian Wang
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Lu
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Chunlin Tao
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China
| | - Kai Xu
- Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tingyan Shi
- Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Rong Zhang
- Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Shanghai, China.
- Shanghai Geriatric Medical Center, Shanghai, 201104, China.
| |
Collapse
|
6
|
Azumi M, Kusama K, Yoshie M, Nakano S, Tsuru A, Kato T, Tamura K. Involvement of ferroptosis in eribulin-induced cytotoxicity in ovarian clear cell carcinoma. Eur J Pharmacol 2024; 971:176544. [PMID: 38552939 DOI: 10.1016/j.ejphar.2024.176544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Ovarian clear cell carcinoma (OCCC) is a unique clinicopathological subtype of epithelial ovarian cancer that is resistant to standard chemotherapy. Eribulin, a microtubule dynamics inhibitor of halichondrin class, has unique effects in the cancer microenvironment such as induction of epithelization and reduction in metastatic potential in breast cancer cells; however, nothing is known about the effect of eribulin and the detailed mechanisms in OCCC. This study aimed to investigate the involvement of ferroptosis and its mechanism in the antitumor activity of eribulin in OCCC cells and a mouse xenograft model. We found that eribulin-induced cell death was reduced by ferroptosis inhibitors; deferoxamine, an iron chelator and ferrostatin-1, a lipid peroxidation inhibitor. Eribulin increased the levels of intracellular iron, reactive oxygen species (ROS), and lipid peroxides, and increased the mitochondrial membrane potential. Eribulin downregulated the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH), and superoxide dismutase (SOD) activity. The combination of eribulin and ML210, a glutathione peroxidase 4-inhibiting ferroptosis inducer, had a synergistic effect on ferroptosis. Taken together, our findings show firstly that eribulin triggers ferroptosis in OCCC and this effect occurs via the suppression of the Nrf2-HO-1 signaling pathway, SOD activity and the promotion of lipid peroxidation. These findings suggest that eribulin-induced ferroptosis is associated with its anti-tumor effect and also could be a potential therapeutic target in OCCC.
Collapse
Affiliation(s)
- Mana Azumi
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Mikihiro Yoshie
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Saya Nakano
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Atsuya Tsuru
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tomoyasu Kato
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan; Department of Gynecologic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazuhiro Tamura
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
7
|
Liu X, Li J, Huang Q, Jin M, Huang G. Ginsenoside Rh2 shifts tumor metabolism from aerobic glycolysis to oxidative phosphorylation through regulating the HIF1-α/PDK4 axis in non-small cell lung cancer. Mol Med 2024; 30:56. [PMID: 38671369 PMCID: PMC11055298 DOI: 10.1186/s10020-024-00813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Ginsenoside Rh2 (G-Rh2), a steroidal compound extracted from roots of ginseng, has been extensively studied in tumor therapy. However, its specific regulatory mechanism in non-small cell lung cancer (NSCLC) is not well understood. Pyruvate dehydrogenase kinase 4 (PDK4), a central regulator of cellular energy metabolism, is highly expressed in various malignant tumors. We investigated the impact of G-Rh2 on the malignant progression of NSCLC and how it regulated PDK4 to influence tumor aerobic glycolysis and mitochondrial function. METHOD We examined the inhibitory effect of G-Rh2 on NSCLC through I proliferation assay, migration assay and flow cytometry in vitro. Subsequently, we verified the ability of G-Rh2 to inhibit tumor growth and metastasis by constructing subcutaneous tumor and metastasis models in nude mice. Proteomics analysis was conducted to analyze the action pathways of G-Rh2. Additionally, we assessed glycolysis and mitochondrial function using seahorse, PET-CT, Western blot, and RT-qPCR. RESULT Treatment with G-Rh2 significantly inhibited tumor proliferation and migration ability both in vitro and in vivo. Furthermore, G-Rh2 inhibited the tumor's aerobic glycolytic capacity, including glucose uptake and lactate production, through the HIF1-α/PDK4 pathway. Overexpression of PDK4 demonstrated that G-Rh2 targeted the inhibition of PDK4 expression, thereby restoring mitochondrial function, promoting reactive oxygen species (ROS) accumulation, and inducing apoptosis. When combined with sodium dichloroacetate, a PDK inhibitor, it complemented the inhibitory capacity of PDKs, acting synergistically as a detoxifier. CONCLUSION G-Rh2 could target and down-regulate the expression of HIF-1α, resulting in decreased expression of glycolytic enzymes and inhibition of aerobic glycolysis in tumors. Additionally, by directly targeting mitochondrial PDK, it elevated mitochondrial oxidative phosphorylation and enhanced ROS accumulation, thereby promoting tumor cells to undergo normal apoptotic processes.
Collapse
Affiliation(s)
- Xiyu Liu
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China
| | - Jingjing Li
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China
| | - Qingqing Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China.
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China.
| | - Gang Huang
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, 201318, Shanghai, China.
| |
Collapse
|
8
|
Tang L, Bian C. Research progress in endometriosis-associated ovarian cancer. Front Oncol 2024; 14:1381244. [PMID: 38725626 PMCID: PMC11079782 DOI: 10.3389/fonc.2024.1381244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Endometriosis-associated ovarian cancer (EAOC) is a unique subtype of ovarian malignant tumor originating from endometriosis (EMS) malignant transformation, which has gradually become one of the hot topics in clinical and basic research in recent years. According to clinicopathological and epidemiological findings, precancerous lesions of ovarian clear cell carcinoma (OCCC) and ovarian endometrioid carcinoma (OEC) are considered as EMS. Given the large number of patients with endometriosis and its long time window for malignant transformation, sufficient attention should be paid to EAOC. At present, the pathogenesis of EAOC has not been clarified, no reliable biomarkers have been found in the diagnosis, and there is still a lack of basis and targets for stratified management and precise treatment in the treatment. At the same time, due to the long medical history of patients, the fast growth rate of cancer cells, and the possibility of eliminating the earliest endometriosis-associated ovarian cancer, it is difficult to find the corresponding histological evidence. As a result, few patients are finally diagnosed with EAOC, which increases the difficulty of in-depth study of EAOC. This article reviews the epidemiology, pathogenesis, risk factors, clinical diagnosis, new treatment strategies and prognosis of endometriosis-associated ovarian cancer, and prospects the future direction of basic research and clinical transformation, in order to achieve stratified management and personalized treatment of ovarian cancer patients.
Collapse
Affiliation(s)
| | - Ce Bian
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
9
|
Tao S, Tao K, Cai X. Pan-cancer analysis reveals PDK family as potential indicators related to prognosis and immune infiltration. Sci Rep 2024; 14:5665. [PMID: 38453992 PMCID: PMC10920909 DOI: 10.1038/s41598-024-55455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Pyruvate dehydrogenase kinases (PDKs) play a key role in glucose metabolism by exerting negative regulation over pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibition of PDKs holds the potential to enhance PDC activity, prompting cells to adopt a more aerobic metabolic profile. Consequently, PDKs emerge as promising targets for condition rooted in metabolic dysregulation, including malignance and diabetes. However, a comprehensive exploration of the distinct contribution of various PDK family members, particularly PDK3, across diverse tumor types remain incomplete. This study undertakes a systematic investigation of PDK family expression patterns, forging association with clinical parameters, using data from the TCGA and GTEx datasets. Survival analysis of PDKs is executed through both Kaplan-Meier analysis and COX regression analysis. Furthermore, the extent of immune infiltration is assessed by leveraging the CIBERSORT algorithm. Our study uncovers pronounced genetic heterogeneity among PDK family members, coupled with discernible clinical characteristic. Significantly, the study establishes the potential utility of PDK family genes as prognostic indicators and as predictors of therapeutic response. Additionally, our study sheds light on the immune infiltration profile of PDK family. The results showed the intimate involvement of these genes in immune-related metrics, including immune scoring, immune subtypes, tumor-infiltrating lymphocytes, and immune checkpoints expression. In sum, the findings of this study offer insightful strategies to guide the therapeutic direction, aiming at leveraging the impact of PDK family genes in cancer treatment.
Collapse
Affiliation(s)
- Shigui Tao
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kunlin Tao
- Guiping People's Hospital, Guangxi, China
| | - Xiaoyong Cai
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
10
|
Yang Q, Zhang P, Han L, Shi P, Zhao Z, Cui D, Hong K. Mitochondrial-related genes PDK2, CHDH, and ALDH5A1 served as a diagnostic signature and correlated with immune cell infiltration in ulcerative colitis. Aging (Albany NY) 2024; 16:3803-3822. [PMID: 38376420 PMCID: PMC10929806 DOI: 10.18632/aging.205561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
We conducted an investigation to determine the potential of mitochondrial-related genes as diagnostic biomarkers in ulcerative colitis (UC), while also examining their association with immune cell infiltration. To achieve this, we acquired four datasets pertaining to UC, which included gene expression arrays and clinical data, from the GEO database. Subsequently, we selected three signature genes (PDK2, CHDH, and ALDH5A1) to construct a diagnostic model for UC. The nomogram and ROC curves exhibited exceptional diagnostic efficacy. Following this, quantitative real-time polymerase chain reaction and western blotting assays validated the decreased mRNA and protein expression of PDK2, CHDH, and ALDH5A1 in the model of UC cells and dextran sulfate sodium salt (DSS)-induced mice colitis tissues, aligning with the findings in the risk model. This investigation suggested a negative correlation between the expression of ALDH5A1, CHDH, and PDK2 and the infiltration of M1 macrophages. Then, immunofluorescence analysis confirmed the augmented expression of CD86 in the tissue of mice subjected to DSS, while a diminished expression of ALDH5A1, CHDH, and PDK2 was observed. Consequently, it can be inferred that targeting mitochondria-associated genes, namely PDK2, CHDH, and ALDH5A1, holds potential as a viable strategy for prognostic prediction and the implementation of immune therapy for UC.
Collapse
Affiliation(s)
- Qian Yang
- Department of Gastroenterology, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Peng Zhang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Lu Han
- Department of Gastroenterology, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Pengshuang Shi
- Department of Gastroenterology, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Zhifang Zhao
- Department of Gastroenterology, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Dejun Cui
- Department of Gastroenterology, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Kunqiao Hong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Zhang S, Gao Y, Wang P, Wang S, Wang Y, Li M, Wang A, Zhao K, Zhang Z, Sun J, Guo D, Liang Z. Tryptophan metabolism enzymes are potential targets in ovarian clear cell carcinoma. Cancer Med 2023; 12:21996-22005. [PMID: 38062922 PMCID: PMC10757115 DOI: 10.1002/cam4.6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 12/31/2023] Open
Abstract
AIM As the second most prevalent subtype of epithelial ovarian cancers, ovarian clear cell carcinoma (OCCC) is known for its chemoresistance to conventional platinum-based therapy. In this work, we examined the tryptophan (Trp) metabolism enzymes' differential expression in patients with OCCC to assess the potential for personalised treatment. METHODS A total of 127 OCCC tissues were used to construct tissue microarrays, and immunohistochemistry (IHC) staining of the Trp enzymes IDO1, IDO2, TDO2 and IL4I1 was performed. The correlations between Trp enzyme expression and clinical characteristics were analysed. RESULTS Positive IDO1, IDO2, TDO2 and IL4I1 staining was identified in 26.8%, 94.5%, 75.6% and 82.7% of OCCC respectively. IDO1-positive samples were more common in the chemoresistant group than in the platinum-sensitive group (46.7% vs. 19.8%). Moreover, positive expression of IDO1, TDO2 and IL4I1 was related to advanced stage, metastasis, bilateral tumours, endometriosis and tumour rupture (p < 0.05) respectively. Univariate analysis revealed a significant association between bilateral tumours, lymph node metastasis, advanced stage, distant metastasis and aberrant cytology with a poor prognosis for OCCC, while the absence of residual tumour was correlated with a favourable outcome (p < 0.05). However, only bilateral tumours and lymph node metastases were related to a poor prognosis after multivariate analysis. CONCLUSION This is the first study to investigate the expression of the Trp enzymes IDO1, IDO2, TDO2 and IL4I1 in OCCC tissues. IDO2, TDO2 and IL4I1 were detected in the majority of OCCC. Clinical traits were correlated with IDO1, IDO2, TDO2 and IL4I1 expression. IDO1 may be used as a therapeutic target given the large percentage of chemoresistant cases with IDO1 expression. These results will aid the development of personalised therapies for OCCC.
Collapse
Affiliation(s)
- Sumei Zhang
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yike Gao
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| | - Pan Wang
- Department of PathologyAffiliated Hospital of Hebei UniversityBaodingHebei ProvinceChina
| | - Shu Wang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital (PUMCH)Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- National Clinical Research Centre for Obstetric & Gynaecologic DiseasesBeijingChina
| | - Yuming Wang
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| | - Mei Li
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| | - Anqi Wang
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Kun Zhao
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zixin Zhang
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jian Sun
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| | - Dan Guo
- Clinical Biobank, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of Medical Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
Kobayashi H, Matsubara S, Yoshimoto C, Shigetomi H, Imanaka S. The role of mitochondrial dynamics in the pathophysiology of endometriosis. J Obstet Gynaecol Res 2023; 49:2783-2791. [PMID: 37681703 DOI: 10.1111/jog.15791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
AIM Endometriosis is a chronic disease of reproductive age, associated with pelvic pain and infertility. Endometriotic cells adapt to changing environments such as oxidative stress and hypoxia in order to survive. However, the underlying mechanisms remain to be fully elucidated. In this review, we summarize our current understanding of the pathogenesis of endometriosis, focusing primarily on the molecular basis of energy metabolism, redox homeostasis, and mitochondrial function, and discuss perspectives on future research directions. METHODS Papers published up to March 31, 2023 in the PubMed and Google Scholar databases were included in this narrative literature review. RESULTS Mitochondria serve as a central hub sensing a multitude of physiological processes, including energy production and cellular redox homeostasis. Under hypoxia, endometriotic cells favor glycolysis and actively produce pyruvate, nicotinamide adenine dinucleotide phosphate (NADPH), and other metabolites for cell proliferation. Mitochondrial fission and fusion dynamics may regulate the phenotypic plasticity of cellular energy metabolism, that is, aerobic glycolysis or OXPHOS. Endometriotic cells have been reported to have reduced mitochondrial numbers, increased lamellar cristae, improved energy efficiency, and enhanced cell proliferation and survival. Increased mitochondrial fission and fusion turnover by hypoxic and normoxic conditions suggests an activation of mitochondrial quality control mechanisms. Recently, candidate molecules that influence mitochondrial dynamics have begun to be identified. CONCLUSION This review suggests that unique energy metabolism and redox homeostasis driven by mitochondrial dynamics may be linked to the pathophysiology of endometriosis. However, further studies are needed to elucidate the regulatory mechanisms of mitochondrial dynamics in endometriosis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
13
|
Yin M, Lu C, Zhou H, Liu Q, Yang J. Fibroblast Growth Factor 11 (FGF11) Promotes Progression and Cisplatin Resistance Through the HIF-1α/FGF11 Signaling Axis in Ovarian Clear Cell Carcinoma. Cancer Manag Res 2023; 15:753-763. [PMID: 37525667 PMCID: PMC10387280 DOI: 10.2147/cmar.s414703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Background A poor prognosis is often associated with ovarian clear cell carcinoma (OCCC) due to its relative resistance to platinum-based chemotherapy. Although several studies have been launched to explore the pathogenesis of OCCC, the mechanism of chemoresistance has yet to be uncovered. Methods Nanostring nCounter PanCancer Pathways Panel was performed to explore the expression profiles of OCCC tissues from patients showing different platinum sensitivity. Bioinformatic analysis was performed to select genes associated with chemoresistance and cell function assays, including colony formation, wound healing, transwell and flow cytometric analysis, were used to explore the role of the target gene in the progression of OCCC and resistance to cisplatin (DDP). Results Gene expression profiles and bioinformatic analysis verified that the expression of fibroblast growth factor 11 (FGF11) was significantly increased in platinum-resistant OCCC tissues and increased FGF11 expression was related to poorer survival. Downregulation of FGF11 inhibited the proliferation, migration, and invasion, reversing the DDP resistance of OCCC cells. Mechanically, FGF11 was regulated by hypoxia-inducible factor-1α (HIF-1α) to modulate the DDP sensitivity. Conclusion FGF11 was highly expressed in platinum-resistant OCCC tissues, promoting progression and resistance to DDP through the HIF-1α/FGF11 signaling axis.
Collapse
Affiliation(s)
- Min Yin
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chunli Lu
- Neurospine Center, China International Neuroscience Institute (CHINA-INI), Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, People’s Republic of China
| | - Huimei Zhou
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qian Liu
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiaxin Yang
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Yin M, Lu C, Zhou H, Liu Q, Yang J. Differential molecular pathway expression according to chemotherapeutic response in ovarian clear cell carcinoma. BMC Womens Health 2023; 23:298. [PMID: 37270486 DOI: 10.1186/s12905-023-02420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023] Open
Abstract
OBJECTIVE Ovarian clear cell carcinoma (OCCC) is a distinct entity from epithelial ovarian cancer. The prognosis of advanced and recurrent disease is very poor due to resistance to chemotherapeutic agents. Our aim was to explore the molecular alterations among OCCC patients with different chemotherapeutic responses and to obtain insights into potential biomarkers. METHODS Twenty-four OCCC patients were included in this study. The patients were divided into two groups based on the relapse time after the first-line platinum-based chemotherapy: the platinum-sensitive group (PS) and the platinum-resistant group (PR). Gene expression profiling was performed using NanoString nCounter PanCancer Pathways Panel. RESULTS Gene expression analysis comparing PR vs. PS identified 32 differentially expressed genes: 17 upregulated genes and 15 downregulated genes. Most of these genes are involved in the PI3K, MAPK and Cell Cycle-Apoptosis pathways. In particular, eight genes are involved in two or all three pathways. CONCLUSION The dysregulated genes in the PI3K, MAPK, and Cell Cycle-Apoptosis pathways identified and postulated mechanisms could help to probe biomarkers of OCCC platinum sensitivity, providing a research basis for further exploration of targeted therapy.
Collapse
Affiliation(s)
- Min Yin
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunli Lu
- Neurospine Center, Xuanwu Hospital, National Center for Neurological Disorders, China International Neuroscience Institute (CHINA-INI), Capital Medical University, Beijing, China
| | - Huimei Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qian Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
Kobayashi H. Clinicopathological characteristics, molecular features and novel diagnostic strategies for the detection of malignant transformation of endometriosis (Review). Exp Ther Med 2023; 25:279. [PMID: 37206546 PMCID: PMC10189589 DOI: 10.3892/etm.2023.11978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/20/2023] [Indexed: 05/21/2023] Open
Abstract
Endometriosis is a benign gynecological disease that affects women of reproductive age. Although malignant transformation of endometriosis is rare, physicians must be aware of this due to the high incidence of clear cell carcinoma of the ovary (CCC) in Japan. The most prevalent histological subtype of ovarian cancer is CCC (~70%) followed by endometrioid carcinoma (30%). The present review discusses the clinicopathological and molecular features of endometriosis-associated ovarian cancer (EAOC) as well as prospects for novel diagnostic strategies. Papers published between 2000 and 2022 in the PubMed and Google Scholar databases were included. Contents of the endometriotic cyst fluid may be involved in carcinogenesis, although the underlying mechanisms are largely unknown. Some studies have proposed a possible mechanism wherein excessive hemoglobin, heme and iron could cause an imbalance in intracellular redox homeostasis in endometriotic cells. Combined with DNA damage and mutations, the imbalances may induce the development of EAOC. Endometriotic cells evolve to adapt to the prolonged unfavorable oxidative microenvironmental stress. On the other hand, macrophages enhance the antioxidative defense mechanism and protect endometriotic cells against oxidative damage through intercellular crosstalk and signaling pathways. Therefore, changes in redox signaling, energy metabolism and the tumor immune microenvironment could be the key elements in the malignant transformation of certain endometriotic cell clones. Additionally, non-invasive bioimaging (i.e., magnetic resonance relaxometry) and biomarkers (i.e., tissue factor pathway inhibitor 2) may be promising tools for early-stage detection of the disease. In conclusion, the present review summarizes the latest advancements in research on the biological characteristics and early diagnosis of malignant transformation of endometriosis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology, Ms.Clinic MayOne, Kashihara, Nara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
- Correspondence to: Dr Hiroshi Kobayashi, Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
16
|
Zhang M, Du M, Qi X, Wang Y, Li G, Xu C, Zhang X. Retro-inversion follicle-stimulating hormone peptide-modified nanoparticles for delivery of PDK2 shRNA against chemoresistant ovarian cancer by switching glycolysis to oxidative phosphorylation. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Most ovarian cancers are diagnosed at advanced stages characterized by abdominal dissemination and frequently exhibit chemoresistance. Pyruvate dehydrogenase kinase 2 (PDK2) regulates the switch between glycolysis and oxidative phosphorylation and contributes to tumor progression and chemoresistance. Here, we investigated the effects of PDK2 blockade on metabolic reprogramming and cisplatin sensitivity and evaluated the in vivo antitumor effects of PDK2 shRNA in chemoresistant ovarian cancer using retro-inverso follicle-stimulating hormone peptide-modified nanoparticle as carriers.
Methods
The expression of PDK2 was detected by immunohistochemistry, Western blot and real-time PCR. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry. Cell migration was detected by Transwell assay. Seahorse Analyzer was used to evaluate metabolic changes. The cisplatin-resistant ovarian cancer cells A2780cp were used to establish the mouse model of peritoneal metastatic ovarian cancer.
Results
A higher expression level of PDK2 was observed in chemoresistant ovarian cancer tissues and cell lines and was associated with shorter progression-free survival. PDK2 knockdown inhibited proliferation and migration and promoted apoptosis of both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. Cisplatin sensitivity was increased even in cisplatin-resistant ovarian cancer cells. Mechanistically, PDK2 knockdown resulted in an increased oxygen consumption rate and decreased extracellular acidification rate, along with reduced lactate production, increased PDHC activity and increased levels of electron transport chain complexes III and V. The metabolism switched from glycolysis to oxidative phosphorylation. Finally, to specifically and effectively deliver PDK2 shRNA in vivo, we formulated a targeted delivery system containing retro-inverso follicle-stimulating hormone peptide as a targeting moiety and polyethylene glycol–polyethylenimine copolymers as carriers. The nanoparticle complex significantly suppressed tumor growth and peritoneal metastasis of cisplatin-resistant ovarian cancer without obvious toxicities.
Conclusions
Our findings showed the link between metabolic reprogramming and chemoresistance in ovarian cancer and provided an effective targeting strategy for switching metabolic pathways in cancer therapy.
Collapse
|
17
|
Kobayashi H. Recent advances in understanding the metabolic plasticity of ovarian cancer: A systematic review. Heliyon 2022; 8:e11487. [PMID: 36406733 PMCID: PMC9668530 DOI: 10.1016/j.heliyon.2022.e11487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a gynecologic malignancy with a poor prognosis due to resistance to first-line chemotherapeutic agents. Some cancer cells are primarily dependent on glycolysis, but others favor mitochondrial oxidative phosphorylation (OXPHOS) over glycolysis. Changes in metabolic reprogramming have been reported to be involved in cancer cell survival. In this review, we summarize the metabolic profiles (e.g., metabolic heterogeneity, plasticity, and reprogramming) and adaptation to the dynamic tumor microenvironment and discuss potential novel therapeutic strategies. A literature search was performed between January 2000 and March 2022 in the PubMed and Google Scholar databases using a combination of specific terms. Ovarian cancer cells, including cancer stem cells, depend on glycolysis, OXPHOS, or both for survival. Several environmental stresses, such as nutrient starvation or glucose deprivation, hypoxic stress, acidification, and excessive reactive oxygen species (ROS) generation, reprogram the metabolic pathways to adapt. The interaction between tumors and adjacent stromal cells allows cancer cells to enhance mitochondrial energy metabolism. The metabolic reprogramming varies depending on genomic and epigenetic alterations of metabolism-related genes and the metabolic environment. Developing accurate and non-invasive methods for early identification of metabolic alterations could facilitate optimal cancer diagnosis and treatment. Cancer metabolism research has entered an exciting era where novel strategies targeting metabolic profiling will become more innovative.
Collapse
|
18
|
Lin Y, Zhou X, Ni Y, Zhao X, Liang X. Metabolic reprogramming of the tumor immune microenvironment in ovarian cancer: A novel orientation for immunotherapy. Front Immunol 2022; 13:1030831. [PMID: 36311734 PMCID: PMC9613923 DOI: 10.3389/fimmu.2022.1030831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic tumor, with the highest mortality rate. Numerous studies have been conducted on the treatment of ovarian cancer in the hopes of improving therapeutic outcomes. Immune cells have been revealed to play a dual function in the development of ovarian cancer, acting as both tumor promoters and tumor suppressors. Increasingly, the tumor immune microenvironment (TIME) has been proposed and confirmed to play a unique role in tumor development and treatment by altering immunosuppressive and cytotoxic responses in the vicinity of tumor cells through metabolic reprogramming. Furthermore, studies of immunometabolism have provided new insights into the understanding of the TIME. Targeting or activating metabolic processes of the TIME has the potential to be an antitumor therapy modality. In this review, we summarize the composition of the TIME of ovarian cancer and its metabolic reprogramming, its relationship with drug resistance in ovarian cancer, and recent research advances in immunotherapy.
Collapse
|
19
|
Chen G, She W, Yu C, Rouzi T, Li X, Ma L, Zhang N, Jiang H, Liu X, Wu J, Wang Q, Shen H, Zhou F. A novel organic arsenic derivative MZ2 remodels metabolism and triggers mtROS-mediated apoptosis in acute myeloid leukemia. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04333-2. [PMID: 36056952 DOI: 10.1007/s00432-022-04333-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Acute myeloid leukemia (AML) is one of the most common neoplasms in adults, and it is difficult to achieve satisfactory results with conventional drugs. Here, we synthesized a novel organic arsenic derivative MZ2 and evaluated its ability to remodel energy metabolism to achieve anti-leukemia. METHODS MZ2 was characterized by the average 1-min full mass spectra analysis. Biological methods such as Western blot, qPCR, flow cytometry and confocal microscopy were used to assess the mode and mechanism of MZ2-induced death. The in vivo efficacy of MZ2 was assessed by constructing a patient-derived xenograft (PDX) AML model. RESULTS Unlike the precursor organic arsenical Z2, MZ2 can effectively reduce the level of aerobic glycolysis. Our in-depth found that MZ2 inhibited the expression of PDK2 in a dose-dependent manner and did not affect the expression of LDHA, another key enzyme of the glycolytic pathway. MZ2 reconstituted energy metabolism to induce the generation of mitochondrial ROS (mtROS) and then triggerd intrinsic apoptosis pathway. We also assessed whether MZ2 generates autophagy and results showed that MZ2 can induce autophagy of AML cells, which may be associated with the precursor organic arsenic drug. In vivo, MZ2 effectively attenuated leukemia progression in mice, and immunohistochemical results suggested its PDK2 inhibitory effect. CONCLUSION In summary, the novel organic arsine derivative MZ2 exhibited excellent anti-tumor effects in acute myeloid leukemia, which may provide a potential strategy for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Wenyan She
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Chaochao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Tuerxunayi Rouzi
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xinqi Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Nan Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Hongqiang Jiang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jinxian Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Qian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
20
|
Nunes-Xavier CE, Mingo J, Emaldi M, Flem-Karlsen K, Mælandsmo GM, Fodstad Ø, Llarena R, López JI, Pulido R. Heterogeneous Expression and Subcellular Localization of Pyruvate Dehydrogenase Complex in Prostate Cancer. Front Oncol 2022; 12:873516. [PMID: 35692804 PMCID: PMC9174590 DOI: 10.3389/fonc.2022.873516] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
Background Pyruvate dehydrogenase (PDH) complex converts pyruvate into acetyl-CoA by pyruvate decarboxylation, which drives energy metabolism during cell growth, including prostate cancer (PCa) cell growth. The major catalytic subunit of PDH, PDHA1, is regulated by phosphorylation/dephosphorylation by pyruvate dehydrogenase kinases (PDKs) and pyruvate dehydrogenase phosphatases (PDPs). There are four kinases, PDK1, PDK2, PDK3 and PDK4, which can phosphorylate and inactivate PDH; and two phosphatases, PDP1 and PDP2, that dephosphorylate and activate PDH. Methods We have analyzed by immunohistochemistry the expression and clinicopathological correlations of PDHA1, PDP1, PDP2, PDK1, PDK2, PDK3, and PDK4, as well as of androgen receptor (AR), in a retrospective PCa cohort of patients. A total of 120 PCa samples of representative tumor areas from all patients were included in tissue microarray (TMA) blocks for analysis. In addition, we studied the subcellular localization of PDK2 and PDK3, and the effects of the PDK inhibitor dichloroacetate (DCA) in the growth, proliferation, and mitochondrial respiration of PCa cells. Results We found heterogeneous expression of the PDH complex components in PCa tumors. PDHA1, PDP1, PDK1, PDK2, and PDK4 expression correlated positively with AR expression. A significant correlation of PDK2 immunostaining with biochemical recurrence and disease-free survival was revealed. In PCa tissue specimens, PDK2 displayed cytoplasmic and nuclear immunostaining, whereas PDK1, PDK3 and PDK4 showed mostly cytoplasmic staining. In cells, ectopically expressed PDK2 and PDK3 were mainly localized in mitochondria compartments. An increase in maximal mitochondrial respiration was observed in PCa cells upon PDK inhibition by DCA, in parallel with less proliferative capacity. Conclusion Our findings support the notion that expression of specific PDH complex components is related with AR signaling in PCa tumors. Furthermore, PDK2 expression associated with poor PCa prognosis. This highlights a potential for PDH complex components as targets for intervention in PCa.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Janire Mingo
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Maite Emaldi
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Karine Flem-Karlsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Roberto Llarena
- Department of Urology, Cruces University Hospital, Barakaldo, Spain
| | - José I López
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|