1
|
Magara K, Takasawa A, Takasawa K, Aoyama T, Ota M, Kyuno D, Ono Y, Murakami T, Yamamoto S, Nakamori Y, Nakahashi N, Kutomi G, Takemasa I, Hasegawa T, Osanai M. Multilayered proteomics reveals that JAM-A promotes breast cancer progression via regulation of amino acid transporter LAT1. Cancer Sci 2024; 115:3153-3168. [PMID: 38943512 PMCID: PMC11462982 DOI: 10.1111/cas.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 07/01/2024] Open
Abstract
Recent studies have shown that transmembrane-type tight junction proteins are upregulated in various cancers compared with their levels in normal tissues and are involved in cancer progression, suggesting that they are potential therapeutic targets. Here, we demonstrated the expression profile and a novel role of junctional adhesion molecule-A (JAM-A) in breast cancer. Immunohistochemistry of surgical specimens showed that JAM-A was highly expressed from carcinoma in situ lesions, as in other adenocarcinomas, with higher expression in invasive carcinomas. High expression of JAM-A contributed to malignant aspects such as lymph node metastasis and lymphatic involvement positivity. In breast cancer cells, JAM-A expression status affects malignant potentials including proliferation and migration. Multilayered proteomics revealed that JAM-A interacts with the amino acid transporter LAT1 in breast cancer cells. JAM-A regulates the expression of LAT1 and interacts with it on the whole cell membrane, leading to enhanced amino acid uptake to promote tumor growth. Double high expression of JAM-A and LAT1 predicts poor prognosis in patients with breast cancer. Of note, an antibody against an extracellular domain of JAM-A suppressed the proliferation of breast cancer cells. Our findings indicate the possibility of JAM-A-targeted therapy ideally combined with LAT1-targeted therapy as a new therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Kazufumi Magara
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Akira Takasawa
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
- Division of Tumor Pathology, Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Kumi Takasawa
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
- Division of Tumor Pathology, Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Tomoyuki Aoyama
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Misaki Ota
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
- Department of Obstetrics and GynecologySapporo Medical University School of MedicineSapporoJapan
| | - Daisuke Kyuno
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
- Department of Surgery, Surgical Oncology and ScienceSapporo Medical University School of MedicineSapporoJapan
| | - Yusuke Ono
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Taro Murakami
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Soh Yamamoto
- Department of MicrobiologySapporo Medical University School of MedicineSapporoJapan
| | - Yuna Nakamori
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
- Department of Oral SurgerySapporo Medical University School of MedicineSapporoJapan
| | - Naoya Nakahashi
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
- Department of Orthopedic SurgerySapporo Medical University School of MedicineSapporoJapan
| | - Goro Kutomi
- Department of Surgery, Surgical Oncology and ScienceSapporo Medical University School of MedicineSapporoJapan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and ScienceSapporo Medical University School of MedicineSapporoJapan
| | - Tadashi Hasegawa
- Department of Surgical PathologySapporo Medical University School of MedicineSapporoJapan
| | - Makoto Osanai
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
2
|
Stadler CR, Ellinghaus U, Fischer L, Bähr-Mahmud H, Rao M, Lindemann C, Chaturvedi A, Scharf C, Biermann I, Hebich B, Malz A, Beresin G, Falck G, Häcker A, Houben A, Erdeljan M, Wolf K, Kullmann M, Chang P, Türeci Ö, Şahin U. Preclinical efficacy and pharmacokinetics of an RNA-encoded T cell-engaging bispecific antibody targeting human claudin 6. Sci Transl Med 2024; 16:eadl2720. [PMID: 38776391 DOI: 10.1126/scitranslmed.adl2720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
We present the preclinical pharmacology of BNT142, a lipid nanoparticle (LNP)-formulated RNA (RNA-LNP) encoding a T cell-engaging bispecific antibody that monovalently binds the T cell marker CD3 and bivalently binds claudin 6 (CLDN6), an oncofetal antigen that is absent from normal adult tissue but expressed on various solid tumors. Upon BNT142 RNA-LNP delivery in cell culture, mice, and cynomolgus monkeys, RNA is translated, followed by self-assembly into and secretion of the functional bispecific antibody RiboMab02.1. In vitro, RiboMab02.1 mediated CLDN6 target cell-specific activation and proliferation of T cells, and potent target cell killing. In mice and cynomolgus monkeys, intravenously administered BNT142 RNA-LNP maintained therapeutic serum concentrations of the encoded antibody. Concentrations of RNA-encoded RiboMab02.1 were maintained longer in circulation in mice than concentrations of directly injected, sequence-identical protein. Weekly injections of mice with BNT142 RNA-LNP in the 0.1- to 1-μg dose range were sufficient to eliminate CLDN6-positive subcutaneous human xenograft tumors and increase survival over controls. Tumor regression was associated with an influx of T cells and depletion of CLDN6-positive cells. BNT142 induced only transient and low cytokine production in CLDN6-positive tumor-bearing mice humanized with peripheral blood mononuclear cells (PBMCs). No signs of adverse effects from BNT142 RNA-LNP administration were observed in mice or cynomolgus monkeys. On the basis of these and other findings, a phase 1/2 first-in-human clinical trial has been initiated to assess the safety and preliminary efficacy of BNT142 RNA-LNP in patients with CLDN6-positive advanced solid tumors (NCT05262530).
Collapse
Affiliation(s)
| | | | - Leyla Fischer
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | - Martin Rao
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | | | | | - Imke Biermann
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | | | - Georg Beresin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | - Georg Falck
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | - Aline Häcker
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | - Astrid Houben
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | - Kristina Wolf
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | - Philip Chang
- BioNTech US Inc., 40 Erie Street, Suite 110, Cambridge, MA 02139, USA
| | - Özlem Türeci
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
- HI-TRON (Helmholtz Institute for Translational Oncology) Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
- HI-TRON (Helmholtz Institute for Translational Oncology) Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
- TRON gGmbH-Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany
- Institute for Immunology, University Medical Center (UMC) of the Johannes Gutenberg University, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| |
Collapse
|
3
|
Hana C, Thaw Dar NN, Galo Venegas M, Vulfovich M. Claudins in Cancer: A Current and Future Therapeutic Target. Int J Mol Sci 2024; 25:4634. [PMID: 38731853 PMCID: PMC11083183 DOI: 10.3390/ijms25094634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Claudins are a family of 27 proteins that have an important role in the formation of tight junctions. They also have an important function in ion exchange, cell mobility, and the epithelial-to-mesenchymal transition, the latter being very important in cancer invasion and metastasis. Therapeutic targeting of claudins has been investigated to improve cancer outcomes. Recent evidence shows improved outcomes when combining monoclonal antibodies against claudin 18.2 with chemotherapy for patients with gastroesophageal junction cancer. Currently, chimeric antigen receptor T-cells targeting claudin 18 are under investigation. In this review, we will discuss the major functions of claudins, their distribution in the normal as well as cancerous tissues, and their effect in cancer metastasis, with a special focus on the therapeutic targeting of claudins to improve cancer outcomes.
Collapse
Affiliation(s)
- Caroline Hana
- Hematology/Oncology Department, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (N.N.T.D.); (M.G.V.)
| | | | | | | |
Collapse
|
4
|
Guo H, Li J, Dong Y, Gao H, Wang P. CLDN6 inhibited cellular biological function of nonsmall cell lung cancer cells through suppressing aerobic glycolysis via the RIP1/ASK1/JNK axis. J Biochem Mol Toxicol 2024; 38:e23682. [PMID: 38462752 DOI: 10.1002/jbt.23682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/25/2023] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Claudin-6 (CLDN6) has been extensively studied in different tumors to date. However, in the case of nonsmall cell lung cancer (NSCLC), CLDN6 has a largely unknown role and molecular mechanism. We detected the expression of CLDN6 in NSCLC tissues and cells using reverse transcription-quantitative polymerase chain reaction (PCR) and western blot assays. A gain-of-function experiment was performed to evaluate the biological effects of CLDN6 on NSCLC cell behaviors. Methylation-specific PCR was utilized to detect the DNA methylation of CLDN6 gene promoter region. The interaction of CLDN6 and receptor interacting protein 1 (RIP1) was determined by coimmunoprecipitation assay. Furthermore, the modulation of CLDN6 on RIP1/apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) axis was confirmed. The results showed that in NSCLC tissues and cells, CLDN6 expression level was declined, and was associated with a high level of DNA methylation. CLDN6 overexpression suppressed the viability, invasion, migration, and promoted cell apoptosis. Besides, the enhanced expression of CLDN6 reduced the glycolysis and the dysfunction of mitochondrial respiration of NSCLC cells. Mechanistic investigation confirmed that CLDN6 interacted with RIP1 and inhibited cellular biological function of NSCLC cells via RIP1/ASK1/JNK axis. Besides, CLDN6 overexpression inhibited tumor growth in vivo. In conclusion, CLDN6 inhibited NSCLC cell proliferation through inactivating aerobic glycolysis via the RIP1/ASK1/JNK axis.
Collapse
Affiliation(s)
- Hua Guo
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, The Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Jianying Li
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, The Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Yu Dong
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, The Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Humei Gao
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, The Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Peng Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, The Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
5
|
Dong Y, Xu W, Qi D, Qu H, Jin Q, Sun M, Wang X, Quan C. CLDN6 inhibits colorectal cancer proliferation dependent on restraining p53 ubiquitination via ZO-1/PTEN axis. Cell Signal 2023; 112:110930. [PMID: 37852424 DOI: 10.1016/j.cellsig.2023.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in the world. Abnormal proliferation is a chief characteristic of cancer and is the initiation of CRC progression. As an important component of tight junctions, CLDN6 regulates the proliferation of multiple tumors. Our previous study showed that CLDN6 was low expressed in CRC, and CLDN6 overexpression inhibited CRC proliferation. However, the specific mechanism of how CLDN6 works remains unclear. This research aimed to reveal the relationship between CLDN6 and clinical features, as well as the molecular mechanism by which CLDN6 inhibited CRC proliferation. We found that low expression of CLDN6 was associated with pathological grade and prognosis of CRC patients, and confirmed that CLDN6 inhibited CRC proliferation dependent on p53. Mechanically, we elucidated that CLDN6 regulated ubiquitination to enhance p53 stability and nuclear import by PTEN/AKT/MDM2 pathway. Through the PDZ-binding motif (PBM), CLDN6 bound to ZO-1 to interact with PTEN, and regulate AKT/MDM2 pathway. Collectively, our data enriched the theoretical basis for CLDN6 as a potential biomarker for diagnosis, therapy and prognosis of CRC.
Collapse
Affiliation(s)
- Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Minghao Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China.
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China.
| |
Collapse
|
6
|
Zhuang X, Martin TA, Ruge F, Zeng J(J, Li X(A, Khan E, Dou Q, Davies E, Jiang WG. Expression of Claudin-9 (CLDN9) in Breast Cancer, the Clinical Significance in Connection with Its Subcoat Anchorage Proteins ZO-1 and ZO-3 and Impact on Drug Resistance. Biomedicines 2023; 11:3136. [PMID: 38137355 PMCID: PMC10740911 DOI: 10.3390/biomedicines11123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Introduction: Claudin-9 (CLDN9) is a member of the claudin protein family, a critical transmembrane protein family for tight junctions that are implemented in the progression of numerous cancer types. The present study investigated the role that CLDN9, along with the subcoat proteins, Zonula Occludens (ZOs), plays in clinical breast cancer and subsequent impact on drug response of patients. (2) Methods: CLDN9 protein and CLDN9 transcript were determined and correlated with clinical and pathological indicators, together with the status of hormonal receptors. The levels of CLDN9 transcript were also assessed against the therapeutic responses of the patients to chemotherapies by using a dataset from the TCGA database. Breast cancer cell models, representing different molecular subtypes of breast cancer, with differential expression of CLDN9 were created and used to assess the biological impact and response to chemotherapeutic drugs. (3) Results: Breast cancer tissues expressed significantly higher levels of the CLDN9, with the high levels being associated with shorter survival. CLDN9 was significantly correlated with its anchorage proteins ZO-1 and ZO-3. Integrated expression of CLDN9, ZO-1 and ZO-3 formed a signature that was significantly linked to overall survival (OS) (p = 0.013) and relapse-free survival (RFS) (p = 0.024) in an independent matter. CLDN9 transcript was significantly higher in patients who were resistant to chemotherapies (p < 0.000001). CLDN9 connection to chemoresistance was particularly prominent in patients of ER-positive (ER(+)), Her-2-negative((Her-2(-)), ER(+)/Her-2(-) and triple-negative breast cancers (TNBCs), but not in patients with HER-2-positive tumors. In Her-2-negative MCF7 and MDA-MB-231 cancer cells, loss of CLDN9 significantly increased sensitivity to several chemotherapeutic drugs including paclitaxel, gemcitabine and methotrexate, which was not seen in Her-2(+) SKBR3 cells. However, suppressing Her-2 using neratinib, a permanent Her-2 inhibitor, sensitized cellular response to these chemodrugs in cells with CLDN9 knockdown. (4) Conclusions: CLDN9 is an important prognostic indicator for patients with breast cancer and also a pivotal factor in assessing patient responses to chemotherapies. Her-2 is a negating factor for the treatment response prediction value by CLDN9 and negating Her-2 and CLDN9 may enhance breast cancer cellular response to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xinguo Zhuang
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Tracey A. Martin
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| | - Fiona Ruge
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| | - Jianyuan (Jimmy) Zeng
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| | - Xinyu (Amber) Li
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| | - Elyas Khan
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Qingping Dou
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Eleri Davies
- Wales Breast Centre, University Llandough Hospital, Cardiff and Vales University Health Board, Cardiff CF64 2XX, UK;
| | - Wen G. Jiang
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| |
Collapse
|
7
|
Romero-Estrada JH, Montaño LF, Rendón-Huerta EP. Binding of YY1/CREB to an Enhancer Region Triggers Claudin 6 Expression in H. pylori LPS-Stimulated AGS Cells. Int J Mol Sci 2023; 24:13974. [PMID: 37762277 PMCID: PMC10531490 DOI: 10.3390/ijms241813974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Aberrant expression of the tight junction protein claudin 6 (CLDN6) is a hallmark of gastric cancer progression. Its expression is regulated by the cAMP response element-binding protein (CREB). In gastric cancer induced by Helicobacter pylori (H. pylori) there is no information regarding what transcription factors induce/upregulate the expression of CLDN6. We aimed to identify whether CREB and Yin Yang1 (YY1) regulate the expression of CLDN6 and the site where they bind to the promoter sequence. Bioinformatics analysis, H. pylori lipopolysaccharide (LPS), YY1 and CREB silencing, Western blot, luciferase assays, and chromatin immunoprecipitation experiments were performed using the stomach gastric adenocarcinoma cell line AGS. A gen reporter assay suggested that the initial 2000 bp contains the regulatory sequence associated with CLDN6 transcription; the luciferase assay demonstrated three different regions with transcriptional activity, but the -901 to -1421 bp region displayed the maximal transcriptional activity in response to LPS. Fragment 1279-1421 showed CREB and, surprisingly, YY1 occupancy. Sequential Chromatin Immunoprecipitation (ChIP) experiments confirmed that YY1 and CREB interact in the 1279-1421 region. Our results suggest that CLDN6 expression is regulated by the binding of YY1 and CREB in the 901-1421 enhancer, in which a non-described interaction of YY1 with CREB was established in the 1279-1421 region.
Collapse
Affiliation(s)
| | - Luis F. Montaño
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Erika P. Rendón-Huerta
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| |
Collapse
|
8
|
Takasawa A, Takasawa K, Murata M, Osanai M, Sawada N. Emerging roles of transmembrane-type tight junction proteins in cancers. Pathol Int 2023; 73:331-340. [PMID: 37449777 DOI: 10.1111/pin.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
Tight junctions (TJs) are the most apical components of the cell-cell adhesion machinery in epithelial and endothelial cells and they play essential roles in homeostasis. Recent studies have revealed that aberrant expression of tight junction proteins (TJPs) is frequently observed in various type of cancers. Here we review cancer-associated aberrant expression of TJPs with focus on transmembrane-type TJPs including claudins, junctional adhesion molecule-A (JAM-A), and occludin. Some transmembrane-type TJPs are upregulated at the early neoplastic stage and their expression persists during dedifferentiation. Aberrant expression of TJPs contributes to proliferation, invasion, and dysregulated signaling of cancer cells. In addition to an increase in their expression level, their localization is altered from a TJ-restricted pattern to distribution throughout the whole cell membrane, making them suitable as therapeutic targets. Extracellular domains of transmembrane-type TJPs can be approached by target drugs not only from the lumen side (apical side) but also from the extracellular matrix side (basal side), including blood vessels. Aberrantly expressed TJPs are potential useful diagnostic markers as well as therapeutic targets for cancers.
Collapse
Affiliation(s)
- Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Diagnostic Pathology, Tokeidai Memorial Hospital, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
9
|
McDermott MS, O'Brien NA, Hoffstrom B, Gong K, Lu M, Zhang J, Luo T, Liang M, Jia W, Hong JJ, Chau K, Davenport S, Xie B, Press MF, Panayiotou R, Handly-Santana A, Brugge JS, Presta L, Glaspy J, Slamon DJ. Preclinical Efficacy of the Antibody-Drug Conjugate CLDN6-23-ADC for the Treatment of CLDN6-Positive Solid Tumors. Clin Cancer Res 2023; 29:2131-2143. [PMID: 36884217 PMCID: PMC10233360 DOI: 10.1158/1078-0432.ccr-22-2981] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE Claudin-6 (CLDN6) is expressed at elevated levels in multiple human cancers including ovarian and endometrial malignancies, with little or no detectable expression in normal adult tissue. This expression profile makes CLDN6 an ideal target for development of a potential therapeutic antibody-drug conjugate (ADC). This study describes the generation and preclinical characterization of CLDN6-23-ADC, an ADC consisting of a humanized anti-CLDN6 monoclonal antibody coupled to monomethyl auristatin E (MMAE) via a cleavable linker. EXPERIMENTAL DESIGN A fully humanized anti-CLDN6 antibody was conjugated to MMAE resulting in the potential therapeutic ADC, CLDN6-23-ADC. The antitumor efficacy of CLDN6-23-ADC was assessed for antitumor efficacy in CLDN6-positive (CLDN6+) and -negative (CLDN6-) xenografts and patient-derived xenograft (PDX) models of human cancers. RESULTS CLDN6-23-ADC selectively binds to CLDN6, versus other CLDN family members, inhibits the proliferation of CLDN6+ cancer cells in vitro, and is rapidly internalized in CLDN6+ cells. Robust tumor regressions were observed in multiple CLDN6+ xenograft models and tumor inhibition led to markedly enhanced survival of CLDN6+ PDX tumors following treatment with CLDN6-23-ADC. IHC assessment of cancer tissue microarrays demonstrate elevated levels of CLDN6 in 29% of ovarian epithelial carcinomas. Approximately 45% of high-grade serous ovarian carcinomas and 11% of endometrial carcinomas are positive for the target. CONCLUSIONS We report the development of a novel ADC, CLDN6-23-ADC, that selectively targets CLDN6, a potential onco-fetal-antigen which is highly expressed in ovarian and endometrial cancers. CLDN6-23-ADC exhibits robust tumor regressions in mouse models of human ovarian and endometrial cancers and is currently undergoing phase I study.
Collapse
Affiliation(s)
- Martina S.J. McDermott
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Neil A. O'Brien
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Benjamin Hoffstrom
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - KeWei Gong
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Ming Lu
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jun Zhang
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Tong Luo
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Min Liang
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Weiping Jia
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jenny J. Hong
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kevin Chau
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Simon Davenport
- Pathology, University of Southern California, Los Angeles, California
| | - Bin Xie
- Pathology, University of Southern California, Los Angeles, California
| | - Michael F. Press
- Pathology, University of Southern California, Los Angeles, California
| | - Richard Panayiotou
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Abram Handly-Santana
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Joan S. Brugge
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Leonard Presta
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - John Glaspy
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Dennis J. Slamon
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
10
|
Knockdown of CLAUDIN-6 Inhibited Apoptosis and Induced Proliferation of Bovine Cumulus Cells. Int J Mol Sci 2022; 23:ijms232113222. [PMID: 36362009 PMCID: PMC9656489 DOI: 10.3390/ijms232113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
This study aims to investigate the effects of CLAUDIN-6 (CLDN6) on cell apoptosis and proliferation of bovine cumulus cells (CCs). Immunofluorescence staining was used to localize CLDN6 protein in CCs. Three pairs of siRNA targeting CLDN6 and one pair of siRNA universal negative sequence as control were transfected into bovine CCs. Then, the effective siRNA was screened by real-time quantitative PCR (RT-qPCR) and Western blotting. The mRNA expression levels of apoptosis related genes (CASPASE-3, BAX and BCL-2) and proliferation related genes (PCNA, CDC42 and CCND2) were evaluated by RT-qPCR in CCs with CLDN6 knockdown. Cell proliferation, apoptosis and cell cycle were detected by flow cytometry with CCK-8 staining, Annexin V-FITC staining and propidium iodide staining, respectively. Results showed that the CLDN6 gene was expressed in bovine CCs and the protein was localized in cell membranes and cytoplasms. After CLDN6 was knocked down in CCs, the cell apoptosis rate significantly decreased and the pro-apoptotic genes BAX and CASPASE-3 were down-regulated significantly, whereas the anti-apoptotic gene BCL-2 was markedly up-regulated (p < 0.05). Additionally, CLDN6 knockdown significantly enhanced cell proliferation of CCs at 72 h after siRNA transfection. The mRNA levels of proliferation-related genes PCNA, CCND2 and CDC42 increased obviously in CCs with CLDN6 knockdown (p < 0.05). After CLDN6 was down-regulated, the percentage of CCs at S phase was significantly increased (p < 0.05). However, there was no remarkable difference in the percentages of cells at the G0/G1 phase and G2/M phase between CCs with or without CLDN6 knockdown (p > 0.05). Therefore, the expression of CLDN6 and its effects on cell proliferation, apoptosis and cell cycle of bovine CCs were first studied. CLDN6 low expression inhibited cell apoptosis, induced cell proliferation and cell cycle arrest of bovine CCs.
Collapse
|
11
|
Su X, Ma G, Bai X, Zhang J, Li M, Zhang F, Sun T, Ma D, Lu F, Ji C. The prognostic marker FLVCR2 associated with tumor progression and immune infiltration for acute myeloid leukemia. Front Cell Dev Biol 2022; 10:978786. [PMID: 36313565 PMCID: PMC9597318 DOI: 10.3389/fcell.2022.978786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2024] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies in adults. The tumor microenvironment (TME) has a critical effect on AML occurrence, recurrence, and progression. The gene feline leukemia virus subgroup C cellular receptor family member 2 (FLVCR2) belongs to the major facilitator superfamily of transporter protein members, which is primarily involved in transporting small molecules. The potential role of FLVCR2 in the TME in AML has not been investigated. To clarify the expression and role of FLVCR2 in AML, we analyzed the Gene Expression Omnibus and The Cancer Genome Atlas databases and found that FLVCR2 mRNA expression significantly increased among patients with AML. Furthermore, based on an analysis of the Gene Expression Profiling Interactive Analysis database, FLVCR2 upregulation predicted dismal overall survival of patients with AML. Our validation analysis revealed the significant upregulation of FLVCR2 within the bone marrow of AML relative to healthy controls by western blotting and qPCR assays. Gene set enrichment analysis was conducted to explore FLVCR2's related mechanism in AML. We found that high FLVCR2 expression was related to infiltration degrees of immune cells and immune scores among AML cases, indicating that FLVCR2 possibly had a crucial effect on AML progression through the immune response. Specifically, FLVCR2 upregulation was negatively related to the immune infiltration degrees of activated natural killer cells, activated memory CD4+ T cells, activated dendritic cells, and CD8+ T cells using CIBERSORT analysis. According to the in vitro research, FLVCR2 silencing suppressed AML cell growth and promoted their apoptosis. This study provides insights into FLVCR2's effect on tumor immunity, indicating that it might serve as an independent prognostic biomarker and was related to immune infiltration within AML.
Collapse
Affiliation(s)
- Xiuhua Su
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangxin Ma
- Hematology and Oncology Unit, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoran Bai
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|