1
|
Searles SC, Chen W, Yee JD, Lee P, Lee CK, Caron C, Neto F, Matei I, Lyden D, Bui JD. MAP kinase kinase 1 (MEK1) within extracellular vesicles inhibits tumour growth by promoting anti-tumour immunity. J Extracell Vesicles 2024; 13:e12515. [PMID: 39330930 PMCID: PMC11428867 DOI: 10.1002/jev2.12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/01/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication in many physiologic processes and can modulate immune responses in individuals with cancer. Most studies of EVs in cancer have focused on their tumour promoting properties. Whether and how EVs might mediate tumour regression besides carrying antigens has not been well characterized. Using a mouse model of highly immunogenic regressor versus poorly immunogenic progressor tumour cells, we have characterized the role of EVs in activating macrophages and promoting tumour rejection. We found that the signalling molecule MAP2K1 (MEK1) is enriched in EVs secreted by regressor relative to progressor cells. Progressor EVs engineered to have levels of MEK1 similar to regressor EVs could inhibit tumour growth by indirectly promoting adaptive immunity in both syngeneic and 3rd party tumours. This effect required MEK1 activity and could occur by activating macrophages to promote adaptive immune responses against the tumour via the cytokine interferon-gamma. Our results suggest that MEK inhibition may be deleterious to cancer treatment, since MEK1 plays an important cell-extrinsic, tumour-suppressive role within EVs. Moreover, the delivery of MEK1 to tumour-associated macrophages, either by EVs, nanoparticles, or some other means, could be a useful strategy to treat cancer via the activation of anti-tumour immunity.
Collapse
Affiliation(s)
| | - Wei‐Shan Chen
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Jarrod D. Yee
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Preston Lee
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Calvin K. Lee
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Christine Caron
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Felippe Neto
- Department of Cell and Developmental BiologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Irina Matei
- Department of Cell and Developmental BiologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - David Lyden
- Department of Cell and Developmental BiologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Jack D. Bui
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
2
|
Alhujaily M. Glyoxalase System in Breast and Ovarian Cancers: Role of MEK/ERK/SMAD1 Pathway. Biomolecules 2024; 14:584. [PMID: 38785990 PMCID: PMC11117840 DOI: 10.3390/biom14050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
The glyoxalase system, comprising GLO1 and GLO2 enzymes, is integral in detoxifying methylglyoxal (MGO) generated during glycolysis, with dysregulation implicated in various cancer types. The MEK/ERK/SMAD1 signaling pathway, crucial in cellular processes, influences tumorigenesis, metastasis, and angiogenesis. Altered GLO1 expression in cancer showcases its complex role in cellular adaptation and cancer aggressiveness. GLO2 exhibits context-dependent functions, contributing to both proapoptotic and antiapoptotic effects in different cancer scenarios. Research highlights the interconnected nature of these systems, particularly in ovarian cancer and breast cancer. The glyoxalase system's involvement in drug resistance and its impact on the MEK/ERK/SMAD1 signaling cascade underscore their clinical significance. Furthermore, this review delves into the urgent need for effective biomarkers, exemplified in ovarian cancer, where the RAGE-ligand pathway emerges as a potential diagnostic tool. While therapeutic strategies targeting these pathways hold promise, this review emphasizes the challenges posed by context-dependent effects and intricate crosstalk within the cellular milieu. Insights into the molecular intricacies of these pathways offer a foundation for developing innovative therapeutic approaches, providing hope for enhanced cancer diagnostics and tailored treatment strategies.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
3
|
Eriksson I, Öllinger K. Lysosomes in Cancer-At the Crossroad of Good and Evil. Cells 2024; 13:459. [PMID: 38474423 DOI: 10.3390/cells13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Although it has been known for decades that lysosomes are central for degradation and recycling in the cell, their pivotal role as nutrient sensing signaling hubs has recently become of central interest. Since lysosomes are highly dynamic and in constant change regarding content and intracellular position, fusion/fission events allow communication between organelles in the cell, as well as cell-to-cell communication via exocytosis of lysosomal content and release of extracellular vesicles. Lysosomes also mediate different forms of regulated cell death by permeabilization of the lysosomal membrane and release of their content to the cytosol. In cancer cells, lysosomal biogenesis and autophagy are increased to support the increased metabolism and allow growth even under nutrient- and oxygen-poor conditions. Tumor cells also induce exocytosis of lysosomal content to the extracellular space to promote invasion and metastasis. However, due to the enhanced lysosomal function, cancer cells are often more susceptible to lysosomal membrane permeabilization, providing an alternative strategy to induce cell death. This review summarizes the current knowledge of cancer-associated alterations in lysosomal structure and function and illustrates how lysosomal exocytosis and release of extracellular vesicles affect disease progression. We focus on functional differences depending on lysosomal localization and the regulation of intracellular transport, and lastly provide insight how new therapeutic strategies can exploit the power of the lysosome and improve cancer treatment.
Collapse
Affiliation(s)
- Ida Eriksson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Karin Öllinger
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
4
|
You Q, Liang F, Wu G, Cao F, Liu J, He Z, Wang C, Zhu L, Chen X, Yang Y. The Landscape of Biomimetic Nanovesicles in Brain Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306583. [PMID: 37713652 DOI: 10.1002/adma.202306583] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Brain diseases, such as brain tumors, neurodegenerative diseases, cerebrovascular diseases, and brain injuries, are caused by various pathophysiological changes, which pose a serious health threat. Brain disorders are often difficult to treat due to the presence of the blood-brain barrier (BBB). Biomimetic nanovesicles (BNVs), including endogenous extracellular vesicles (EVs) derived from various cells and artificial nanovesicles, possess the ability to penetrate the BBB and thus can be utilized for drug delivery to the brain. BNVs, especially endogenous EVs, are widely distributed in body fluids and usually carry various disease-related signal molecules such as proteins, RNA, and DNA, and may also be analyzed to understand the etiology and pathogenesis of brain diseases. This review covers the exhaustive classification and characterization of BNVs and pathophysiological roles involved in various brain diseases, and emphatically focuses on nanotechnology-integrated BNVs for brain disease theranostics, including various diagnosis strategies and precise therapeutic regulations (e.g., immunity regulation, disordered protein clearance, anti-neuroinflammation, neuroregeneration, angiogenesis, and the gut-brain axis regulation). The remaining challenges and future perspectives regarding the nanotechnology-integrated BNVs for the diagnosis and treatment of brain diseases are also discussed and outlined.
Collapse
Affiliation(s)
- Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Gege Wu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Wang Y, Xiao T, Zhao C, Li G. The Regulation of Exosome Generation and Function in Physiological and Pathological Processes. Int J Mol Sci 2023; 25:255. [PMID: 38203424 PMCID: PMC10779122 DOI: 10.3390/ijms25010255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes, a type of extracellular vesicle with a diameter of approximately 100 nm that is secreted by all cells, regulate the phenotype and function of recipient cells by carrying molecules such as proteins, nucleic acids, and lipids and are important mediators of intercellular communication. Exosomes are involved in various physiological and pathological processes such as immunomodulation, angiogenesis, tumorigenesis, metastasis, and chemoresistance. Due to their excellent properties, exosomes have shown their potential application in the clinical diagnosis and treatment of disease. The functions of exosomes depend on their biogenesis, uptake, and composition. Thus, a deeper understanding of these processes and regulatory mechanisms can help to find new targets for disease diagnosis and therapy. Therefore, this review summarizes and integrates the recent advances in the regulatory mechanisms of the entire biological process of exosomes, starting from the formation of early-sorting endosomes (ESCs) by plasma membrane invagination to the release of exosomes by fusion of multivesicular bodies (MVBs) with the plasma membrane, as well as the regulatory process of the interactions between exosomes and recipient cells. We also describe and discuss the regulatory mechanisms of exosome production in tumor cells and the potential of exosomes used in cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (T.X.); (C.Z.)
| |
Collapse
|
6
|
Teli P, Vaidya A, Kale V. Signal transduction pathways alter the molecular cargo of extracellular vesicles: implications in regenerative medicine. Regen Med 2023; 18:935-944. [PMID: 38059320 DOI: 10.2217/rme-2023-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Extracellular vesicles (EVs) possess regenerative properties and are also considered as future vaccines. All types of cells secrete EVs; however, the amount of EVs secreted by the cells varies under various physiological as well as pathological states. Several articles have reviewed the molecular composition and potential therapeutic applications of EVs. Likewise, the 'sorting signals' associated with specific macromolecules have also been identified, but how the signal transduction pathways prevailing in the parent cells alter the molecular profile of the EVs or the payload they carry has not been sufficiently reviewed. Here, we have specifically discussed the implications of these alterations in the macromolecular cargo of EVs for their therapeutic applications in regenerative medicine.
Collapse
Affiliation(s)
- Prajakta Teli
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune 412115, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune 412115, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune 412115, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 412115, India
| |
Collapse
|
7
|
Pourali G, Zafari N, Fiuji H, Batra J, Nazari E, Khazaei M, Hassanian SM, Vahabi M, Kiani M, Ghayour-Mobarhan M, Peters GJ, Ferns GA, Lam AKY, Giovannetti E, Avan A. Extracellular vesicles: Emerging mediators of cell communication in gastrointestinal cancers exhibiting metabolic abnormalities. Cytokine Growth Factor Rev 2023; 73:101-113. [PMID: 37573251 DOI: 10.1016/j.cytogfr.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
There is a complex interaction between pro-tumoural and anti-tumoural networks in the tumour microenvironment (TME). Throughout tumourigenesis, communication between malignant cells and various cells of the TME contributes to metabolic reprogramming. Tumour Dysregulation of metabolic pathways offer an evolutional advantage in the TME and enhance the tumour progression, invasiveness, and metastasis. Therefore, understanding these interactions within the TME is crucial for the development of innovative cancer treatments. Extracellular vesicles (EVs) serve as carriers of various materials that include microRNAs, proteins, and lipids that play a vital role in the communication between tumour cells and non-tumour cells. EVs are actively involved in the metabolic reprogramming process. This review summarized recent findings regarding the involvement of EVs in the metabolic reprogramming of various cells in the TME of gastrointestinal cancers. Additionally, we highlight identified microRNAs involved in the reprogramming process in this group of cancers and explained the abnormal tumour metabolism targeted by exosomal cargos as well as the novel potential therapeutic approaches.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands
| | - Jyotsna Batra
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Center for genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
| | - Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahrou Vahabi
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands
| | - MohammadAli Kiani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Professor In Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Alfred King-Yin Lam
- Pathology, School of Medicine and Dentistry, Gold Coast campus, Griffith University, Gold Coast, QLD 4222, Australia
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq,; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
8
|
Jia W, Yuan J, Cheng B, Ling C. Targeting tumor-derived exosome-mediated premetastatic niche formation: The metastasis-preventive value of traditional Chinese medicine. Cancer Lett 2023:216261. [PMID: 37302563 DOI: 10.1016/j.canlet.2023.216261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Tumor-derived exosome (TDE)-mediated premetastatic niche (PMN) formation is a potential mechanism underlying the organotropic metastasis of primary tumors. Traditional Chinese medicine (TCM) has shown considerable success in preventing and treating tumor metastasis. However, the underlying mechanisms remain elusive. In this review, we discussed PMN formation from the perspectives of TDE biogenesis, cargo sorting, and TDE recipient cell alterations, which are critical for metastatic outgrowth. We also reviewed the metastasis-preventive effects of TCM, which act by targeting the physicochemical materials and functional mediators of TDE biogenesis, regulating the cargo sorting machinery and secretory molecules in TDEs, and targeting the TDE-recipient cells involved in PMN formation.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Jiaying Yuan
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Changquan Ling
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| |
Collapse
|
9
|
Ding L, Li ZL, Zhou Y, Liu NC, Liu SS, Zhang XJ, Liu CC, Zhang DJ, Wang GH, Ma RX. Loss of Sirt1 promotes exosome secretion from podocytes by inhibiting lysosomal acidification in diabetic nephropathy. Mol Cell Endocrinol 2023; 568-569:111913. [PMID: 36990198 DOI: 10.1016/j.mce.2023.111913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023]
Abstract
Podocyte injury is a characteristic feature of diabetic nephropathy (DN). The secretion of exosomes in podocytes increases significantly in DN; however, the precise mechanisms remain poorly understood. Here, we demonstrated that Sirtuin1 (Sirt1) was significantly downregulated in podocytes in DN, which correlated negatively with increased exosome secretion. Similar results were observed in vitro. We found that lysosomal acidification in podocytes following high glucose administration was markedly inhibited, resulting in the decreased lysosomal degradation of multivesicular bodies. Mechanistically, we indicated that loss of Sirt1 contributed to the inhibited lysosomal acidification by decreasing the expression of the A subunit of the lysosomal vacuolar-type H+ ATPase proton pump (ATP6V1A) in podocytes. Overexpression of Sirt1 significantly improved lysosomal acidification with increased expression of ATP6V1A and inhibited exosome secretion. These findings suggest that dysfunctional Sirt1-mediated lysosomal acidification is the exact mechanism of increased secretion of exosomes in podocytes in DN, providing insights into potential therapeutic strategies for preventing DN progression.
Collapse
Affiliation(s)
- Lin Ding
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| | - Yan Zhou
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Nan-Chi Liu
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shan-Shan Liu
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xing-Jian Zhang
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cong-Cong Liu
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dong-Jie Zhang
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Gui-Hua Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xia Ma
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
10
|
EV-out or EV-in: Tackling cell-to-cell communication within the tumor microenvironment to enhance anti-tumor efficacy using extracellular vesicle-based therapeutic strategies. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|