1
|
Soroko SS, Skamnitskiy DV, Gorshkova EN, Kutova OM, Seriev IR, Maslennikova AV, Guryev EL, Gudkov SV, Vodeneev VA, Balalaeva IV, Shilyagina NY. The Dose Rate of Corpuscular Ionizing Radiation Strongly Influences the Severity of DNA Damage, Cell Cycle Progression and Cellular Senescence in Human Epidermoid Carcinoma Cells. Curr Issues Mol Biol 2024; 46:13860-13880. [PMID: 39727956 DOI: 10.3390/cimb46120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Modern radiotherapy utilizes a broad range of sources of ionizing radiation, both low-dose-rate (LDR) and high-dose-rate (HDR). However, the mechanisms underlying specific dose-rate effects remain unclear, especially for corpuscular radiation. To address this issue, we have irradiated human epidermoid carcinoma A431 cells under LDR and HDR regimes. Reducing the dose rate has lower lethality at equal doses with HDR irradiation. The half-lethal dose after HDR irradiation was three times less than after LDR irradiation. The study of mechanisms showed that under HDR irradiation, the radiation-induced halt of mitosis with the accompanying emergence of giant cells was recorded. No such changes were recorded after LDR irradiation. The level of DNA damage is significantly greater after HDR irradiation, which may be the main reason for the different mechanisms of action of HDR and LDR irradiations. Comparing the mechanisms of cell response to LDR and HDR irradiations may shed light on the mechanisms of tumor cell response to ionizing radiation and answer the question of whether different dose rates within the same dose range can cause different clinical effects.
Collapse
Affiliation(s)
- Sergey S Soroko
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry V Skamnitskiy
- Nizhniy Novgorod Regional Oncology Hospital, St. Rodionova, 190, 603950 Nizhny Novgorod, Russia
| | - Ekaterina N Gorshkova
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Olga M Kutova
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Ismail R Seriev
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Anna V Maslennikova
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
- Nizhniy Novgorod Regional Oncology Hospital, St. Rodionova, 190, 603950 Nizhny Novgorod, Russia
- Department of Oncology, Radiation Therapy and Radiation Diagnostics, Privolzhsky Research Medical University, Minin and Pozharsky Sq., 10/1, 603950 Nizhny Novgorod, Russia
| | - Evgeniy L Guryev
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Sergey V Gudkov
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str. 38, 119991 Moscow, Russia
- Federal Scientific Agronomic and Engineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Vladimir A Vodeneev
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Irina V Balalaeva
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Natalia Yu Shilyagina
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Chan B, Wong NSM, Wo BBW, Chan OL, Lee AS. Early Outcomes of Preoperative Short Course Radiotherapy With Simultaneous Integrated Boost and Response-adapted Chemotherapy for Advanced Rectal Cancer. Clin Oncol (R Coll Radiol) 2024; 37:103653. [PMID: 39504641 DOI: 10.1016/j.clon.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND AND PURPOSE Limited evidence exists for dose escalation in neoadjuvant short course radiotherapy (SCRT) for rectal cancer. With enhanced imaging and radiotherapy techniques over the past decades along with the valuable endpoint of pathological complete response (pCR), we believe SCRT with simultaneous integrated boost could potentially provide deeper pathological responses and improve local control. METHODS AND MATERIALS Between January 2020 and December 2022, locoregional-advanced rectal cancer patients that were treated with neoadjuvant SCRT with simultaneous integrated boost up to 5.5-6Gy per fraction with five daily fractions followed by response-adapted chemotherapy was retrospectively reviewed. The pCR rates, R0 resection rates, tumor downstaging, toxicities, and early pattern of recurrence are reported. RESULTS Among the 76 patients, 67 (88%) were able to undergo curative intent surgery. R0 resection was achieved in 99% (n = 66) of patients with pCR rates of 28% (n = 19). Forty-six percent (n = 31) of patients had significant pathological downstaging (ypT2N0) and 55% (n = 37) of patients had both T and N downstaging. Most common grade 3 or above radiotherapy-related side-effects were proctitis, rectal pain, and dermatitis found in 5% (n = 4), 3% (n = 2) and 3% (n = 2) of patients, respectively. Grade 3 or above surgical complications were observed in 15% (n = 10) of patients. There were no treatment-related deaths. With a median follow-up of 27 months, only 6% (n = 4) had local recurrence after surgery. CONCLUSIONS Neoadjuvant short course radiotherapy with simultaneous boost for rectal cancer is feasible with no added toxicities. Patients who underwent surgery achieve a high R0 resection and pCR rates. Early data suggest low rates of locoregional recurrence. Further follow-up and research is needed to validate and optimize the dose, method, and schedule of dose escalation.
Collapse
Affiliation(s)
- B Chan
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong.
| | - N S M Wong
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong
| | - B B W Wo
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong
| | - O L Chan
- Department of Diagnostic Radiology and Nuclear Medicine, Tuen Mun Hospital, Hong Kong
| | - A S Lee
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong
| |
Collapse
|
3
|
Ghosh S, Patra S, Younis MH, Chakraborty A, Guleria A, Gupta SK, Singh K, Rakhshit S, Chakraborty S, Cai W, Chakravarty R. Brachytherapy at the nanoscale with protein functionalized and intrinsically radiolabeled [ 169Yb]Yb 2O 3 nanoseeds. Eur J Nucl Med Mol Imaging 2024; 51:1558-1573. [PMID: 38270686 DOI: 10.1007/s00259-024-06612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE Classical brachytherapy of solid malignant tumors is an invasive procedure which often results in an uneven dose distribution, while requiring surgical removal of sealed radioactive seed sources after a certain period of time. To circumvent these issues, we report the synthesis of intrinsically radiolabeled and gum Arabic glycoprotein functionalized [169Yb]Yb2O3 nanoseeds as a novel nanoscale brachytherapy agent, which could directly be administered via intratumoral injection for tumor therapy. METHODS 169Yb (T½ = 32 days) was produced by neutron irradiation of enriched (15.2% in 168Yb) Yb2O3 target in a nuclear reactor, radiochemically converted to [169Yb]YbCl3 and used for nanoparticle (NP) synthesis. Intrinsically radiolabeled NP were synthesized by controlled hydrolysis of Yb3+ ions in gum Arabic glycoprotein medium. In vivo SPECT/CT imaging, autoradiography, and biodistribution studies were performed after intratumoral injection of radiolabeled NP in B16F10 tumor bearing C57BL/6 mice. Systematic tumor regression studies and histopathological analyses were performed to demonstrate therapeutic efficacy in the same mice model. RESULTS The nanoformulation was a clear solution having high colloidal and radiochemical stability. Uniform distribution and retention of the radiolabeled nanoformulation in the tumor mass were observed via SPECT/CT imaging and autoradiography studies. In a tumor regression study, tumor growth was significantly arrested with different doses of radiolabeled NP compared to the control and the best treatment effect was observed with ~ 27.8 MBq dose. In histopathological analysis, loss of mitotic cells was apparent in tumor tissue of treated groups, whereas no significant damage in kidney, lungs, and liver tissue morphology was observed. CONCLUSIONS These results hold promise for nanoscale brachytherapy to become a clinically practical treatment modality for unresectable solid cancers.
Collapse
Affiliation(s)
- Sanchita Ghosh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Sourav Patra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Muhsin H Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, USA
| | - Avik Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, 400012, India
| | - Apurav Guleria
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Santosh K Gupta
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Khajan Singh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sutapa Rakhshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, 400012, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, USA.
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|